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Supplementary Figures   

 

 

Supplementary Figure 1.  Change in F-actin structure during contraction.  (A) F-actin 

develops a radial orientation during contraction. Color indicates the direction of F-actin 

orientation. Scale bar is 25 m. (B) F-actin minimally bundles, as measured by the standard 

deviation divided by mean in the fluorescence (orange) over circular linescans.  The velocity at 

the boundary (blue, vb) is linearly proportional during early times. (C) The length-scale of strain 

transmission () is calculated by measuring the exponential decay of the strain profile outside of 

the activation zone.  The lengthscale is consistent with the mean filament length. 
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Supplementary Figure 2.  Ring Activation Results in Elevated Orthogonal Flows.  (A) F-

actin upon 0, 220 and 260 s after illumination of 405 nm light in a ring pattern. Scale bar is 10 

m. (B) F-actin flow field after 405 nm illumination. Flow vector magnitudes are normalized 

over the entire time series. (C) Divergence of F-actin flow field averaged over the activation area.  

(D) Velocity profiles after illumination show negative velocities inside ring, positive outside ring.  

(E) Tangential velocities (vt) and radial velocities (vr) are closer when myosin is activated in ring 

pattern than when activated in a solid circular pattern. 



3 

 

 

 

 

Supplementary Figure 3.  Agent-based Simulation of Actomyosin Network Contraction 

Reproduces Strain Dependence on Myosin Density.  Strain of actomyosin network,  at a 

variety of myosin densities (RM = [myosin]/[actin]).   
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Supplementary Figure 4.  Kymograph Analysis of Network Contraction Dynamics.  As 

an alternative method to the calculation of strain, strain rate and velocity by Particle Image 

Velocimetry, we use kymograph analysis. (A) F-actin images 0, 270, and 550 s after the circular 

illumination by 405 nm light. Scale bar is 25 m. (B) Kymograph indicating the calculation of 

strain and strain rate. Scale bar is 5 m. (C) Area of illumination. Error bars are s.d. Radial strain 

(D), strain rate (E), and velocity (F) as calculated from the kymographs.  Boundary velocity is 

calculated within a mean distance (L) of 4.5, 8.5, and 11.4 m from the activation boundary for 

the small, medium, and large regions respectively.  Green dots are individual data points, bar 

plots represent the statistics of those points. 
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Supplementary Figure 5. Actomyosin Network Dynamics as predicted by the active gel 

model.  (A) Contractile boundary velocity (blue) and mean velocity field divergence magnitude 

(black) as a function of time. (B) Actomyosin network strain (magnitude)  as a function of 

time for concentrations of myosin relative to the threshold concentration for contraction 

(myo/c). (C) Network strain (solid), and normalized stress (dashed) as a function of time for 

changing elastic modulus. 
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Supplementary Figure 6.  F-actin Contraction is Elastic at Long Times.  (A) F-actin 

during contraction and (B) F-actin vector field that shows inwards flow at early (left) and 

intermediate (middle) times, and elastic recoil (right) at long times. Scale bar is 25 m. 
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Supplementary Figure 7. Viscous Relaxation of Linear Active Gel Model. Effect of viscous 

relaxation timescale (=/E) on the dynamics of boundary velocity (A), radial strain (B) and the 
scaling of boundary velocity with activation size (C).  
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A      B 

   
 
Supplementary Figure 8.  Myosin Kinetics in the Agent-Based Model. Walking (kw) and 

unbinding rates (ku) of motor arms depending on force acting on the arms. They behave as a 

catch bond, leading to lower kw and ku with higher applied forces. Unloaded walking velocity is 

~42 nm·s-1 (= 7 nm × kw,M at zero force), and stall force beyond which the arms stop walking is 

~3.5 pN. 
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Supplementary Figure 9.  Telescopic Contractility in a Non-Linear Model.  In this model, 

ܧ ൌ ଴ሺ1ܧ ൅ ܽଵܲሻ	and ߟ ൌ ଴ሺ1ߟ ൅ ܽଶܲሻ, where P is the actomyosin density. (A) Dependence of edge 

contraction velocity vs activation size for ܽଵ ൌ 0, 0.4 and ܽଶ ൌ 0, 0.4. The linear relationship 

between boundary velocity and active domain size remains despite attentuation in telescopic 

contractility.  (B-C) Dependence of maximum boundary strain (B) and strain-rate (C) on 

activation domain size. In the nonlinear model, strain and the strain-rates are more insensitive to 

changes in activation domain size. (D) Boundary strain vs time.  
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Supplementary Figure 10. Colocalization and Distribution of Myosin II before and after 

Contraction. (A-B) Fluoresence micrographs of F-actin (left), non-muscle myosin II (middle), 

and a merge the two channels (right) prior to light inactivation of blebbistatin (A) and after 

contraction (B). Scale bars are 20 m. (A, overlay) The circular overlay denotes the activated 

region for this experiment, where r is the radius or boundary distance. (B, inset) Contrast 

enhanced micrograph of myosin to illuminate the photobleached region. (C-H) Myosin (green) 

and actin (red) fluoresence intensity metrics are calculated within the activation region (A, 

overlay) for increasing radial distances, r, from the contracitle center, defined as the center of the 

circular region. Metrics are calculated starting a small distance from the contractile center (r = 

1.06 µm) up to the boundary of the activated region (r = 11.13 µm) to ensure reliable averaging. 

(C,F) The mean fluorescence intensity of myosin and actin (C, inset) before (C) and after (F) 

contraction. (D,G) The normalized fluorescence intensity of myosin and actin before (D) and 

after (G) contraction. (E,H) The coefficient of variation (standard deviation normalized by the 

mean) for myosin and actin before (E) and after (H) contraction. 
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Supplementary Figure 11.  Contraction is locally anisotropic. (A) Fluorescent micrograph of 

non-muscle myosin II thick filaments prior to contraction (t=0 s). Scale bar is 10 m (B) 

Principal strain maps at t=10 s, 250 s and 500 s overlaid on the contracting actin network. The 

ellipses indicate the local shape of strains and the orientation reflects the direction of maximum 

normal strain. (C) Distribution of principal strain ratio (ratio of minimum to maximum principal 

strains) has a peak near zero, showing that strains are anisotropic on average (Supplementary 

Methods). 
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Supplementary Figure 12.  Distribution of shear and normal strains during contraction. 

(A) Normal strain distribution at different times showing uniform contraction within the 

activation domain. (B) Distribution of maximum shear strain, which are lower in magnitude to 

normal strains, and localizes to the boundary of the activation region (Supplementary Methods). 
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Supplementary Figure 13.  Effect of F-actin length on Telescopic Contractility.   Agent-

based simulation of actomyosin contraction with various mean F-actin lengths (Lf).  (A-B) 

Snapshots of networks with (A) Lc= 4 m and (B) Lc=14 m, taken at 200 s.  Width of the 

image is 40 m, and the radius of the activation area is 6 m.  (C) Maximum strain, (D) strain 

rate, and (E) boundary velocity of contractile actomyosin networks with varying mean filament 

lengths. 
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Supplementary Tables 

Supplementary Table 1. List of parameters used in the active gel model, determined from fitting 
the model to the experimental data.

 
Parameter Meaning Numerical Value 

 Timescale of active stress accumulation 80 [s]  

 Timescale of viscoelastic relaxation 85 [s]  

 Timescale of viscous dissipation in the substrate 200 [s]  

R System size 50×10-6 [m]  
 Magnitude of active stress relative to elastic modulus 2.2 [unitless]  

 Myosin cooperativity constant (Hill’s coefficient) 14 [unitless]  

 

 

 

 

 

 

 

 

 

 

 

 

 a

  / B

 f R2 / hB

 a / B

nH



16 

 

Supplementary Table 2. List of parameters used in the simulation model. Most of the parameter 

values are identical or very similar to those used in our recent works [12].  

Symbol Definition Value 

r0,A Length of an actin segment 2.8×10-7 [m]  

rc,A Diameter of an actin segment 7.0×10-9 [m]  

θ0,A Bending angle formed by adjacent actin segments 0 [rad]  

κs,A Extensional stiffness of F-actin 1.06×10-3 [N·m-1] 

κb,A Bending stiffness of F-actin 2.97×10-19 [N·m]  

r0,M1 Length of a bare zone of motor backbone 4.2×10-8 [m]  

r0,M2 Length of a side segment of motor backbone 4.2×10-8 [m]  

θ0,M 
Bending angle formed by adjacent segments  
constituting motor backbone 

0 [rad]  

κs,M1 Extensional stiffness of a bare zone 4.23×10-3 [N·m-1] 

κs,M2 Extensional stiffness of a side segment 4.23×10-3 [N·m-1] 

κb,M Bending stiffness of motor backbone 5.07×10-18 [N·m]  

r0,M3 Length of a motor arm 1.35×10-8 [m]  

rc,M Diameter of a motor arm 1.0×10-8 [m]  

κs,M3 Extensional stiffness 1 of a motor arm 1.0×10-3 [N·m-1] 

κs,M4 Extensional stiffness 2 of a motor arm 1.0×10-3 [N·m-1] 

Nh Number of heads represented by a single motor arm 8 

Na Number of arms per motor 8 

κr Strength of repulsive force 1.69×10-3 [N·m-1] 

CA Actin concentration 40 [μM] 

RM Ratio of motor concentration to CA 0.0025-0.08 

<Lf> Average length of F-actin  4.0 - 21 [μm] 

Δt Time step 4.46×10-5 [s] 

μ Viscosity of medium 0.86 [kg·m-1·s-1] 

kBT Thermal energy 4.142×10-21 [J] 
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Supplementary Notes 

Supplementary Note 1: Linear Active Gel Model  

We describe a continuum model for the dynamics of disordered actomyosin based on active gel 

theories [15]. We assume that the thin sheet of actomyosin gel is in mechanical equilibrium with 

the substrate and the internal mechanics of the gel is described by a stress tensor, ߪ௜௝, where i, j 

denote in-plane spatial coordinates. In the absence of adhesion, we assume that the substrate 

provides a viscous drag to the gel characterized by a friction tensor	ߞ௜௝. In-plane force balance in 

the thin film limit gives us, 

,      (S1) 

where h is the gel thickness. Here we suggest a model for the mechanics of the gel by defining 

the constitutive relations for material stress. 

The total stress is decomposed as the sum of elastic, dissipative and active stresses, 

. While elasticity arises primarily from the compliance of F-actin filaments, 

dissipative stresses can arise from processes such as disentanglement of filaments and myosin 

binding/unbinding. Using the plane stress approximation (in the thin-film limit), the constitutive 

relations for elastic and dissipative stresses are given by, 

,            (S2) 

,     (S3) 

where 	is the symmetrized strain tensor,  is the strain-rate tensor, E 

is the Young’s modulus, ߥ	is the poisson ratio, ߟ and ߟ௦ are the bulk and shear viscosities. For 

simplicity we assume that myosin induced active stresses are isotropic, with the functional form, 
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௜௝ߪ 
௔ ൌ ଴ߪ

ሺఘ/ఘ೎ሻ೙ಹ

ଵାሺఘ/ఘ೎ሻ೙ಹ
൫1 െ ݁ି௧/ఛೌ൯ߜ௜௝,     (S4) 

where  is the magnitude of contractile stress, is a positive constant (Hill coefficient), 

 is the myosin density (assumed to be uniform),  is the density beyond which myosin ߩ

induced stresses saturate, and is the timescale for the accumulation of active stresses. To 

model the experimental geometry, we assume a spatially constant active stress profile for 

 (and zero outside), where  is the radius of the activation zone. We now exploit radial 

symmetry of the flow profile as observed experimentally to assume that all the quantities are 

azimuthally invariant. In polar coordinates, force balance in the radial direction is given by the 

stress equilibrium condition (Eq. S17). In terms of the radial displacement field (ݑ௥), the force 

balance equation simplifies to, 

,     (S5) 

where  is the compressional elastic modulus of the gel. Eq. (S5) obeys the boundary 

conditions, and . We expand  in Fourier-Bessel series as, 

. The eigenmodes  are governed by the roots of the equation,

. The Fourier-Bessel amplitudes, , are given by, 

                  (S6) 

where,  is the viscoelastic timescale and  

The solution to (S6) can be obtained analytically using the initial condition of zero displacement 

(the solution is cumbersome and hence not presented here). Using the analytical solution for 
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radial displacement we can then evaluate mechanical quantities such as radial strain ( ), 

orthoradial strain ( ), velocity ( ), strain-rates (  and ) 

and the corresponding stresses. 

 

Supplementary Note 2: Active Gel Model Myosin Dynamics 

In our continuum model we treat actomyosin as a single unit, and assume a uniform active stress 

profile. The active stresses arise from myosin that are highly dynamic. The concentration 

dynamics of myosin minifilaments (average length l) bound to actin can be modeled using the 

following equation [16]: 

߲௧ߩ ൌ ߩଶ׏ܦ ൅ ׏ ൉ ሺ߲ߩ௧࢛ሻ െ ݇௨ߩ ൅ ݇௕ሺߩ଴ െ  ሻ   (S7)ߩ

where D is a diffusivity consant, ݇௨ is the unbinding rate of myosin, ݇௕ is the binding rate and 

 ଴ is the total concentration of myosin. The equation tells us that density fluctuations in myosinߩ

relax over a characteristic timescale, ߬௔ ൌ 1/ሺ݇௕ ൅ ݇௨ ൅ ଶሻ݈/ܦ , beyond which myosin is 

primarily advected by actin flow. 

 

Supplementary Note 3: Agent-Based Simulation 

Displacement of each cylindrical segment is governed by the Langevin equation with inertia 

neglected: 

Td
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d
i

i i it
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F F        (S8) 

where ir is the position of endpoint of cylindrical segments, ζi is an effective drag coefficient, t 

is time, and iF  is a net deterministic force including extensional, bending, and repulsive forces. 

T
iF is a stochastic force determined by the fluctuation-dissipation theorem [6]: 
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where δij is the Kronecker delta, δ is a unit second-order tensor, and Δt is time step. For the 

cylindrical geometry of segments, we used the approximate form of ζi [7]: 

0, c,
c,

3 /
3

5
i i

i i

r r
r 


        (S10) 

where c,ir  and 0,ir  are the diameter and length of a segment, respectively. Position of each 

segment is updated using the Euler integration scheme:  

 Td 1
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The extension and bending of actin and motor are governed by harmonic potentials with stiffness 

s  and b , respectively: 

2
s s 0

1
( )

2
U r r  ,  2

b b 0

1

2
U                       (S12) 

where r is a distance, θ is a bending angle, and the subscript 0 denotes the equilibrium value. 

Extensional ( s,A ) and bending stiffnesses of F-actin ( b,A ) maintain an equilibrium length of 

actin segments ( 0,Ar =280 nm) and an equilibrium angle formed by adjacent actin segments ( 0,A

= 0 rad). Similarly, the extensional ( s,M1  and s,M2 ) and bending stiffnesses of motor backbone 

( b,M ) maintain equilibrium lengths of the backbone ( s,M1r = s,M2r = 42 nm) and an equilibrium 

angle formed by adjacent backbone segments ( 0,M = 0 rad). Extension of each motor arm is 

governed by a two-spring model where a transverse spring ( s,M3 ) maintains an equilibrium 

distance ( 0,M3r = 13.5 nm) between F-actin and the endpoint of the motor backbone segment 

while a longitudinal spring ( s,M4 ) maintains a right angle between axis of the F-actin and a motor 

arm ( 0,M4r = 0 nm). Bending and extensional forces exerted on the binding spots of an actin 

segment due to interactions with motors are distributed onto the barbed and pointed endpoints of 

the segment as described in our previous work [8]. 

 

Repulsive forces that simulate volume-exclusion effects are calculated via the following 
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harmonic potential [9]: 
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r r
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 

     (S13) 

where r  is strength of repulsive force, and 12r  is the minimum distance between a pair of 

actin segments. 

 

Each of the motor arms attached to the backbone represents 8 myosin heads (Nh = 8). Thus, each 

motor with 8 arms behaves as a thick filament with 64 myosin heads. A free arm can bind to a 

binding site on F-actin at a rate, 40·Nh·s
-1. Motor arms walk on and unbind from F-actin 

following the walking ( ) and unbinding rates ( ) which vary depending on forces applied to 

the arms (Supplementary Fig. 8). At each walking event, arms slide from a current binding site to 

a next one located toward the barbed end by ~7 nm. After reaching the barbed end, motors slide 

off from F-actin via a next walking event. Note that it is assumed that myosin heads behave as a 

catch bond [10, 11], leading to lower  and  with higher applied forces. We assume that 

deactivated motors located outside the activation zone unbind at a much higher rate ( 5
u1 0 k ) 

and cannot walk.  

We preassemble cross-linked actomyosin networks via self-assembly of actin monomers (G-actin) 

and motors within a thin three-dimensional rectangular domain (40×40×0.1 μm) without periodic 

boundary condition. All boundaries of the domain exert repulsive forces to keep network 

elements within the domain. During the self-assembly, G-actin are nucleated and polymerized 

into F-actin, and the thick filament structure of motors is formed via nucleation and 

polymerization of motor backbone segments with their arms binding to F-actin in the absence of 

walking events. Unless specified, we used the reference values for parameters: initial G-actin 

concentration (CA) is 40 μM, average F-actin length (<Lf>) is ~7.1 μm, and the molar ratio of 

motors (RM = CM / CA) is 0.04.   

 

  

wk uk

wk uk
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Supplementary Note 4: Agent-Based Model Abstraction 

Blebbistatin binds the myosin-ADP-Pi complex, and inhibits phosphate release.  Thus, it keeps 

myosin in the actin-detached state, preventing rigid cross-linking [13, 14] effectively reducing 

processivity.  To this effect, in our simulations, we increase myosin unbinding in regions where 

blebbistatin is active and decrease myosin unbinding in regions where blebbistatin has been 

inactivated.  In doing so, the F-actin outside the activation region is loosely crosslinked, and 

thus as contraction proceeds in the activation region, the F-actin separates between these two 

regions. 

 

Supplementary Note 5: Nonlinear Active Gel Model  

In the nonlinear active gel model we assume that the elastic modulus and the viscosity are 

functions of actomyosin density, ܲ, such that 

ܧ      ൌ ଴ሺ1ܧ ൅ ܽଵܲሻ,    (S14) 

ߟ       ൌ ଴ሺ1ߟ ൅ ܽଶܲሻ,    (S15) 

where ܽଵ and ܽଶ are positive constants. As a consequence, the network stiffens and becomes 

more viscous with increasing density. The constitutive laws for elastic and viscous stresses are 

assumed to be linear in strain and strain rates, respectively, as defined in Eqs. (S2) and (S3). 

Since changes in density are slaved to the network strain, we have the continuity equation:  

                              	߲௧ܲ ൌ െ׏ ൉ ሺ߲ܲ௧࢛ሻ.                          (S16)             

Using this simple form for strain-dependent viscoelastic response, we numerically solve the 

resultant force balance equations (Mathematica, NDSolve), Eq. (S1), assuming spatially uniform 

contractile stress within the activation domain. By varying the parameters ܽଵ and ܽଶ in the 

model, we can control the strength of nonlinear coupling and density dependent variations in 

mechanical properties. We find that the telescopic behavior is retained for non-zero values of ܽଵ 

and ܽଶ  (Supplementary Fig. 9A), but the slope of the relationship between velocity and 
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activation is reduced for networks stiffening (ܽଵ ൐ 0ሻ and thickening (ܽଶ ൐ 0ሻ with increasing 

density. This attenuation in telescopic contractility results from concomitant reductions in 

sptially averaged maximum strain and strain-rates (Supplementary Fig. 12 B,C). 

 

Supplementary Methods 

Velocity Calculations 

The velocity field of the F-actin is calculated using Particle Image Velocimetry (PIV) (mPIV; 

www.oceanwave.jp/softwares/mpiv/).  mPIV creates a regular grid across the image, where the 

velocity is calculated for each grid location between a pair of images.  The strain is taken as the 

divergence of the F-actin displacement field, and the strain rate is the divergence of the velocity 

field, for the experiment, model and simulation.  For each metric, the average is taken over the 

activation zone.  This leads to strains larger than 2, as in addition to the sum of radial and 

orthoradial components, there is additional F-actin which flows into the activation region over 

the time at which the strain and strain rate are averaged.  The velocity is averaged only within a 

narrow vicinity at the boundary, not throughout the activation area. 

 

Mechanical Stress Calculation 

In mechanical equilibrium, Eq. (S1) provides the condition for local force-balance in the gel. 

Now assuming radial symmetry, mechanical equilibrium in polar coordinates satisfies the 

equation,  

,      (S17) 

where ߪ௥௥ and ߪఏఏ are the two normal stresses in the radial and the orthoradial directions. The 

general solution can be expressed in terms of an Airy stress function ߶ [4],  

r rr 
1

r
 rr    rr

h
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,     (S18) 

.     (S19) 

Since ߶ is a biharmonic function, we can use the ansatz [5], . 

Using the condition that ߪ௥௥ is finite at r=0, we have b=0 and c=0. To determine the constant a, 

we use stress boundary condition ߪ௥௥ሺݎ ൌ ܴሻ ൌ 0, where R defines the total system size (ܴ ≫

 The profile for radial stress can then be obtained from the experimentally measured flow .(ߦ

profile, up to an undetermined multiplicative factor, , 

.             (S20) 

Since the flow velocity points radially inward (ݒ௥ ൏ 0) and localizes at the boundary of the 

activation region, the internal stress is positive and largest at the center of the activation region 

where it accumulates over time (Fig. 2E).  

 

Principal Component Analysis 

To analyze the local shape and magnitudes of strain and strain-rates we perform a principal 

component analysis of the symmetric strain tensor [4], defined as: 

௜௝ݏ ൌ
ଵ

ଶ
൫߲௜ݑ௝ ൅ ௝߲ݑ௜൯     (S21) 

where u is the displacement field. The symmetric strain-rate tensor is given by the time 

derivative of the strain tensor, or equivalently as the spatial gradients of the velocity field. The 

principal strains, s1 and s2, are defined by the eigenvalues of the strain tensor. Their magnitudes 

define the major and the minor axes of the principal strain ellipse, which characterizes the shape 

of local strains. For example, isotropic strains correspond to ݏଵ ൌ ଶݏ , whereas uniaxial 
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deformations imply ݏଵ ൌ 0 or ݏଶ ൌ 0. The orientations of the ellipse axes correspond to the 

eigenvectors of the strain tensor, such that the major (minor) axis points along the direction of 

maximum (minimum) normal strain. Total normal strain is given by ݏଵ ൅  ଶ, which equals theݏ

divergence of the displacement field. The local maximum value of the shear strain, ݏ௫௬, is 

related to the difference of the principal strains: |ݏଵ െ  .ଶ|/2 [4]ݏ

 

Hill Model Regression 

The regression to the Hill Model (Fig 3C) was performed using Origin (OriginLab Corp).  The 

reaction velocity is replaced with the network strain, and the substrate concentration is the 

‘effective concentration’ of myosin ([M]), measured as the number of myosin thick filaments per 

unit area (m-2).  Thus, Vmax, and  are unitless.  The equation is as follows:   

     ߳ ൌ
௏	೘ೌೣሾெሿ೙ಹ

ሺ௄బ.ఱሻ೙ಹାሾெሿ೙ಹ
      (S22) 

Three parameters, were fit, Vmax, K0.5 and nH are as follows: 2.48, 0.56 m-2, and 10.95 

respectively.  The Hill coefficient represents the cooperativity of myosin behavior towards 

generating strain. More specifically, assuming that the density of myosin thick filaments is 

proportional to the total density of actomyosin bonds, the hill coefficient represents the 

sensitivity of the strain to the number of actomyosin bonds.  Vmax and K0.5 represent the 

maximum strains accomplished during contraction, and the quantity of myosin it would take to 

reach half of that strain. 

 

Orientation Quantification 

Analysis of the orientation of F-actin filaments was performed using the ImageJ (NIH) plugin 

OrientationJ (EPFL; http://bigwww.epfl.ch/demo/orientation/).  The color is orientation, the 

saturation is coherence, and the brightness is the original image brightness. The global coherency 

of F-actin is measured by ܥ and represents the ratio between the difference and the sum of the 
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tensor eigenvalues, and is bounded between 0 (isotropic) and 1 (aligned) [1].  

 

Order Parameter Calculation  

The nematic order parameter, q was calculated as performed previously [2] [3] using Custom 

written Matlab (Mathworks, Natick, MA) routines.  Briefly, the image was broken down into a 

series of small windows (3.5 x 3.5 µm) to determine the local orientation of filaments. For each 

window, a symmetric 2D Gaussian filter was applied, and then the 2D FFT was determined. The 

orientation of the FFT transform was determined by calculating the least second moment of 

rotation. The orientation in real space is orthogonal to the orientation calculated in frequency 

space. To calculate the order parameter, q, a given orientation vector was compared to its nearest 

neighbors using the following equation:  

ݍ      ൌ 2൫〈cos2 〈௜௝ߠ െ 1 2⁄ ൯     (S23) 

The order parameter thus calculates the degree of F-actin alignment, with 0 being unaligned, and 

1 being highly aligned. 

 

Supplementary References 
 
 
1. Rezakhaniha, R., et al., Experimental investigation of collagen waviness and orientation in 

the arterial adventitia using confocal laser scanning microscopy. Biomechanics and 

Modeling in Mechanobiology, 2012. 11(3-4): p. 461-473. 

2. Aratyn-Schaus, Y., P.W. Oakes, and M.L. Gardel, Dynamic and structural signatures of 

lamellar actomyosin force generation. Mol Biol Cell, 2011. 22(8): p. 1330-9. 

3. Cetera, M., et al., Epithelial rotation promotes the global alignment of contractile actin 

bundles during Drosophila egg chamber elongation. Nat Commun, 2014. 5: p. 5511. 

4. Bower, A.F., Applied mechanics of solids. 2010, Boca Raton: CRC Press. xxv, 794 p. 

5. Michell, J.H., On the Direct Determination of Stress in an Elastic Solid, with application to 



27 

 

the Theory of Plates. Proc. London Math. Soc, 1899. s1-31(1): p. 100-124. 

6. Underhill, P.T. and P.S. Doyle, On the coarse-graining of polymers into bead-spring chains. J 

Non-Newton Fluid, 2004. 122(1-3): p. 3-31. 

7. Clift, R., J.R. Grace, and M.E. Weber, Bubbles, drops, and particles. 2005, Mineola, NY: 

Dover Publications. 

8. Kim, T., Determinants of contractile forces generated in disorganized actomyosin bundles. 

Biomech Model Mechanobiol, 2015. 14(2): p. 345-355. 

9. Kim, T., et al., Computational analysis of viscoelastic properties of crosslinked actin 

networks. PLoS computational biology, 2009. 5(7): p. e1000439. 

10. Veigel, C., et al., Load-dependent kinetics of force production by smooth muscle myosin 

measured with optical tweezers. Nat Cell Biol, 2003. 5(11): p. 980-6. 

11. Uemura, S., et al., Mechanochemical coupling of two substeps in a single myosin V motor. 

Nat Struct Mol Biol, 2004. 11(9): p. 877-883. 

12. Jung, W., M.P. Murrell, and T. Kim, F-actin cross-linking enhances the stability of force 

generation in disordered actomyosin networks. Comp Part Mech: p. online first. 

13. Kovacs, M., et al., Mechanism of blebbistatin inhibition of myosin II. J Biol Chem, 2004. 

279(34): p. 35557-63. 

14. Limouze, J., et al., Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell 

Motil, 2004. 25(4-5): p. 337-41. 

15. Marchetti, M.C., et al., Hydrodynamics of soft active matter. Reviews of Modern Physics, 

2013. 85(3). 

16. Banerjee, S. and M.C. Marchetti, Instabilities and oscillations in isotropic active gels. Soft 

Matter, 2011. 7(2): p. 463-473. 

 


