Supplementary Information

Supplementary Figures

Supplementary Figure 1. TOP2 α colocalization with RNF168 in mid S phase. Cells treated with EdU were examined for localization patterns of TOP2 α (Alexa Fluor 488) and RNF168 (Alexa Fluor 594) using confocal microscopy. Representative images showing colocalization of

 $TOP2\alpha$ and RNF168 in S phase. Scale bar: $20\mu m.$

Supplementary Figure 2

Supplementary Figure 2. RNF168 Stimulates DNA decatenation. *In vitro* decatenation assaywas carried out for 10 or 20 min using different amount of nuclear extracts from *Rnf168*^{-/-} and *WT* thymocytes. Catenated and decatenated DNA were examined by electrophoresis using

1% agarose gel.

Supplementary Figure 3

Supplementary Figure 3. In contrast to irradiation, ICRF-193 does not induce DSBs in

MEFs. *WT* and *Rnf168^{-/-}* MEFs were treated for 15 min with DMSO or ICRF-193 (4 μ M). 2h (**a**) or 6h (**b**) post-treatment, cells were fixed and stained with anti- γ -H2a.x and DAPI. Cells treated with 5Gy IR were used as positive controls for DNA damage. Scale bars: 20 μ m. Histograms show the percentage of cells with more than 10 γ -H2a.x foci (mean±SEM, n=3). ANOVA test with Tukey-Kramer test: * *P*<0.05 compared to DMSO treated controls.

Supplementary Figure 4

Supplementary Figure 4. RNF168 is required for the stimulation of decatenation G2 checkpoint. (a) Representative FACS analysis of mitotic inhibition assay of decatenation G2 checkpoint in human RIDDLE cells reconstituted with HA-RNF168 or HA-empty vector. (b,c) Representative FACS analysis of the mitotic entry assay showing pHH3⁺ *WT* and *Rnf168^{-/-}*

passage 3 MEFs at the indicated time post-treatment with colcemid with or without 4 μ M ICRF-

193 (b) or RIDDLE cells reconstituted with HA-RNF168 or HA-empty vector (c).

Supplementary Figure 5. The cytotoxic effect of the TOP1 inhibitor camptothecin is not

affected by Rnf168 deficiency. (a,b) Sensitivity of WT and Rnf168^{-/-} MEFs to camptothecin was

determined using clonogenic assays. Data are presented as the mean \pm SEM (n=4). No statistically

significant difference was observed between WT and Rnf168^{-/-} MEFs.

Supplementary Figure 6

Supplementary Figure 6. Examination of human breast cancer cell lines for the expression of RNF168 and the response to etoposide. (a) The expression level of RNF168 in the indicated breast cancer cell lines was examined by IB. (b) Representative images of the indicated breast cancer cell lines treated with 250 nM of etoposide or DMSO and grown on 6 cm dishes for 14 days. (c) Cells were counted at day 14 post treatment and the ratio of surviving fractions in response to etoposide compared to DMSO are shown. Data are presented as the mean±SEM (n=2). Scale bar: 200 μm.

Supplementary Figure 7. Effect of RNF8, RNF168 and 53BP1 on TOP2α ubiquitylation.

(a) Intracellular binding assay. HEK293T cells were transfected with HA-RNF8 and Flag-TOP2 α expression vectors as indicated. The WCL were immunoprecipitated with anti-HA or

anti-Flag and IB analysis was performed using the indicated antibodies. (b) HEK293T cells were transfected with RNF8, Flag-TOP2a and Myc-Ub vectors as indicated. WCL were subjected to IP with anti-Flag and IB analysis was performed using anti-HA antibody to detect ubiquitylated Flag-TOP2a. (c) Detection of TOP2a ubiquitylation in $Rnf8^{-/-}$, $53bp1^{-/-}$ and WT MEFs. Anti-TOP2α antibody IP from WCL was immunoblotted using anti-Ub. (d) HEK293T cells were transfected with constructs to express Flag-TOP2a, RNF168, and either HA-Ub-WT (WT), or mutants HA-Ub-K48 (K48) or HA-Ub-K63 (K63) as indicated. Anti-Flag IPs performed in native conditions using WCL were subjected IB analysis with anti-HA and anti-Flag antibodies. (e) HEK293T cells were transfected with RNF168, Flag-TOP2α, Flag-TOP2α-K662R and HA-Ub vectors as indicated. WCL were subjected to IP with anti-Flag and IB analysis was performed using anti-HA antibody to detect ubiquitylated Flag-TOP2a.

Supplementary Figure 8. Deficiency of TOP2 α impairs chromosome segregation and promotes chromosome entanglement and under-condensation. Histograms show quantification of the frequency of cells with chromosome bridges, micronuclei, undercondensed and entangled chromosomes. *WT*MEFs were transduced with lentiviral ShRNA control (sh.Ctr) or ShRNA for Top2 α (sh.Top2 α). (mean±SEM, n=3). * *P*<0.05.

Supplementary Figure 9. Rnf168^{-/-} MEFs show reduced frequency of DSBs in response to

etoposide. (a) WT and Rnf168^{-/-} MEFs were treated for 15 min with DMSO or etoposide

(10 μ M), fixed 1h or 2h later and stained with anti- γ -H2ax and DAPI. MEFs, 1h post IR treatment (5Gy), were used as positive controls for DNA damage. (b) Histograms show the percentage of cells with more than 10 γ -H2ax foci (mean±SEM, n=3). P: ANOVA test with Tukey-Kramer test (*Rnf168^{-/-}* MEFs compared to *WT* MEFs). Scale bar: 0.8 μ m.

Supplementary Figure 10. Neutral comet assay data indicate fewer etoposide generated 12

DSBs in *Rnf168*^{-/-} MEFs compared to *WT* controls. The assay was performed using cells 30 min post etoposide (20 μ M) treatment. A lower increase in the mean olive tail moment (Upper panel) and in the % tail DNA (Lower panel) was observed in *Rnf168*^{-/-} MEFs compared to *WT* controls

Supplementary Figure 11. The E3 Ub ligase function of RNF168 stimulates decatenation

G2 checkpoint. Representative data of the mitotic entry assay of decatenation G2 checkpoint in *WT* 3T3 MEFs and *Rnf168*^{-/-} 3T3 MEFs restored with either empty vector (mock), *Rnf168-WT* or *Rnf168-C21S* mutant. Data are shown for the time-point 6h post-treatment with colcemid $\pm 4 \mu$ M ICRF-193.

Supplementary Figure 12. Increased decatenation activity of recombinant TOP2 α following its *in vitro* ubiquitylation by RNF168. A representative agarose gel showing data obtained using *in vitro* kinetoplast DNA-based decatenation assay performed for 10 min with recombinant TOP2 α before or after its *in vitro* ubiquitylation by RNF168. Catenated and decatenated kDNA were separated by electrophoresis using 1% agarose. Ub_n-TOP2 α : polyubiquitylated TOP2 α . (-) No TOP2 α added.

Supplementary Figure 13. Interactions of TOP2a with RNF168 and USP10. (a) WT MEFs

were synchronized at G0/G1 (serum starvation), G1/S (Aphidicolin treatment) and G2/M (Colcemid treatment), and IP using observed no difference between these conditions and Top 2α -

Usp10 interaction in nuclear extracts was examined by IP/IB as indicated. (b) Effects of irradiation on Top2 α ubiquitylation and interaction with Usp10 and Rnf168. IP of Top2 α from nuclear extract of *WT* MEFs either untreated or 1h post-IR (2 or 5Gy) were examined by IB as indicated. Expression of the indicated proteins in WCL was examined by IB. (c) Graphs represent data from clonogenic assays showing sensitivity to etoposide and ICRF-193 of *WT* MEFs knocked down for Usp10 (sh1.Usp10 and sh2.Usp10) compared to controls (Sh.Ctr: ShRNA control). mean±SEM (2). *P*>0.05.

Supplementary Fig. 14 (Uncropped Blots)

Figure 1b

WCL

Figure 2a

Decatenation Assay

Figure 4a

Figure 4c

Figure 4d

Figure 4e

Figure 6a

Figure 6b

Figure 6c

NE/CHR

Figure 6d

Figure 7a

Figure 7b

Figure 7d

Supplementary Figure 2

Decatenation Assay

Supplementary Figure 7a

Supplementary Figure 7c

Supplementary figure 7d

Supplementary figure 7e

Supplementary Figure S12

Supplementary Figure 13a

Supplementary Figure 13b

	Gene		Mock	Mock	RNF168	RNF168
Gene ID	Name	Protein ID	chunkA	chunkB	chunkA	chunkB
10419	PRMT5	20070220		83		66
8241	RBM10	325120986		24		24
26986	PABPC1	46367787		15		20
10521	DDX17	148613856		10		24
54726	OTUD4	156630992		8		
10642	IGF2BP1	56237027		7		21
4288	MKI67	103472005			82	
7341	SUMO1	4507801			73	
7314	UBB	11024714			34	77
7153	TOP2A	19913406			11	
7082	TJP1	116875765			10	
5108	PCM1	134142826			9	
22984	PDCD11	70980549			9	
165918	RNF168	31377566			9	35
4691	NCL	55956788				88
4670	HNRNPM	14141152				53
9188	DDX21	50659095				43
26064	RAI14	224809468				33
51474	LIMA1	165905589				31
1660	DHX9	100913206				29
1665	DHX15	68509926				28

9100	USP10	119220605		6
8761	PABPC4	208431833		11
1627	DBN1	18426913		14

Supplementary Table 1. Mass spectrometry analysis of RNF168 interacting

partners. Raw and filtered list of protein spectral counts identified with a TPP probability of 1.00 in mock or FLAG-RNF168 expressing cells. Gene names, NCBI gene and protein ID along with observed spectral counts in each gel chunk are given for each protein.