
 
 

 
 
 
Supplementary Figure 1 | Comparison between the experimental field-angle phase diagram 
and the g-DSM model.  (a) The phase diagram from Sato et al. [1] determined using magnetisation 
experiments (data from inset of Fig. 4 of [1]).  The symbols represent the critical field measured with 
circles (red) for Hc1 and the square (green) for Hc2. The solid line corresponds to a hypothetical 
transition line, as calculated from the nearest neighbours model. (b) The diagram in (a) has been 
overlaid on top of a contour plot of the susceptibility calculated from the d-DSM (data from Fig. 3 of the 
main text). We can see that there is good coincidence between the experiments and the model. 

 
 
 

 
Supplementary Figure 2 | Finite size scaling of the specific heat in the g-DSM model. Specific 
heat calculated for the g-DSM model for two temperature ranges and different system sizes as indicated 
in the figure. The black line corresponds to the experimental data by Pomaranski et al. [2] 

 

Angle (deg.)

F
ie

ld
 (

T
)

1.1

1.0

0.9
0-2-4-6 2 4 6

Angle (deg.)

F
ie

ld
 (

T
)

1.2

1.1

1.0

0.9
0-2-4-6 2 4 6

[111][112] [110] [111][112] [110]

1.2a b



 
 

Supplementary Figure 3 | Comparison between the experimental and simulated structure 
factors. (a) the experimental S(q) of Dy2Ti2O7 as a function of the wavevector (from [3]) and (b) the S(q) 

calculated from the d-DSM, both at 300mK.   
 
 
 

 

 
 
Supplementary Note 1: Monte Carlo simulations 

 
In order to simulate the specific heat at low temperatures we have implemented a single spin 
flip dynamics, but different from the conventional in that we use of the Conserved Monopoles 
Algorithm (CMA) to reach equilibration at low temperatures in reasonable simulation times.  An 
advantage of the CMA is that it can also be used in the presence of a magnetic field.  A 
description of this algorithm can be found in [4] where it was introduced, and subsequently it 
has also been discussed and applied by other authors (see e.g. [5]).  The CMA works in a 
statistical ensemble of conserved number of defects to the ice rule, which are free to propagate 
in the system.  It can be shown that even a negligible density of defects (two in a lattice of 
thousands of sites) is enough, by lowering the barriers between states, to speed up the 
simulations substantially.  For example (as shown in [4]) the CMA applied to the DSIM at zero 
field reproduces the results of Melko et al. [6].  
 
We introduced in this work a small improvement to the CMA algorithm.  In order to avoid any 
interference of the artificial defects in the values of the thermodynamic variables, before 
collecting one sample we remove the constraint and allow the defects to disappear while we let 
the system evolve for some steps.  After the data is collected, we reintroduce a pair of defects 
and let the system continue its evolution.  The model is hybrid, in that it only introduces the 
CMA after checking that the density of monopoles at a given temperature falls below a 
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threshold.  We have checked the code by reproducing again the phase transition towards the 
order state observed at 180 mK in the dipolar model by Melko and collaborators [6]. 
 
 
 
Supplementary Note 2:  Selection of the exchange constants for the model. 
 
It is quite remarkable that a simple model for distortion gives an expression that, for a given δ 
and J1, provides values for J2 and for both J3’s that lead to a Hamiltonian compatible with most 
of the experiments discussed in [3] where the J values were chosen in an ad-hoc fashion.  This 
can be seen noting that the values of J2 and J3

av
 = (J3 

1
 + J3 

2)
/2 predicted by the theoretical 

analysis discussed in the main text can be made to fit within the first range delimited in [3]: -
0.20 K < J2' <  0 K;  0.019 K < J3' < 0.026 K. (Note that due to a geometrical factor implicitly taken 
into account in our model, our nominal value of J2 has the opposite sign and with a modulus 
three times bigger than that in ref. 17, i.e. J2' = - 1/3 J2). By choosing a bigger δ, we could even 
find a modest peak splitting for negative θ and no splitting in the opposite direction, for a 
limited value of θ.  
 
As a further refinement, and recognising that ours is just a minimal model, we used the 
parameters quoted in the text, which preserve the main constraints: nonnegative values for J2 

and J3
av, with different J3 

1 and J3 
2, but which depart from the calculated relations.  These 

parameters increased the peak splitting, extended the range of theta in which the double peak 
was observed (up to θ ~ 8 deg in the simulations), and improved the quantitative comparison of 
our magnetisation curves with those in [1] (the low value of the magnetisation at fields just 
below the jumps was a key piece of information).  We included, for comparison, a figure 
(supplementary Figure 1) that shows the experimental phase diagram determined measuring 
magnetisation by Sato el al. [1] and the same diagram overlaid on top of the susceptibility 
contour plot of the d-DSM (data from our Fig. 3 in the main text).  Note that our sign 
convention for the angle is opposite to that of Sato et al. [1].  
 
One (apparent) drawback we observed was that while we improved the similarity of the 
simulated double peak feature with the experimental data, the new set of J’s led to an 
unexpected increase of Cv at low T.  Afterwards we realised that the new feature near ~0.4K in 
Cv was in agreement with that experimentally observed in [2] (see e.g. Supplementary Figure 
2). It may be worth repeating that no effort was made to tune the J values in order to make our 
specific heat look like that in [2]. Furthermore, as can be seen in the Supplementary Note 4 and 
Supplementary Figure 3, this set of exchange constants also gives a very good account of the 
experimental S(q). 

 
 

 
 

Supplementary Note 3: Finite size scaling of the specific heat at zero field.  
 
We provide a finite size effect (FSE) study at H=0. We constrained it to small sizes, due to the 
computer time demanded by this study (see Supplementary Figure 2) 
 



We concentrate on two important temperature ranges: 
 

a) Temperatures above ~ 0.4 K:  This range is the main focus of our work.  Recent 
experimental data for the specific heat is available down to a temperature of 
approximately 0.36K [2] (the lowest temperature of the data in Fig. 5 of the main text). 
Since we compare it with our equilibrated data, it is an implicit assumption of our work 
that this experimental specific heat is properly equilibrated.   
 
It is reasonable to wonder if the rise we observe in Cv/T in our simulations (bottom of 
Fig. 5 of the main text) is due to the imminent phase transition and thus affected by 
finite size effects. If so, the coincidence between our simulations and the experimental 
Cv/T would be merely accidental.  The figure above, including data for L = 2, 3, 4 and 
the experimental data from [2] shows that in the regime where Cv turns up (between ~ 

0.5 and 0.36 K) the variations due to finite size effects are not very significant and it is 
sensible to compare our simulated data with the experimental results. (A small finite 
size effect between 0.5 and 0.8 K may indicate that the coincidence can be even better 
in the thermodynamic limit). 

 
b) Though we have been interested in the possible ground states predicted by our model, 

the phase transition occurring at low temperature has yet no experimental counterpart, 
and, as we mentioned, its nature is not one of the main concerns of this work.  The 
figure shows some preliminary low temperature data, which are compatible with a first 
order transition. Indeed, the maximum of Cv near 0.17 K increases, within error, like the 
volume of the system when going from L=2 to that  L=3. 

 

Measuring the specific heat with Ewald summations to take into account dipolar interactions, 
and using the conserved monopoles algorithm at low temperatures for L =3 with the statistics 
observed in the figure below (green curve) demanded 35 copies of a program running for a 
month (35x30x24 h = 25200 hours of computer time). To be more specific, it demanded 11 
temperature points with 3x10⁷ MCS per point, per independent run. Given time and computer 
time limitations, we have not tried to measure the finite size effect for L =4 or bigger lattices at 
very low temperature. 

 
 
 
Supplementary Note 4:  Calculation of the structure factor S(q) 
 
We calculated the structure factor predicted by the d-DSM model introduced in this work. We 
use   

 
where the  <σiσj> are the correlations between Ising spins at sites i and j, ei

 is the component 
of the quantisation direction at site i perpendicular to the scattering vector q, N is the number 
of spins and f(|q|) is the magnetic form factor for Dy3+ extracted from [7]. 
 



We find that the S(q) calculated from our model is compatible with the existing experimental 
results. It is important to remark that no effort was put before hand to enforce this 
compatibility: the J values were optimised in relation to the double feature observed in the 
susceptibility measurements that we describe in the text. 

 
The Supplementary Figure 3 shows a comparison between the experimental data from [3] at T 

= 300 mK and our calculations for the same temperature in a lattice of L = 6 and over 200 
averaged copies, each obtained after a zero field cooling: 

 
Some noteworthy points of comparison are:  i) The presence in both the experimental data and 
the simulation of hexagonal loops of diffuse scattering running along the Brillouin zone 
boundaries. ii) The presence of pinch points characteristic to spin-ice and iii) The presence of 
regions of intense scattering around (0,0,3) and (3/2, 3/2, 3/2).  The narrow Bragg peaks, due to 
the lattice structure, are absent in our simulations. 
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