
Supplementary Figures 

 

Supplementary Figure 1. Response of the PFUS1-GFP reporter to purified α-factor in wild-

type (wt) and Bar1 knockout (bar1∆) MATa cells at different time points after stimulation. 

The PFUS1-GFP reporter showed a clear dose- and time-dependent induction. Shmooing 

(yellow regions) of bar1∆ cells occurred at doses of α-factor that were above the saturation of 

the transcriptional response. Fluorescence was quantified in microscopy time-lapse series; 

fluorescence values of unstimulated cells were subtracted. Shmooing populations were 

assessed via direct observation (see Methods). The PFUS1-GFP reporter can thus be well used 

to resolve the cell response prior to the ultimate commitment to mating. The gradual time-

dependent shift of the reporter response in the wild type to higher initial α-factor 

concentrations reflects Bar1-mediated degradation of α-factor. Error bars indicate the SEM of 

individual cells in the experiment.  

 



 

Supplementary Figure 2. PFUS1-GFP reporter response in MATa cells in mixed-population 

experiments, measured as in Fig. 2 but using fluorescence microscopy. a-d. Wild-type (a, c) 

and bar1∆ (b, d) response dependence on the density of partner cells (a, b) and the fraction of 

partner cells (c, d). The value at zero density indicates the reporter activity in absence of 

MATα cells. e. Response of wild-type MATa cells to a varying density of MATα cells (ρα) at a 

mixed population ratio of 1:1, measured at 100 min (red), 175 min (green) and 250 min (blue) 

after mixing. Fluorescence values of unstimulated cells were subtracted. Error bars indicate 

SEM of the responses of individual cells in the experiment. Solid lines show fits to the data 

using a computational model of the mating pathway response. 

  



 

Supplementary Figure 3. Time dependence of sex-ratio sensing. a. Response of the wild-

type MATa strain in a mixed population, measured using flow cytometry (as in Fig. 2), shows 

linear dependency on the population sex ratio (θα) that remains stable during at least 260 

minutes after mixing of mating types. While response is weakly dependent on the total density 

(ρα) at early time points, it becomes density-independent at a later time point (See Methods 

for statistical analysis). Contrary to that, the bar1∆ strain shows a sustained sensitivity to the 

total density and is incapable of sex-ratio sensing. Error bars indicate SEM of two 

independent experiments. b. Simulated time dependence of the response (see Supplementary 

Methods for the detailed description of a computational model). 

  



 

Supplementary Figure 4. Transcriptional regulation and putative cell-wall associated 

fraction of Bar1 do not affect pathway response. a. Bar1 expression is less sensitive to α-

factor than PFUS1-GFP expression. A strain carrying both the PFUS1-GFP reporter (blue) and an 

mCherry-tagged functional version of Bar1 (red) was exposed to different α-factor 

concentrations. Fluorescence was measured using microscopy (see Supplementary Fig. 1). For 

the PFUS1-GFP reporter, fluorescence of unstimulated cells was subtracted as in all other 

experiments with purified α-factor. For the Bar1-mCherry fusion, the autofluorescence of 

cells without mCherry was subtracted instead, to highlight the background value of Bar1 

expression in unstimulated cells. For both reporters, the values were normalized to the 

respective maximal response. Bar1-mCherry fusion protein is induced at much higher 

pheromone concentrations than the PFUS1-GFP reporter, suggesting that production of Bar1 

remains at a basal level in the studied range of the mating response. b. Bar1 induction by α-

factor is not important in determining the sex-ratio response. The BAR1 promoter was 



replaced with a strong constitutive yeast promoter (PTEF) and the response to density and sex 

ratio in the mixed population of MATα and MATa cells was measured using microscopy and 

compared with the wild-type response at different values of ρT (OD600) of 0.18 (red), 0.54 

(green) and 4.9 (blue). c. Cell-wall associated Bar1 has no effect on the observed regulation. 

Plots show the PFUS1-GFP response kinetics in wild-type (blue) and bar1∆ (red) MATa cells 

mixed in equal proportion and exposed to different α-factor concentrations (indicated above 

each plot, in nM). The global extracellular pool of Bar1 is shared by both cell populations, 

however the cell-wall associated activity is exclusive to the wild-type. The cell-wall 

associated fraction of Bar1 appears to play no significant role in the response attenuation, 

because the mixed populations of the wild-type and bar1∆ MATa cells that share a common 

pool of diffusive Bar1 show identical responses to purified α-factor (compare to differences 

observed in Supplementary Fig. 1). Error bars indicate SEM of the responses of individual 

cells in the experiment. 

 

  



 

 

Supplementary Figure 5. Activity of the PFUS1-GFP reporter in mixed populations of wild-

type MATα and either wild-type (wt) (a, b) or bar1∆ (c, d) MATa cells at 135 min after mixing 

(identical to Fig. 2) along with predictions by a mathematical model (see Supplementary 

Information; Model 2) that incorporates mutual induction of pheromone production. Data 

points are squares connected by dashed lines, model predictions are shown by straight lines. 

Response is plotted as a function of the MATα density (ρα) at fixed values of the fraction of 

MATα (θα) in the population (a, c), or as a function of θα at fixed values of the total population 

density (ρT, in units of OD600) (b, d). 

 

  



 

 

Supplementary Figure 6. Quantification of mating events in co-incubation experiments. The 

experiment was performed as in Figure 3 using mCherry-labelled MATα (red) and GFP-

labelled MATa (green) haploids. Fused MATa/MATα zygotes (green/yellow, indicated by 

arrows) as well as haploids were directly scored and counted in microscopy images. The 

values of sex ratio and fraction of MATa cells that mated were obtained for each image 

separately. Scale bar is 15 µm. 

 

  



 

Supplementary Figure 7. Experimental outline and analysis of competitive aggregation 

experiments. a. Schematic representation of the experimental procedure. Two differently 

labeled MATa strains (P1 in green, expressing mNeonGreen; P2 in red, expressing mCherry) 

were grown separately, and subsequently mixed at 1:1 ratio after stimulating one of them with 

pheromone. This mixed MATa culture was immediately supplemented with a labeled MATα 

strain (blue; expressing CFP). The cell suspension was incubated for 30 min under shaking 

conditions and analyzed for sexual aggregates (depicted with dashed ellipses) using flow 

cytometry. b. Typical example of flow cytometry analysis of an aggregation competition 

experiment. Names and graphical insets depict the type of cells/aggregates in the various 

gates with names and colors as in (a).  Sexual aggregates (aggregates between different 

mating types) are identifiable by their display of at least two different fluorescence colors, i.e. 

CFP with mNeonGreen and/or mCherry. The analysis was performed by first gating all 

recorded events by their CFP fluorescence intensity (left panel) resulting in two populations, 

i.e. those containing CFP-expressing MATα cells (purple color) and those containing only 

non-fluorescent MATa cells (grey). These populations were separately analyzed for their 

mNeonGreen and mCherry fluorescence intensities (right panel) and gates were defined to 

separate 4 distinct populations, i.e. populations with only mNeonGreen (P1, α•P1), only 

mCherry (P2, α•P2), both mCherry and mNeonGreen (P1•P2, α•P1•P2) or no fluorescence 

(α, none). The number of events in each of these gates was used to calculate relative sexual 

aggregation by normalizing the number of cells found in sexual aggregates with the total 

number of cells of this type. For example, relative sexual aggregation of MATa type strain P1 

was calculated using the equation α•P1 + α•P1•P2 / (α•P1 + α•P1•P2 + P1 + P1•P2). 



 

Supplementary Figure 8. Graphical illustration of cost-benefit model of different strategies 

of mating pathway induction. a. The fitness equation W=λg+(1-g)(1-f) summarizes the 

balancing of costs with benefits in a mating situation. The benefit is defined as the fraction of 

the original population forming diploids (set by the mating efficiency g), scaled by a 

parameter λ, standing for the relative advantage of diploidy. The cost is the fitness reduction 

(1-f) of the remaining haploid population (1-g). Shown example illustrates a mating situation 

with a partner cell fraction θα=0.5 with a total cell density ρT=2. In both cases the mating 

efficiency is g=0.5, half of the original haploid population will mate. However, in the case of 

the bar1∆ population, (the density-sensing) strategy, the fitness reduction of the remaining 

haploid cells is heavier, resulting in a lower average fitness of the bar1∆ population. b. The 

fractional sensing strategy of wt cells compared to a hypothetical case of density sensors with 

adjustable sensitivity (see Supplementary Methods). The calculated fitness landscape (at 



λ=2.1) of the fractional (wild type) sensor with two density sensor strategies (with different 

values of c, c=1, c=e6.85) is shown in panel on the left. For the chosen population distribution 

parameters of γ=8 (e-8≤ρT≤e8, log-uniformly distributed) and σθ=0.2, the density sensor (red 

fitness landscape) with c=e6.85 has the optimal value of c (cmax), shown by a red dot in the 

panel on the right. This is due to its strong amplification of the response at lower densities 

leading to higher population fitness. However, this is at the expense of heavy fitness reduction 

at low θα values when ρT is high, resulting in a mean fitness <WΔ> that is still lower than 

<WWT> (shown as blue line in right panel). The density sensor with c=1 (green surface on the 

left and green dot in right panel) performs even poorer. The panel on the right shows <WΔ> 

(red line) as a function of the scaling parameter c, and <WWT> (blue line).  

 

  



 

Supplementary Figure 9. Cost-benefit analysis of mating strategies under different 

distributions of population parameters. a. Cost-benefit model of wild type regulation 

compared to the density sensing strategy (See Supplementary Methods), assuming a uniform 



distribution of both population parameters θα and ρT. The ratio !!"
!"#!!!!!

 at different levels of 

λ (value of diploidy) and γ (defining the interval of ρT values in which these are log-uniformly 

distributed). Values smaller than 1 are in blue and not coloured gradually. On the right we 

have the mean of !!"
!"#!!!!!

 values over the range of γ values (1≤γ≤21), < !!"
!"#!!!∆!

>, 

plotted as a function of λ. b. The ratio !!"
!"#!!!∆!

 plotted at different levels of λ, comparing the 

wt fractional sensor strategy with the density sensor (bar1∆, in the case of a truncated 

Gaussian distribution for θα and a log-uniform distribution of ρT. The value r is the average of 
!!"

!"#!!!∆!
  values over the range of γ (1≤γ≤21) and σθ (0.05≤σθ≤0.55) values used. On the 

rightmost panel we have this average, < !!"
!"#!!!∆!

>, at different values of λ. c. The ratio 

!!"
!"#!!!∆!

 plotted at different levels of λ, comparing the wild type fractional sensor strategy 

with the density sensor (bar1∆, in the case of a truncated Gaussian distribution for θα and a 

log-normal distribution of ρT. The rightmost panel shows < !!"
!"#!!!∆!

> at different values of 

λ.  d. The ratio !!"
!"#!!!!"#$%&#%!

 plotted at different levels of λ, comparing the wild type 

fractional sensor strategy with one of constant investment (pathway induction) 

(Supplementary Methods). The rightmost panel shows < !!"
!"#!!!!"#$%&#%!

> at different values 

of λ. 

  



Supplementary Table 1. Strains used in this study. 

Strain 
name 

Mating 
type 

Relevant genotypea Description 

SEY6210 
 
 
 
SEY6210a 
 
 
 
yAA24-1 

MATα 
 
 
 
MATa 
 
 
 
MATa 

leu2-3,112 ura3-52 his3Δ200 
trp1Δ901 lys2-801 suc2Δ9 
 
 
leu2-3,112 ura3-52 his3Δ200 
trp1Δ901 lys2-801 suc2Δ9 
 
 
ura3::[PFUS1-Ubi(I)-sfGFP-
TFUS1:URA3] 

Robinson et al1; gift of 
Sabine Strahl, University of 
Heidelberg  
 
Robinson et al1; gift of 
Sabine Strahl, University of 
Heidelberg 
 
PFUS1-GFP reporter 
(destabilized superfolder-
GFP flanked by FUS1 
promoter and terminator) 

yAA28 MATa ura3::[PFUS1-Ubi(I)-sfGFP-
TFUS1:URA3] bar1Δ::kanMX6 

PFUS1-GFP reporter, bar1Δ 

yAA57 MATα his3::[PFUS1-mCherry-
TFUS1:SpHIS3] 

PFUS1-mCherry reporter 

yAA65 MATa ura3::[PFUS1-Ubi(I)-sfGFP-
TFUS1:URA3] 
mf(alpha)2Δ::hphNT1 
mf(alpha)1Δ::SpHIS3 
bar1Δ::kanMX6 

PFUS1-GFP reporter, bar1Δ, 
does not produce α-factor 

traces 

 
yAA198 MATa ura3::[PFUS1-Ubi(I)-sfGFP-

TFUS1:URA3] aga2Δ::klTRP1 
PFUS1-GFP reporter, aga2Δ 

yAB06 MATa ura3::[PFUS1-Ubi(I)-sfGFP-
TFUS1:URA3] BAR1-
mCherry:kanMX6 

PFUS1-GFP reporter, C-
terminal Bar1-mCherry 
fusion 

yAB02 MATa ura3::[PFUS1-Ubi(I)-sfGFP-
TFUS1:URA3] bar1Δ::kanMX6 
aga2Δ::hphNT 

PFUS1-GFP reporter, bar1Δ, 
aga2Δ 

yAB15 MATa ura3::[PFUS1-Ubi(I)-sfGFP-
TFUS1:URA3] aga2Δ::klTRP1, 
hphNT1:PTEF-BAR1 

PFUS1-GFP reporter, aga2Δ, 
TEF promoter driven 
expression of BAR1 

yAA276-
14 

MATα leu2::LEU2 
PYLR194C::12x[PYLR194C-CFP-
TYLR194C:SpHIS3] 

12 copies of PYLR194C-CFP 
reporter 

yMFM003 MATa LYS2::rtTA-S2 his3Δ::[PtetO7-
mNeonGreen:HIS3] 

Reverse tetracycline 
controlled transactivator 
(rtTA-S2), tetO7 driven 
mNeonGreen 

yMFM006 MATa LYS2::rtTA-S2 trp1Δ::[PtetO7-
mCherry:TRP1] 

rtTA-S2, tetO7 driven 
mCherry 



 

aPFUS1- and PYLR194C-fluorescent protein reporters were genomically integrated by means of 

integrative plasmids based on the pRS30x series2 , PtetO7-fluorescent protein reporters were 

genomically integrated by single-copy integrating plasmids based on the pNH series3; a 

plasmid with the reverse tet-trans-activator (rtTA-S2) gene was kindly provided by Hyun 

Youk (UCSF, San Francisco). 

 

  



Supplementary Methods: Mathematical modelling  

1 Mathematical model of signalling in a mixed yeast population 

1.1 Mathematical model of α-factor dynamics 

The concentration dynamics of α-factor and the enzyme Bar1 in a homogeneous mixed 

population of MATα and MATa cells can be described by the following ordinary differential 

equations 

dα(t)
dt

= ραυ1 −κ α(t) b(t)− kdeg
α α(t)         

db(t)
dt

= ρaυ2 − kdeg
b b(t)         , 

where α(t) and b(t) are the concentrations of α-factor and Bar1, respectively; ρα and ρa are the 

number of MATα and MATa cells per unit of volume; ν1 and ν2 are per cell production rates of 

α-factor and Bar1, respectively; and κ is the rate constant of Bar1-dependent α-factor 

degradation. Here we note that the α-factor degradation follows first-order kinetics, which is 

justified because the KM of Bar1 (30 µM)4 is much higher than the sensitive range of the 

pheromone response (Supplementary Fig. 1). We further neglect spontaneous degradation of 

Bar1 and of α-factor, as both are negligible on the time-scale of the experiment. This 

simplifies the two equations above to 

)()()(
1 tbt

dt
td

ακυρ
α

α −=         (I) 

db(t)
dt

= ρaυ2           (II). 

The system of Equations I and II has the exact solution 

α(t) = c1
ρα
ρa
exp − t c2( )2"

#
$
%erfi t c2( ) ,       (III) 

where c1 =1.253 υ1
1

κ υ2
, c2 = 0.707 κ υ2 ρa  and erfi is the imaginary error function. 



 This solution has non-monotonic time dependence, falling to zero after reaching a 

maximum 

α max= c ρα
ρa           

(IV) 

Where c is a combination of kinetic constants only, c =1.253 υ1
1

κ υ2
0.6105  (irrespective of 

the value of c2). 

1.1.1 Parameter fitting and model selection 

Model 1 (constant production rate of pheromones) 

We fit our model treating both α-factor and GFP level as dynamical variables where the 

dynamics of α-factor is described by Equation III and the dynamics of GFP can be described 

by the ordinary differential equation 

d GFP(t)
dt

=V0 +Vmax
α(t)H

α(t)H +EC50H
−δGFPGFP(t)       (V). 

 

Here δGFP is the parameter for first-order GFP degradation (and dilution), experimentally 

estimated as δGFP ≈ 0.02 min-1 (AB, unpublished). This parameter is allowed to vary in a 

narrow range [0.01; 0.03] around the experimentally determined value. The EC50 value (2 

nM) is derived from the experimentally measured dose-dependence of reporter induction upon 

stimulation with synthetic α-factor (Supplementary Fig. 1). The Hill coefficient H was 

introduced here to allow for sigmoidality of the response (Supplementary Fig. 1), and is 

allowed to vary between 1 and 3. The maximal GFP production rate Vmax and the basal rate V0 

are allowed to vary within 10-4 ≤ Vmax ≤ 10-3 (AU min-1). The ratio (V0+Vmax)/δGFP corresponds 

to the maximal fluorescence value measured in flow cytometry (0.044 AU). The parameters ν1 

and ν2κ (Equations I-III) are allowed to vary within the constraints 10-9 ≤ ν1 ≤ 10-5 (pmol min-

1) and 10-16 ≤ ν2κ ≤ 10-10 (L min-2), respectively. 

The objective function to be minimized to fit these parameters is the weighted sum of squared 

residuals between the data points (GFPdata) and the model outputs (GFPmod):
 

 



χ 2 =
GFPWT
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(VI) 

The parameter values from the fitting to the GFP values from flow cytometry experiments at t 

= 135 min (Fig. 2) are: ν1 = 10-8 pmol min-1; ν2κ = 1.14x10-13 L min-2; δGFP = 0.03 min-1, V0= 

4.04x10-4 AU min-1, Vmax= 9.39x10-4 AU min-1, H=1.24. (In Equation VI M is equal to the 

number of θα values, and N to the number of ρT values, M=5, N=4.) Fitting was performed by 

the local search algorithm fmincon of MATLAB sampling over a range of initial values.  

Model 2 (mutual pheromone induction) 

The production of pheromones is known to be mutually inducible5, 6, meaning that stimulation 

of MATa cells with α-factor induces production of a-factor and vice versa. We assumed that 

this induction shows the following behavior 

pheromone production∝ ν 1+Φ α(t)HMF

α(t)HMF +EC50HMF

#

$
%

&

'
(

    

(VII)

 
and that pheromone induction has similar dose-dependence as PFUS1-GFP. We thus fix EC50 to 

2 nM as above, but let its Hill coefficient, fold-change parameter Φ and the basal production 

rate ν vary. For simplicity, we assume that a- and α-factor induction follow identical 

dependence, except for the absolute level of ν (ν1: α-factor basal production rate, ν3: a-factor 

basal production rate). The dynamics of the α- and a-factor induction can then be described as 

 

dα(t)
dt

= ν1 1+Φ
a(t)HMF

a(t)HMF +EC50HMF

"

#
$

%
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'−κ α(t) b(t)

 

da(t)
dt

= ν3 1+Φ
α(t)HMF

α(t)HMF +EC50HMF

"

#
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'− kdeg

a a(t)
     

(VIII) 

Since we focus on the early time points of the response, we further neglect spontaneous 

degradation of the a-factor (ka
deg). The equations describing other variables (Bar1, GFP) are 

the same as above (Equations II and V). The resulting fit (Supplementary Fig. 5) yields 

parameter values ν1 = 5.3x10-9 pmol min-1; ν2κ = 1.3x10-13 L min-2; δGFP = 0.034 min-1, V0 = 

4.4x10-4, Vmax = 1e-03, HGFP = 1.41, ν3 = 2.96x10-8 pmol min-1, HMF = 1.46, Φ = 1.36. Because 



Model 2 produced only marginally better fits, the simpler Model 1 was used in the main text 

to minimize the number of free parameters. 

1.2 Mating probability model 

To schematically describe the probability of mating, we assume a simple scenario where 

collision of cells lead to the irreversible formation of a mating pair, which can be described by 

mass action kinetics as: 

dρα
dt

=
dρa
dt

= − ραρa
 

dρm
dt

= ραρa
          

(IX)
 

where ρm is the concentration of mating pairs. We can use the conservation relation ρα(t = 0) + 

ρa(t = 0) = ρa(t) + ρα(t) + 2ρm(t) to obtain the analytical solution for the fraction of mated 

MATa cells  

!ρm (t) =
1− exp 2[θα − 0.5]ρTt( )

1−θα
θα

− exp 2[θα − 0.5]ρTt( )        
(X)

 

The stationary solution of this equation is 

!ρm
ss =

θα
1−θα

, if θα < 0.5

1, if θα ≥ 0.5

#

$
%

&
%

        (XI).
 

Equation X allows to calculate the fraction of mated MATa cells at different time points as a 

function of population parameters. 

 



1.3 Cost-benefit analysis of resource investment into mating 

1.3.1 Comparison of fractional and absolute sensing strategies 

To perform a schematic cost-benefit comparison between the wild-type strategy of fractional 

(sex ratio) sensing and the bar1∆ strategy of absolute sensing (or density sensing) of  mating 

partners, we consider the fitness effect of these two regulation strategies on an initial 

population of haploid MATa cells encountering different amounts of partner MATα cells 

(Supplementary Fig. 8a). A fraction of the MATa population will mate (benefit), whereas the 

fitness of MATa cells that are stimulated and induce the mating response but do not mate is 

reduced, e.g. due to a transient cell-cycle arrest (cost, f). The cellular response f is a schematic 

representation of our experimental data: for the sex-ratio sensor (wild type), the response 

becomes invariant to total density over a reference value (defined as ρT=1), and simply equals 

the partner cell fraction θα (See Equation XII below). In contrast, the density sensor (bar1Δ) 

simply follows the absolute abundance of partner cells (θα ρT), going into saturation for ρT>1 

(See Equation XIII below). We assume that the efficiency of mating (g, the fraction of the 

initial MATa population that forms diploid cells) is proportional to the level of response 

induction in MATa cells, limited by the abundance of MATα cells as we observed 

experimentally (Fig. 3c). The resulting description for the wild-type and bar1∆ MATa cells is 

Wild type (fractional sensor) 

𝑓!" 𝜃!,𝜌! =   𝜃!𝜌!,      𝑖𝑓    𝜌! ≤ 1  
𝜃!,        𝑖𝑓  𝜌! > 1       

𝑔!" 𝜃!,𝜌! =   𝜃!𝜌!,      𝑖𝑓    𝜌! ≤ 1  
𝜃!,        𝑖𝑓  𝜌! > 1        (XII). 

 

bar1Δ (density sensor) 

𝑓! 𝜃!,𝜌! =   𝜃!𝜌!,      𝑖𝑓    𝜃!𝜌! ≤ 1  
1,        𝑖𝑓  𝜃!𝜌! > 1  

𝑔! 𝜃!,𝜌! =   𝜃!𝜌!,      𝑖𝑓    𝜌! ≤ 1  
𝜃!,        𝑖𝑓  𝜌! > 1        (XIII), 

where f(θα,ρT) is the relative response [0,1] (that is equivalent to the cost); and g(θα,ρT) is the 

relative mating efficiency [0,1]. Note that here we do not consider regulation of MATα cells. 

In general form the fitness equation for the population is 



𝑊 =   𝜆  𝑔 + (1− 𝑔)(1− 𝑓)          (XIV). 

The contribution of diploid cells to the population fitness is the fraction of mated cells (g), 

scaled by a parameter λ, representing the relative advantage of diploidy. The contribution of 

the remaining haploid cells to the population fitness is again their fraction in the total 

population (1-g) times their fitness, which is proportionally reduced with the level of 

induction (1-f). 

As in our model above (Equations XII and XIII) fWT(θα,ρT) = gWT(θα,ρT) = g∆(θα,ρT), these 

functions can be simply replaced by g(θα,ρT). The fitness of the population (W) for the wild 

type or bar1Δ strategy (at a particular total cell density and partner cell fraction) is, 

respectively 

𝑊!" =   𝜆  𝑔 + (1− 𝑔)!   

𝑊! =   𝜆  𝑔 + (1− 𝑓!)  (1− 𝑔)       (XV). 

From Equation XIII we can see that f∆ ≥ g, therefore WWT ≥ W∆ is always true in the current 

model. Whatever distribution θα and ρT have, this will also be true for the mean fitness values 

over these distributions, i.e. <WWT> ≥ <W∆>. With the maximal mating efficiency (g in 

Equations XII, XIII) limited as above (based on our experimental data, Fig. 3c), the higher 

induction of bar1Δ cells at higher population densities cannot yield higher benefits, but will 

result in higher cost. Therefore the population fitness of density sensing bar1Δ cells will 

always be lower.  

To make a more general comparison, we consider that cells using the density sensing (bar1Δ) 

strategy could have evolved a different strategy, adjusting their response sensitivity to achieve 

a higher fitness. Then the response, mating efficiency and fitness of the density sensor are 

𝑓! 𝜃!,𝜌! =   𝑐𝜃!𝜌!,      𝑖𝑓    𝑐  𝜃!𝜌! ≤ 1  
1,        𝑖𝑓  𝑐  𝜃!𝜌! > 1    

𝑔! 𝜃!,𝜌! =   𝑐𝜃!𝜌!,      𝑖𝑓    𝑐𝜌! ≤ 1  
𝜃!,        𝑖𝑓  𝑐𝜌! > 1  

𝑊! =   𝜆  𝑔! + (1− 𝑓!)  (1− 𝑔!)       (XVI). 

Here the response of the density sensor cells is scaled by a parameter c that can be optimally 

adjusted to maximize fitness of the density sensors, as illustrated in Supplementary Fig. 8b. 

We compare this strategy to a fractional sensor (Equation XII). 



The population fitness W was calculated above at a particular value of the population 

parameters θα and ρT. In reality, these population parameters would assume different 

probability distributions, and we therefore need to calculate a mean fitness value <W> over 

these distributions. We first explore the two limiting cases of no variation in these two 

parameters and a uniform distribution for both. We then consider the intermediate case of 

normal distributions of varying width.  

No variation or uniform distributions for population parameters 

In these two limiting cases analytical solutions for the mean fitness can be obtained. In the 

first limiting case, if there is no variation in θα and ρT (θα=0.5 and ρT=1), then 

<𝑊!" >=   0.5  𝜆 + 0.25 

<𝑊∆ >=
0.5  𝜆  𝑐 + (1− 0.5  𝑐)!, 𝑖𝑓  𝑐 ≤ 1  

0.5𝜆 + 1− 0.5𝑐 0.5,        𝑖𝑓  1 < 𝑐 < 2
0.5𝜆,                                                    𝑖𝑓  𝑐 > 2

     (XVII). 

In the second and third case (of <W∆>) it is easy to see that <WΔ> is smaller than <WWT>. In 

the first case of c<1, for <W∆> > 1, c+2λ>4 has to be true, but for <W∆> > <WWT> the 

condition is c+2λ<3, which cannot be both true. Consequently, the density sensing strategy is 

either identical (c=1) to the wild type, or performs worse. 

In the second limiting case we assume that θα is uniformly distributed within the interval 

[0,1], whereas ρT is also uniformly but logarithmically distributed in the interval [e-γ eγ]. 

The mean of a function f(x) over an interval [e-γ eγ], with logarithmically spaced (with uniform 

probability) x values is: 

𝑓(𝑥) = !
!!

𝑓(𝑒!)!
!! 𝑑𝑥,        (XVIII) 

Integrating over the distributions, the equations for mean fitness have analytical solutions, 

which are, respectively: 

𝑊!" =
𝑒!! 6− 3𝜆 + 𝑒! −6+ 8𝛾 + 3𝜆 + 3𝜆𝛾 + 2 sinh 𝛾

12𝛾  



𝑊! =

!!!!! !!! !"#$ ! !!! !"#$ !!
!!

, 𝑖𝑓  𝑐 < 𝑒!!

!!!! !!!!!!!!!!!!!!!! !!! !!!!!! !!!!!!!! !!! !!!!!!! !!! !" !
!"!!!

, 𝑖𝑓  𝑒  –! ≤ 𝑐 ≤ 𝑒!

!!!!"  !!  !  !"#! ! !!"#$  (!)!"#$  (!)
!!!!

, 𝑖𝑓  𝑐 > 𝑒!

  

 

or in general form 

𝑊! =
(!!  (!  !!!!!!!!!)!(!!

!!!!!!!)
!!

  !(!  !
!!!!  !!!)

! !!  !  !!!(!!!!!!)(!!!)!!"(!!!)!!"(!!!))

!"!
  

where r=max(-γ, min(γ, -ln(c))).       (XIX). 

For any value of γ (defining variability of total density values) and λ we take the density 

sensor strain with the highest mean fitness (an optimal value of c) and compare it to the mean 

fitness of the wild type by taking the ratio !!"
!"#!!!!!

. This analysis shows that the fractional-

sensing strategy outperforms the density-sensing strategy, as long as γ (total density variation) 

exceeds a minimal value and the advantage of diploidy (λ) is moderate (Supplementary Fig. 

9a).  

Normal distribution of population parameters 

Normal distribution for θα and log-uniform distribution for ρT 

For the intermediate case we assume that the mean of θα is 0.5 and the distribution is a 

truncated Gaussian, as values are only possible in the range [0,1].  

𝑝 𝜃! =   
!"#   !!!

!!!!.!
!!

!

!!  !!  !"#
!

! !  !!

          (XX). 

The total densities we use are log-uniformly distributed as in the previous example (Equation 

XVIII). The mean fitness values are calculated by numerical integration. For any two 

distributions of the population parameters (defined by σθ and γ) we again take the density 

sensor strain with the highest mean fitness (an optimal value of c) and compare it to the mean 

fitness of the fractional sensor. As in the case of the uniform distributions (for both 

parameters) above, we observed that at intermediate values of λ the wild type strategy 



performs better (i.e., < !!"
!"#!!!!!

> is >1) over a wide range of σθ and γ, with the difference 

generally growing with σθ and γ (Fig. 4d,e and Supplementary Fig. 9b). 

Normal distribution for θα, log-normal distribution for ρT 

Alternatively, for total densities we can also use a lognormal distribution with the median at 

ρT =1: 

𝑝 𝜌! =   
!"#   !!"  (!!)

!

!!!!

!! !!  !!
          (XXI). 

We can then calculate the mean fitness of the population in a certain environment: 

𝑊 = 𝑝 𝜃!   𝑝 𝜌!   𝑊(𝜃!,𝜌!)  
!
! 𝑑𝜌!𝑑𝜃!

!
!        (XXII). 

For any two distributions of the population parameters (defined by σθ and σρ) we again take 

the density sensor strain with the highest mean fitness (an optimal value of c) and compare it 

to the mean fitness of the fractional sensor. As in the case of the uniform distribution above, 

we observed that at intermediate values of λ the wild type strategy performs better (i.e., the 

ratio !!"
!"#!!!!!

 is >1) over a wide range of σθ and σρ. (Supplementary Fig. 9c). 

1.3.2 Comparison of fractional sensing with a constant-investment strategy 

We can also compare the fractional sensing strategy to one where the level of induction is 

constant and not regulated. In this case the level of induction f is a constant, 𝑓! = 𝑐, 0 ≤ 𝑐 ≤

1, and mating efficiency g is 𝑔! =
  𝑐,      𝑖𝑓    𝑐 ≤ 𝜃!  
𝜃!, 𝑖𝑓  𝑐 > 𝜃!

, which yields the fitness function: 

𝑊!"#$% =
𝜆  𝑐 + (1− 𝑐)!,      𝑖𝑓    𝑐 ≤ 𝜃!  

𝜆  𝜃! + (1− 𝑐)(1− 𝜃!),        𝑖𝑓  𝑐 > 𝜃!
     (XXIII). 

Calculating the mean fitness again the same way as before at a certain distribution of θα and 

ρT, we have (using a log-normal and a truncated Gaussian distribution): 

𝑊!"#$% = 𝑝 𝜃!   𝑝 𝜌!   𝑊!"#$%(𝜃!,𝜌!)  
!
! 𝑑𝜌!𝑑𝜃!

!
!       (XXIV). 



Comparison of density-independent fractional sensing (wt) strategy with a constant-

investment strategy 

We assume here constant investment irrespective of the total cell density. Therefore we first 

make the comparison with a fractional sensing strategy that is also completely density-

independent and has the fitness equation: 

𝑊!" =   𝜆  𝜃! + (1− 𝜃!)!        (XXV). 

First we compare the two strategies in the limiting cases of no variation or a uniform 

distribution of θα. For a fixed θα=0.5, we obtain 

𝑊!" =   0.5  𝜆 + 0.25 

𝑊!"#$% =
  𝜆  𝑐 + (1− 𝑐)!,      𝑖𝑓    𝑐 ≤ 0.5  

0.5  𝜆 + (1− 𝑐)(1− 0.5),        𝑖𝑓  𝑐 > 0.5     (XXVI) 

The fitness function Wconst is evidently smaller than WWT in the case of c>0.5 and identical to 

WWT if c=0.5.  

In the case of c<0.5, for Wconst>1 we need λ>1.5. The roots of WWT – Wconst=0 are c=0.5 and 

c=0.5(3-2λ), and between these values of c, WWT – Wconst >0. Therefore if there is no variation 

in θα, the constant investment strategy is identical to the wild type regulation if c=0.5, or is 

worse if c has any other value. 

If θα is uniformly distributed, the equations for mean fitness are 

𝑊!"#$% =   𝜆𝜃! + 1− 𝑐 1− 𝜃! 𝑑𝜃! + 𝜆𝑐 + (1− 𝑐)!
!

!
  𝑑𝜃!

!

!

=
1
2 2− 𝑐! − 𝑐! 𝜆 − 3 + 2𝑐(𝜆 − 2)  

𝑊!" =   𝜆𝜃! + 1− θ! !  d𝜃! =
!
!

!
! 2+ 3𝜆      (XXVII) 

For <Wconst> > <WWT> to be true, 𝜆 <    !!!"!!!!
!!!!!

!(!!!)!
. But <Wconst> also needs to be larger 

than 1 to be a viable strategy of investment of resources into mating, and the condition for this 

is 𝜆 >   !!!!!!!
!

!!!
. But for 0<c<1, these two conditions cannot be true at the same time, as 

!!!"!!!!!!!!!

!(!!!)!
<   !!!!!!!

!

!!!
. Therefore the constant investment strategy always performs 



poorer than regulated fractional investment under a uniform distribution of the partner cell 

fraction.  

Comparison of density-dependent fractional sensing (wt) strategy with a-constant 

investment strategy 

Alternatively, we can compare the fitness of the constant investment strategy to the density-

dependent fractional (wild type) strategy by again taking the ratio !!"
!"#!!!!"#$%!

 as a function 

of σθ and σρ, and at different λ values. Again, at each value of σθ, σρ and λ the best-performing 

‘constant investor’ (highest <Wconst>) is compared to the fitness of the fractional sensor. A 

constant investment strategy performs poorer when the partner cell fraction has higher 

variation (Supplementary Fig. 9d).  As above at intermediate λ values the fractional sensor 

strategy outperforms the constant investment strategy (Supplementary Fig. 9d).  
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