
 

 
 
 
 
Supplementary Figure 1 
Promoter sequences used in this study. 

A. Original cpcG2 promoter sequence from pJT119b [6], [11]. 
B. Plasmid pSKA413 cpcG2Δ59 promoter sequence with synthetic gfpmut3 

RBS3 (RBS Library Calculator[12]) and ccaR 5’-AGGA-3’ RBS. 
C. Tn7 integration plasmid pSKA397 cpcG2Δ59 promoter sequence. 

 
  



Supplementary Figure 2 
Plasmid maps of pSKA413 and pSKA397. 



Supplementary Figure 3 

Step response of the JT2 strain with plasmids pPLPCB(S) and pSKA413. The strain 
was grown following the same protocol used for the GFP experiments (Methods of 
main text). It was subjected to maximal green light intensity and uniformly sampled by 
flow cytometry every 30 minutes, by means of the automatic setup described in the 
main text. The two plots correspond to the fold change in mean and median GFP 
abundance, respectively. 



Supplementary Figure 4

Flow cytometry distributions of the JT2 strain with plasmids pPLPCB(S) and pSKA413 
corresponding to the first (red, uninduced) and last (green, induced) flow cytometry 
samples from Supplementary Figure 3. 



Supplementary Table 1.  Strains, plasmids, and primers used in this study. 
Strain Description Reference 

CC118 
(λpir) 

Δ(ara-leu) araD ΔlacX74 galE galK phoA20 thi-1 rpsE rpoB 
argE(Am) recA1 λpir phage lysogen 

[15] 

DL4259 MC4100 λ640-13 [10] 

JT2 RU1012 ΔPompC-lacZ [16] 

MFDpir MG1655 RP4-2 Tc::[ΔMu1::aac(3)IV-ΔaphA-Δnic35-
ΔMu2::zeo]  ΔdapA::(erm-pir) ΔrecA 

[23] 

NEB Turbo F' proA+B+ lacIq ∆lacZM15/fhuA2  ∆(lac-proAB)  glnV 
galK16 galE15 R(zgb-210::Tn10)TetS  endA1 thi-1 ∆(hsdS-
mcrB)5 

New 
England 
Biolabs 

SKA932 JT2 ΔmetE::cat This study 

SKA936 JT2 ΔmetE::FRT This study 

SKA973 JT2 ΔmetE::FRT Tn7::cat-PcpcG2Δ59-metE This study 

SKA974 JT2 ΔmetE::FRT Tn7::FRT-PcpcG2Δ59-metE This study 

Plasmid Description Reference 

pCP20 FLP-recombinase plasmid, temperature sensitive, ampR, 
camR 

[19] 

pJT119b CcaR/CcaS green/red light-inducible plasmid, ccaR, ccaS, 
PcpcG2-sfgfp, camR 

[6] 

pKD3 Plasmid with FRT-flanked chloramphenicol-resistance 
cassette, ampR, camR 

[14] 

pKD13 Plasmid with FRT-flanked kanamycin-resistance cassette, 
ampR, kanR 

[14] 

pKOBEGA Arabinose-inducible λ-Red recombinase plasmid, 
temperature sensitive, ampR 

[18] 

pPLPCB(S) PCB biosynthesis plasmid, Plac/ara-1-ho1-pcyA, specR [16] 

pSKA373 pKD13::cat, ampR, camR This study 

pSKA385 pUC18R6KT-mini-Tn7T-cat(FRT), ampR, camR This study 

pSKA396 pUC18R6KT-mini-Tn7T-cat(FRT)-PcpcG2-metE, ampR, camR This study 

pSKA397 pUC18R6KT-mini-Tn7T-cat(FRT)-PcpcG2Δ59-metE, ampR, 
camR 

This study 

pSKA413 pZE3-PcpcG2Δ59_RBS3-gfpmut3-PccaR_RBS-ccaR::FLAG-
ccaS::FLAG, camR 

This study 

pTNS3 Tn7 transposase helper plasmid, ampR [22] 

pUC18R6K
T-mini-Tn7T 

Mini Tn7 delivery vector, ampR [20] 

Primer Sequence 5’ > 3’ Reference 

84 CAACAAGCTAGCGCGGCCGCATTCCGGGGATCCGTCG
ACC 

This study 

85 CAACAAGCTAGCGTGTAGGCTGGAGCTGCTTC This study 

235 GGTTTTTCTACTGGGATTCGCTAATAT This study 

236 CTTGTCATCGTCGTCCTTGTAGTCAGCTCGAGGCAAATG
GTTATAGCG 

This study 

240 TCTAGAGGCATCAAATAAAACGAAAG This study 

304 CTACTTGTCATCGTCGTCCTTGTAGTCGTTTTTCCCTTG
GCACAAAG 

This study 

333 GGTACCGGGCCCAAGCTTCTCGAGAGAGTTTGTAGAAA
CGCAAAAAGG 

This study 

338 CTCTCCTGAGTAGGACAAATCC This study 

344 CTAGTATTTCTCCTCTTTAGATAAAGTTAG This study 

392 GGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGGACGT
CGATATCTGGCGAAAATG 

This study 

393 CTTTCGTTTTATTTGATGCCTCTAGATTATTTGTATAGTT
CATCCATGCCATG 

This study 

394 GCGAATCCCAGTAGAAAAACCCTACTTGTCATCGTCGTC
CTTG 

This study 



395 CAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGTT
ACTTGTCATCGTCGTCCTTG 

This study 

449 CTAGTATTTCTCCTCTTTAGATAAAGTTAGAATGCGATCC
TAACAAAGTAAAATTG 

This study 

451 TGGGCTATGAGAATTCTTTTAGTG This study 

459 CACTAAAAGAATTCTCATAGCCCATCCTGCTTTTCTCTAT
C 

This study 

461 CTAACTTTATCTAAAGAGGAGAAATACTAG This study 

514 GGATTTGTCCTACTCAGGAGAG This study 

536 CGATATCATGCATGAGCTCACTAGTAGCCCATTGTGCTT
TTCTC 

This study 

551 CAACTTTTAAGTTTAATTACTAACTTTATCTAAAGAGGAG
AAATACTAGATGACAATATTGAATCACACCCTCG 

This study 

558 CTAAATTCAAAATCCATAGGATTTACATATAATTAGAGGA
AGAAAAAATGATTCCGGGGATCCGTCGACC 

[17] 

559 CCGGGTGGTATTACCACCCGGTTTGGATTTTACCCCCG
ACGCAAGTTCTGTGTAGGCTGGAGCTGCTTCG 

[17] 

563 CAACAAGGATCCATGACAATATTGAATCACACCCTCG This study 

564 CAACAAGCATGCTTACCCCCGACGCAAGTTC This study 

565 CTTCGAACTGCAGGTCGAC This study 

566 ATTCCGGGGATCCGTCGACCTGCAGTTCGAAGTTCCTA
TTCTCTAGAAAGTATAGGAACTTCCAACTTTTGGCGAAA
ATGAGAC 

This study 

587 CAGCAGCACAGGTTTCAC This study 

597 TATATGGTGCCTTACGTGCCTGTCCCTTAGATAAAGTTA
GAATGCGATCCTAAC 

This study 

598 ACAGGCACGTAAGGCACCATATAATGCGTAAAGGAGAA
GAACTTTTC 

This study 

 
  



Supplementary Note 1. Turbidostat design

50/50 beam
splitter

LED driver

Phototransistor

IR emitter

Phototransistor

voltage
measurement

Impdedance converter
feedback

Turbidity
controller

media inflow

input
control voltage

media outflow

Arduino | PLC

Figure S 1.1: Turbidostat schematic.

The turbidostat works by measuring the cell culture optical density and feeding it into a PI
controller that computes the necessary medium influx rate to maintain a constant, user-defined
culture density. The outflux rate is always set slightly higher than the influx rate, to ensure
that the culture level remains at the height where the outflux tube is placed.

The optical density sensor contains an infrared LED that shines a beam through the cul-
ture, and a phototransistor that measures how much light reaches the other side of the glass
tube. The light intensity output of the infrared LED is stabilized by the feedback of another
phototransistor: 50% of the light emitted is deflected to the phototransistor by a beam divider
mirror, while the other 50% of is transmitted through the cell culture to probe its turbidity. The
light intensity reaching the phototransistor at the opposite end of the culture tube is converted
to a voltage measurement via an impedance converter. This signal is read by a microcontroller
and fed into the turbidity control algorithm, which dictates the pumps speeds.
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Supplementary Note 2. Images of experimental setup

Figure S 2.1: Overview of the experimental setup.
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Figure S 2.2: Setup for cell density control.
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Figure S 2.3: Close-up image of the inside of the light delivery system, where the cell culture is
grown under controlled temperature and stirring conditions and protected from external light.
The culture is held inside a metallic beads bath that helps maintain a constant temperature.
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Figure S 2.4: Automatic setup for flow cytometry. Not displayed in this picture are the flow
cytometer and the pump used to empty the flow cytometer sampling tube once the cells have
been measured.
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Figure S 2.5: A close-up of the flow cytometer sample introduction port (SIP).
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Figure S 2.6: Side-view of the cell culture glass.
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Figure S 2.7: Top-view of the cell culture glass showing the main components of the optical
density sensor.
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Supplementary Note 3. Day-to-day variability of background lev-
els and dynamics of gene expression

It has already been observed that the CcaS-CcaR system displays non-trivial day-to-day vari-
ability in terms of background expression levels, despite the repeated application of the exact
same growth protocol [6]. We have made similar observations, which are summarized in Figure
S 3.1 below. The variability is observed both in normalized and unnormalized GFP means, and
does not seem to particularly strongly correlated with FSC-H (which is used as proxy for cell
volume).
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Figure S 3.1: Summary of initial GFP fluorescence levels of dark-grown overnight cultures. The
histograms compile data from 21 different cultures.
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The maximum GFP fold change has been also found to be variable from day to day [6]. We
have additionally observed that even the speed at which the system responds to a step change in
the green light intensity (from zero to full power) is variable from day to day. Consequently, not
only the steady-state gain of the system, but also its dynamics are also variable. This behavior
is shown on Figure S 3.2.
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Figure S 3.2: System response to a step change in green light input from zero to full. Different
curves correspond to responses measured on different days, from different overnight cultures.
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Supplementary Note 4. PI controller tuning

Overview of the approach: Although several automatic tuning methods for PI controllers
exist in the automatic control literature [1], they are only applicable to linear systems. Since
the CcaS-CcaR system is manifestly nonlinear, PI tuning using one of these methods would
not be optimal. The PI controllers used in this work were therefore tuned by a trial-and-
error method: first, using the fitted linear model, we got rough estimates of the gains through
simulation. Afterwards, using these gains as starting points, we fine-tuned them experimentally
by observing the tracking performance of the controller for a certain constant reference, in order
to maximize convergence speed to the target and minimize overshoot and oscillations. After
a couple of iterations, the gains KP = 80 and KI = 8 were found to yield good results for
tracking a constant reference, and they were used to generate the plots of Figure 2 in the paper.
For Figure 3, the same gains were used during the first tracking phase, and were increased to
KP = 160 and KI = 20 after the given reference was achieved, to maximize the disturbance
rejection performance of the controller.

Linear model results: To get an initial idea of the required PI controller gains, we used
the simple fold-change linear model with input delay described previously, with the additional
limiting of input values within [0, 4] (cf. with discussion of the MPC setup). The tracking of a
constant reference by PI controller is affected by the ratio and absolute magnitudes of KP to
KI . If the gains are chosen too large, the system output will oscillate wildly; if they are chosen
too small, convergence will be very slow. Figure S 4.1 shows two extreme situations, where the
gains are chosen with a constant ratio but different absolute magnitudes.
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Figure S 4.1: Simulation of the fold-change system in a feedback loop with a PI controller, using
two sets of improper PI gains. Blue line: KP = 1000, KI = 110. Green line: KP = 10,KI = 1.1.
Observe that input values are saturated from below at 0 and from above at 4. The dashed black
line denotes the desired constant output level.
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On the other hand, for a fixed value of KP , variation of KI results in the responses shown
on Figure S 4.2. In this case, the intermediate values KP = 100, KI = 11 seem to result in fast
convergence with very little overshoot. As the results of Figure S 4.2 suggest, a KP /KI ratio
of about 10 is optimal for our system.
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Figure S 4.2: Closed-loop simulation of the fold-change system with a PI controller. KP is fixed
and KI is varied. Blue: KI = 11. Green: KI = 15, Red: KI = 20. Cyan: KI = 30. Brown:
KI = 8. Grey: KI = 6. Magenta: KI = 2. As KI grows, overshoot (and eventually) damped
oscillations begin to appear. On the other hand, small values of KI result in undershoot and
very slow convergence to the setpoint.
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Supplementary Note 5. Additional input profiles for Fig. 2
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Figure S 5.1: Constant reference tracking: PI and MPC controller responses (purple and
green lines, respectively) set to track different references (0.4, 0.66, 0.82 a.f.u.). Dots represent
experimental samples and the lines are polynomial fits. The grey shaded areas encompass +/-
5% of the reference values. The numbers on the left side of each grey-shaded box indicate the
input used to generate the responses, represented below. The plot contains the additional input
profiles that are not reported on Figure 2.
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Supplementary Note 6. Cell size response to environmental changes

Changes in FSC-H (proxy for cell volume) due to environmental changes. In the first plot,
media is progressively switched from M9 to LB at the 300 minute mark. The second plot shows
the change in cell size due to a temperature change from 37◦C to 28◦C at the 220 minute mark.
The different lines correspond to experimental replicates performed on different days.
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Figure S 6.1: Changes in cell size after a shift from M9 to LB.
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Figure S 6.2: Changes in cell size after a shift from 37◦C to 28◦C
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Supplementary Note 7. Growth rate control

7.1 Data processing

Our strategy for estimating the culture growth rate makes use of the influx rate of fresh media
required to maintain a constant optical density (OD) of the culture. As described in the main
paper, the culture OD is fed into the turbidostat PI controller, which acts back on the cell
culture by manipulating the flow rate of the pumps. The equations governing the change in
optical density of the culture are:

d(OD)

dt
= OD(µ− u

v
) =⇒

µ =
u

v
+

1

OD

d(OD)

dt
≈ u

v

where µ is the growth rate, v is the culture volume [ml], and u is the influx rate [ mlmin ]. The influx
rate in turn, is computed by converting the control voltage that is applied to the pump into flow
rate using a regression line obtained from calibration tests (the pumps display a perfectly linear
relationship between control voltage and flow rate). Finally, when the OD is tightly regulated,
its time derivative is negligible and the culture growth rate is proportional to the medium influx
rate, u.

However, the signal from the turbidity sensor is quite noisy, which implies that the signal
coming out of the turbidity controller is also contaminated with noise and needs to be filtered
before being fed into the growth rate controller. For this reason, we employ a smoothing
algorithm based on local linear regression. The smoother uses the 500 most recent samples of
the pump speed (gathered within 10 minutes, at sampling frequency of 0.83 Hz) to derive a local
linear fit and take the midpoint of the resulting line as an estimate of the pump speed at the
current time. This operation introduces a delay of 5 minutes in the pump speed estimate, but
its effect is negligible, since the controlled system (cell growth rate) has much slower dynamics.
The filtering is further improved post-experiment for plotting purposes by taking a moving
average of the unfiltered pump speed signal with a sliding window of 2500 samples. This is the
signal plotted on Fig 4 of the main text.
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Figure S 7.1: An example of the raw and processed growth rate data: dots represent instan-
taneous estimates obtained by dividing the measured pump speed (u) with the culture volume
(v). Dots are colored according to the histogram frequencies of the binned signal. The black
line shows the signal obtained from local linear regression, which is fed into the growth rate
controller, while the red line shows the smoothed signal from the moving average filter, obtained
after the experiment.
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7.2 Dynamic range
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Figure S 7.2: Red light step response. Cells initialized under green light overnight and growing
at maximal speed are switched to constant red light (at t = 100 min). The growth rate falls
from about 0.014 min−1 to 0.0035 min−1. This corresponds to a transition from a doubling
time of around 50 min to a doubling time of 200 min. The dotted grey lines indicate the
minimal and maximal growth rates that this strain displays.
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7.3 Growth rate drift
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Figure S 7.3: Closed-loop setpoint tracking experiment aimed at maintaining the growth rate at
0.0087 min−1. Starting at around 1250 min, the cells display a gradual loss of sensitivity to the
light inputs received (they require less light to grow at the same rate). This can be seen by the
negative slope of the green light intensity. Even though the cell culture is gradually becoming
insensitive to light, its growth rate changes minimally because of the controller action, which
opposes this change. However, at 1800 min the actuation boundaries of the controller are met:
the green light intensity hits 0%, while the red light intensity is maximal. Beyond that point
the controller is unable to act on the cells, and the culture shows a rapid increase in growth
rate.
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7.4 Additional experiments

Figure S 7.4: Summary of additional closed-loop growth control experiments. The light grey
lines correspond to the experiments presented on Fig. 4 of the main text. The green, magenta
and blue curves track constant growth rates of 0.0087, 0.0073 and 0.006 min−1, respectively.
The colored lines all used the same PI controller, with gains KI = 45,KP = 5700.
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Supplementary Note 8. Accuracy of the autosampling system

8.1 Cross-sample contamination

According to the automatic sampling protocol described in Online Methods, the silicone tubing
of our system, as well as the sampling tube, are rinsed with PBS before the measurement of
each sample in the cytometer. To determine the cross-sample contamination of the system, i.e.
what percentage of a previously run sample is contained within the currently acquired, we ran
a sequence of alternating culture and filtered water measurements.

In this test, a culture sample was first acquired. The piece of silicone tubing immersed in
the culture was subsequently taken out, cleaned externally with ethanol, and put inside a tube
with filtered water, to acquire a water sample. We then compared the cell counts per second
that pass our gating criteria (see Online Methods) in the culture and water samples. Table 8.1
below summarizes the results obtained from three repetitions of this procedure.

Replicate number
1 2 3 Mean

Culture sample counts 1150 991.5 1037 1060
Water sample counts 11 27 20 19

Table S 8.0: Cross-contamination in the automatic sampling system, measured by consecutive
runs of culture and water samples.

Taking into account the fact that a water sample normally results in zero events inside our
gates, the cross-sample contamination of our automatic system is about 2%.

8.2 Comparison with manual sampling

To verify that our setup’s measurements are comparable with the ones obtained by manual
sampling we performed a series of measurements where a cell culture was sampled both au-
tomatically and manually (10 µL of culture diluted in 100 µL of PBS). The cytometer was
backflushed between each measurement. Table 8.2 below summarizes the results from seven
repetitions of this procedure.

Replicate number
1 2 3 4 5 6 7 Mean s.d.

Manual
(norm. GFP)

0.1814 0.1778 0.1775 0.1769 0.1736 0.1808 0.1786 0.1781 0.0026

Automatic
(norm. GFP)

0.1826 0.1816 0.1771 0.1793 0.1784 0.1785 0.1786 0.1794 0.002

Table S 8.0: Comparison of manual vs. automatic sampling for the normalized GFP mean.
According to a two-sample t-test, the null hypothesis (the means of manual and automatic
samples are the same) is not rejected at a significance level of 5%.
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Supplementary Note 9. Flow cytometry data processing

9.1 Gating procedure

As described in the Methods section, the raw flow cytometry data is processed by first selecting
all events with a forward scatter value greater than 11.000 (a.u.), and then gating the remaining
events with an elliptical gate.

cutoff

Figure S 9.1: Forward scatter distribution of E. Coli cells. The red line indicates the particle
size cutoff value of 11.000 (a.u.).

3.5 4.0 4.5 5.0
FSC-A - log scale

0

1

2

3

4

5

S
S
C

-A
 -

 l
o
g
 s

ca
le

Figure S 9.2: Depiction of the elliptical gate in the FSC-A vs. SSC-A space used to process the
flow cytometry data in conjunction with the fluorescence threshold. Magenta points correspond
to events with a lower FL1 (GFP fluorescence channel) value than the established threshold
(800 a.u.). This threshold does not significantly affect the cells that end up in our elliptical
gate. It is done to remove part of the background flow cytometry noise.
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9.2 Evolution of flow cytometry histograms over time

Figure S 9.3: Example flow cytometry distributions over time. A. Step response experiment
(open loop) B. Closed loop experiment (MPC controller).
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Supplementary Note 10. Need for gain scheduling

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8

Time (min)

 

 

20

40

60

80

GFP (a.f.u.)
LED input (%)

LED perturbation

change of gains

Figure S 10.1: Rejection of an input perturbation using a PI controller. The first phase of the
experiment corresponds to a PI controller tracking a constant setpoint (grey dashed line). In
the second phase of the experiment (after 180 min.), the green light input was perturbed by
subtracting 50% of its intensity. The gains used for achieving the setpoint during the first phase
were insufficient to bring the system back to the setpoint in a reasonable amount of time. The
controller reacted too slowly to the error generated by the perturbation; the green light input
applied between minutes 300 to 400 was almost constant. At the same time, the two-component
system used responds very weakly and slowly to small changes in the green light intensity. To
overcome this problem, the PI gains were switched at t = 410 min. (dashed vertical black line)
to make the controller more “aggressive”. Since the system was away from the setpoint, this
resulted in oscillatory behavior. However, when the gain switch is done right after the setpoint
has been achieved, disturbances are nicely rejected. This so-called gain scheduling approach [2]
was used on all disturbance rejection experiments which involved PI control (Fig.3a,c). More
specifically, KP was doubled (from 80 to 160) and KI was increased from 8 to 20 as soon as
the setpoint had been achieved. The system was left unperturbed for an additional hour before
applying any perturbation to demonstrate that the gain scheduling did not affect setpoint
tracking.
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Supplementary Note 11. Dose-response characterization

Each point on the figure below corresponds to the measurement of the fold-change with respect
to the initial mean normalized GFP fluorescence of a cell culture brought to steady-state under
constant light intensity. The green line corresponds to a sigmoidal curve of the form

f(x) =
5.134

1 + 5.411e−0.0698x
+ 0.1992

fitted to the experimental data. Day-to-day variability is manifested in the differences across
steady-state levels for the same light intensity (experiments done on different days).
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Figure S 11.1: Steady-state normalized GFP fold-change as a function of green LED intensity.
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Supplementary Note 12. Derivation of discrete-time model equa-
tions

The differential equations for the fold-change system given in Online Methods have the following
vector form:

dx

dt
= Acx+Bc

[
1
u

]
y = Cx

where x =
[
R P G

]T
denotes the system state, y = G the measured output and

Ac =

 −dr 0 0
dp + km −dp − km 0

0 dp −dp

 , Bc =

dr br
0 0
0 0

 and C =
[
0 0 1

]
.

This continuous-time model can be converted into discrete-time for a given sample time Ts to
yield a set of difference equations of the form [3]

xn+1 = Axn +B

[
1
un

]
yn = Cxn,

where xn, yn and un is shorthand for x(nTs), y(nTs) and u(nTs), i.e. the state, output at n-th
multiple of the sampling time and

A = eAcTs and B = A−1
c (A− I)Bc.

The model form used in this work has two additional modifications: an input delay of
one time step and an additional, uncontrolled input (d) that models the effect of additive
disturbances. Thus, the final model equations are

xn+1 = Axn +B

[
1

un−1 + dn

]
yn = Cxn.
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Supplementary Note 13. Particle filter for state and parameter
estimation

General setup: As explained in Online Methods, the model described above is not sufficient
to account for external perturbations that may alter the system dynamics, since matrices A and
B are assumed fixed for all time steps. We therefore adopted a more flexible modeling approach,
where system parameters are allowed to vary from one time step to the next. The increased
flexibility, however, also creates the risk of over-fitting. This is counteracted by explicitly stating
a set of assumptions regarding the allowed parameter changes from step to step (as well as the
overall range of allowed parameter variations) and by properly balancing model fidelity with
measurement accuracy during the estimation process.

All these features are naturally included in the recursive Bayesian state and parameter
estimation framework [7], which we implemented in this work. Without getting into technical
details, in this approach we assume that the system states and parameters are sequences of
random variables generated by a Markov process. The goal is then to estimate the sequence
of states and the system parameters based on a sequence of observed outputs and applied
inputs. The so-called particle filters [4] are powerful Monte Carlo algorithms that implement
this estimation procedure computationally.

More analytically, the evolution of states and parameters is assumed to be given by

xn+1 = A(θn)xn +B(θn)

[
1

un−1 + dn

]
+ wn

θn+1 = θn + vn,

where θ =
[
dr dp km br d

]
is the vector that contains all unknown system parameters,

while {wn} and {vn} are Gaussian white noise processes, i.e. wn ∼ N (0,Σs) and vn ∼ N (0,Σp)
for every n1. Both covariance matrices are diagonal (i.e. noise affects each component of
the state and parameter vector independently). Note that the parameter vector contains the
reaction rates of the original, continuous-time model, together with the unknown disturbance
input. Once the continuous-time model parameters are assigned a numerical value, matrices A
and B of the discrete-time model can be computed, as shown in Section 12

At each time step n, the measured output ymeasn is assumed to be a noisy observation of
yn = Cxn. That is,

ymeasn = yn + zn,

where zn ∼ N (0, σ2meas).
Following the Bayesian approach, the parameter vector at n = 0 is assumed to be a 5-

dimensional random variable with a given prior distribution N (θnom,Σθ), where θnom is the
maximum-likelihood parameter set described in Online Methods and Σθ is a diagonal covariance
matrix that reflects our a priori uncertainty about parameter values.

The system states are also assigned a prior distribution, but it is a degenerate one: all states
are equal to 1 with certainty before any green light input is applied, since the cells have been
growing in the dark.

The marginal particle filter: Particle filters operate with a set of samples (called particles)
that are used to approximate the current state and parameter distributions given the sequence
of past outputs and inputs to the system. More concretely, given the prior distributions of
parameters and states, a sequence of output measurements from the beginning of the experiment

1N (µ,Σ) denotes the Gaussian distribution with mean µ and covariance matrix Σ.
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up to the current time step T , {ymeasn }Tn=1 and the sequence of the inputs applied so far,
{un}Tn=1, the filter generates sets of P particles {xp,n}Pp=1 and {θp,n}Pp=1 sequentially for all time

steps n = 1, . . . , T . The sets of particles {xp,T }Pp=1 and {θp,T−1}Pp=1 are used to represent the
distribution of system states and parameters at the current time step T .

Below we provide a description of the specific particle filtering algorithm used here [5], that
is adjusted to our modeling assumptions (Algorithm 1). The interested reader is directed to the
literature for further information regarding particle filtering [4]. Note: f(x|µ, σ) denotes the
Gaussian density with mean µ and variance σ2, evaluated at point x.

Algorithm 1 Marginal particle filter.

1: {Setup particles}
2: Draw P parameter particles from the parameter prior: {θp,0}Pp=1 ∼ N (θnom,Σθ); generate

P state particles {xp,0}Pp=1, all equal to
[
1 1 1

]T
.

3: for n from 1 to T do
4: for p from 1 to P do
5: {Propagate state particles}

6: xp,n = A(θp,n−1)xp,n−1 +B(θp,n−1)

[
1

un−2 + dn−1

]
+ wn, wn ∼ N (0,Σs)

7: ypredp,n = Cxp,n
8: end for
9: {Compute and normalize particle weights}

10: wp = f(Y pred
p,n |ymeasn , σ2meas)

11: Wp = wp/(
P∑
j=1

wj)

12: {Resample states and parameters}
13: Draw P state particles from {xp,n} and P parameter particles from {θp,n−1} according to

weights {Wp}
14: for p from 1 to P do
15: {Perturb parameter particles}
16: θp,n = θp,n−1 + vn, vn ∼ N (0,Σp)
17: end for
18: end for
19: return Final particle populations, {xT,p, p = 1, . . . , P} and {θT−1,p, p = 1, . . . , P}.

The above particle filtering algorithm is run every time an output measurement becomes
available. The specific algorithm parametrization used is given below:

P = 5000, Σs = diag(
[
0.01 0.01 0.01

]
),

Σp = 10−3 · diag(
[
0.2539 0.0127 0.0037 0.2587 0.025

]
), σ2meas = 0.0025,

Σθ = 10−3 · diag(
[
1.0155 0.0509 0.0150 1.0347 0.1

]
).
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Supplementary Note 14. Model Predictive Controller (MPC)

We first repeat the basic MPC loop, outlined in the main text:

Algorithm 2 A high-level description of MPC.

1: Given: a system model, the total number of time steps (N), a reference trajectory ({Yn}Nn=1),
input constraints, a control horizon (H), cost function (F ), initial state (x0)

2: Set n = 1
3: while n ≤ N do
4: Determine input sequence that optimizes the cost function over the control horizon and

respects the input constraints
5: Apply the first element of the input sequence
6: Wait for one sampling period. When new measurement becomes available, estimate the

new system state
7: Shift the control horizon one step ahead, n← n+ 1
8: end while

The above procedure is summarized graphically on Figure S 14.1.

Past Future

Reference

Measured Output

Applied Input

Optimal Input

Predicted Output

Figure S 14.1:

We now specify the details of the steps outlined above.

Controlled system: The system we control has the form

xn+1 = A(θ)xn +B(θ)

[
1
un

]
yn = Cxn,

Given the state xn and parameter vector θ at the current time step n, together with an in-
put sequence, {uk}n+Hk=n−1, the system can be simulated into the future to yield {xk}n+Hk=n and

{yk}n+Hk=n . Since knowledge of future parameter values is impossible, the parametrization of the
model is assumed to be constant over time and fixed at the currently available value (θ).

Taking into account the fact that the particle filter operates with a set of joint state and
parameter samples, there is not one but P alternative initial states and parameters at time n.
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All these particles are thus simulated forward in time for a given input sequence. This result
in the creation of a distribution of state and output trajectories, that depends on the current
uncertainty about the system state and parametrization, as well as the way this is propagated
through the system dynamics.

Reference trajectory: The reference trajectory is defined over the whole experiment times-
pan (i.e. step 0 to N). It is given by a set of values {Yn}Nn=0.

Input constraints: Since the system input is assumed to represent steady-state GFP fold
changes, it can only take non-negative values. On the other hand, we know that the maximum
GFP fold change achievable by this system is a little above 5. For this reason, the input u needs
to be limited at 4 (recall that u denotes the additional GFP fold change above un-induced
conditions). It therefore must hold 0 ≤ un ≤ 4, n = 0, . . . , N .

Cost function: The cost function (F) quantifies the aggregate deviation of the P output
trajectories obtained under a given input sequence un = {uk}n+Hk=n−1 (with un−1 fixed from a
previous optimization round) from the reference trajectory over the control horizon H. To
define F we first compute for each particle (xp,n, θp,n) the deviation of the output trajectory
from the reference, denoted by Fp, p = 1, . . . , P :

Fp(xp,n, un) =
n+H∑
k=n

(Yk − yp,k)2.

We then reject all Fp values greater than the 90% quantile, as well as all values smaller than
the 10% quantile and average the remaining Fp(un) values to obtain F (un). In this way, F (un)
can be thought of as the “average” quadratic deviation of model predictions from the reference
for a given input sequence.

F (un) is in turn optimized over all non-negative input sequences of length H with the help of
the fmincon Matlab function, using an active-set method for constrained nonlinear optimization
(Sequential Quadratic Programming).
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Supplementary Methods 

Construction of strains and plasmids for growth rate control experiments. 

pZE3-PcpcG2Δ59_RBS3-gfpmut3-PccaR_RBS-ccaR::FLAG-ccaS::FLAG (pSKA413):  The 
pZE3 backbone [8] was amplified from pJT119b [6] using primers 240 and 392.  
gfpmut3 [9] was amplified from DL4259 genomic DNA [10] using primers 598 and 
393.  ccaR was amplified from pJT119b and tagged with a C-terminal FLAG tag 
(DYKDDDDK) using primers 451 and 304.  The ccaR::FLAG product was then 
reamplified with primers 451 and 394.  ccaS was amplified from pJT119b and tagged 
with a C-terminal FLAG tag using primers 235 and 236.  The ccaS::FLAG product 
was then reamplified with primers 235 and 395.  A variant of the cpcG2 promoter 
with 59 bp of a putative constitutive promoter deleted (PcpcG2Δ59, Supplementary 
Figure 1, and ref. [11]), a synthetic gfpmut3 RBS3 
(AAGGGACAGGCACGTAAGGCACCATATA, 467.61 Translation Initiation Rate, 
RBS Library Calculator [12]) and an AGGA ccaR RBS was amplified from pJT119b 
using primers 459 and 597.  The resulting PCR products were Gibson assembled 
[13] and cloned into NEB Turbo (New England Biolabs) to construct pSKA413 
(Supplementary Figure 1 and 2, Addgene plasmid ID #80381). 

JT2 ΔmetE::FRT Tn7::FRT-PcpcG2Δ59-metE (SKA974):   
Deletion of metE from E. coli JT2 
The kanamycin-resistance cassette in pKD13 [14] was converted to 
chloramphenicol-resistance by amplifying the pKD13 backbone with primers 514 and 
565 and amplifying chloramphenicol acetyltransferase (cat) from pKD3 [14] with 
primers 566 and 338.  The PCR products were Gibson assembled and cloned into 
CC118(λpir) [15] to construct pSKA373.   

To delete metE from strain JT2 [16], pSKA373 was amplified with primers 558 and 
559 [17].  The PCR product was recombineered into JT2 using pKOBEGA as 
previously described [18] to construct JT2 ΔmetE::cat (SKA932).  The 
chloramphenicol-resistance cassette was then excised from strain SKA932 using 
FLP-recombinase plasmid pCP20 as previously described [19] to construct JT2 
ΔmetE::FRT (SKA936). 

Tn7 integration of PcpcG2Δ59-metE into JT2 ΔmetE::FRT 
The kanamycin-resistance cassette in pUC18R6KT-mini-Tn7T [20] was converted to 
chloramphenicol-resistance by amplifying the FRT-flanked chloramphenicol-
resistance cassette from pSKA373 using primers 84 and 85.  The PCR product was 
ligated into pUC18R6KT-mini-Tn7T between SalI and NheI and cloned into 
CC118(λpir) [15] to construct pSKA385. 

metE from MG1655 (ATCC 47076) and an rrnBT1T2 transcriptional terminator from 
pBAD33 [21] was amplified from pSKA374 (pZE1-Ptac-metE-rrnBT1T2, unpublished, 
sequence available upon request) using primers 551 and 333.  The cpcG2 promoter 
was amplified from pJT119b using primers 536 and 344.  The PCR products were 
Gibson assembled [13] into pSKA385 between SpeI and XhoI and cloned into 
CC118(λpir) [15] to construct pSKA396. 

A variant of the cpcG2 promoter with 59 bp of a putative constitutive promoter 
deleted (PcpcG2Δ59, Supplementary Figure 1 and ref. [11]) was amplified from pJT119b 
[6] using primers 536 and 449.  The 5’ end of metE was amplified from pSKA396 
using primers 461 and 587.  The PCR products were Gibson assembled [13] into 



pSKA396 between SpeI and DraIII and cloned into CC118(λpir) [15] to construct 
pSKA397 (Supplementary Figure 1 and 2, Addgene plasmid ID #80380). 
 
Integration plasmid pSKA397 and Tn7 transposase helper plasmid pTNS3 [22] were 
transformed into MFDpir [23] and cells were maintained by adding diaminopimelic 
acid (100 μg/ml) to the media.  MFDpir pSKA397 and MFDpir pTNS3 were used to 
integrate cat-PcpcG2Δ59-metE into the chromosome of SKA936 using tri-parental 
mating [22], [23].  Exconjugants JT2 ΔmetE::FRT Tn7::cat-PcpcG2Δ59-metE (SKA973) 
were selected for on LB-kan-cam agar and Tn7 integration was verified by 
sequencing.  The chloramphenicol-resistance cassette was excised from strain 
SKA936 Tn7::cat-PcpcG2Δ59-metE using FLP-recombinase plasmid pCP20 as 
previously described [19] to construct JT2 ΔmetE::FRT Tn7::FRT-PcpcG2Δ59-metE 
(SKA974, Addgene bacterial strain ID #80403). 
 
Plasmids pPLPCB(S) [16] and pSKA413 were transformed into SKA974.  The 
resulting strain was used for all growth rate control experiments. 
  



Bibliography 

[1] K. J. Astrom, “PID controllers: theory, design and tuning,” Instrum. Soc. Am., 
1995. 

[2] K. J. Åström and T. Hägglund, Advanced PID control. ISA-The 
Instrumentation, Systems, and Automation Society; Research Triangle Park, 
NC 27709, 2006. 

[3] C.-T. Chen, Linear system theory and design. Oxford University Press, Inc., 
1995. 

[4] A. Doucet, N. De Freitas, and N. J. Gordon, “Sequential Monte Carlo Methods 
in Practice. Series Statistics For Engineering and Information Science.” 
Springer New York, 2001. 

[5] M. Klaas, N. De Freitas, and A. Doucet, “Toward practical N2 Monte Carlo: 
The marginal particle filter,” arXiv Prepr. arXiv1207.1396, 2012. 

[6] E. J. Olson, L. a Hartsough, B. P. Landry, R. Shroff, and J. J. Tabor, 
“Characterizing bacterial gene circuit dynamics with optically programmed 
gene expression signals.,” Nat. Methods, vol. 11, no. August 2013, pp. 449–
55, 2014. 

[7] S. Särkkä, Bayesian filtering and smoothing, vol. 3. Cambridge University 
Press, 2013. 

[8] R. Lutz and H. Bujard, “Independent and Tight Regulation of Transcriptional 
Units in Escherichia Coli Via the LacR/O, the TetR/O and AraC/I1-I2 
Regulatory Elements,” Nucleic Acids Res. , vol. 25 , no. 6 , pp. 1203–1210, 
Mar. 1997. 

[9] B. P. Cormack, R. H. Valdivia, and S. Falkow, “FACS-optimized mutants of the 
green fluorescent protein (GFP),” Gene, vol. 173, no. 1, pp. 33–38, 1996. 

[10] R. P. Morse, K. C. Nikolakakis, J. L. E. Willett, E. Gerrick, D. A. Low, C. S. 
Hayes, and C. W. Goulding, “Structural basis of toxicity and immunity in 
contact-dependent growth inhibition (CDI) systems,” Proc. Natl. Acad. Sci. , 
vol. 109 , no. 52 , pp. 21480–21485, Dec. 2012. 

[11] S. R. Schmidl, R. U. Sheth, A. Wu, and J. Tabor, “Refactoring and 
Optimization of Light-Switchable Escherichia coli Two-Component Systems,” 
2014. 

[12] I. Farasat, M. Kushwaha, J. Collens, M. Easterbrook, M. Guido, and H. M. 
Salis, “Efficient search, mapping, and optimization of multi‐ protein genetic 
systems in diverse bacteria,” Mol. Syst. Biol., vol. 10, no. 6, Jun. 2014. 

[13] D. G. Gibson, L. Young, R.-Y. Chuang, J. C. Venter, C. A. Hutchison, and H. 
O. Smith, “Enzymatic assembly of DNA molecules up to several hundred 
kilobases,” Nat. Methods, vol. 6, no. 5, pp. 343–345, 2009. 

[14] K. A. Datsenko and B. L. Wanner, “One-step inactivation of chromosomal 
genes in Escherichia coli K-12 using PCR products,” Proc. Natl. Acad. Sci. , 
vol. 97 , no. 12 , pp. 6640–6645, Jun. 2000. 

[15] M. Herrero, V. de Lorenzo, and K. N. Timmis, “Transposon vectors containing 
non-antibiotic resistance selection markers for cloning and stable 
chromosomal insertion of foreign genes in gram-negative bacteria.,” J. 
Bacteriol. , vol. 172 , no. 11 , pp. 6557–6567, Nov. 1990. 

[16] J. J. Tabor, A. Levskaya, and C. a Voigt, “Multichromatic control of gene 
expression in Escherichia coli. Supplemental,” J. Mol. Biol., vol. 405, pp. 315–
24, 2011. 

[17] T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. 
Datsenko, M. Tomita, B. L. Wanner, and H. Mori, “Construction of Escherichia 
coli K‐ 12 in‐ frame, single‐ gene knockout mutants: the Keio collection,” Mol. 
Syst. Biol., vol. 2, no. 1, Feb. 2006. 

[18] A. Roux, C. Beloin, and J.-M. Ghigo, “Combined Inactivation and Expression 
Strategy To Study Gene Function under Physiological Conditions: Application 



to Identification of New Escherichia coli Adhesins,” J. Bacteriol. , vol. 187 , no. 
3 , pp. 1001–1013, Feb. 2005. 

[19] P. P. Cherepanov and W. Wackernagel, “Gene disruption in Escherichia coli: 
TcR and KmR cassettes with the option of Flp-catalyzed excision of the 
antibiotic-resistance determinant,” Gene, vol. 158, no. 1, pp. 9–14, 1995. 

[20] K.-H. Choi, J. B. Gaynor, K. G. White, C. Lopez, C. M. Bosio, R. R. Karkhoff-
Schweizer, and H. P. Schweizer, “A Tn7-based broad-range bacterial cloning 
and expression system,” Nat Meth, vol. 2, no. 6, pp. 443–448, Jun. 2005. 

[21] L. M. Guzman, D. Belin, M. J. Carson, and J. Beckwith, “Tight regulation, 
modulation, and high-level expression by vectors containing the arabinose 
PBAD promoter.,” J. Bacteriol. , vol. 177 , no. 14 , pp. 4121–4130, Jul. 1995. 

[22] K.-H. Choi, T. Mima, Y. Casart, D. Rholl, A. Kumar, I. R. Beacham, and H. P. 
Schweizer, “Genetic Tools for Select-Agent-Compliant Manipulation of 
Burkholderia pseudomallei ,” Appl. Environ. Microbiol. , vol. 74 , no. 4 , pp. 
1064–1075, Feb. 2008. 

[23] L. Ferrières, G. Hémery, T. Nham, A.-M. Guérout, D. Mazel, C. Beloin, and J.-
M. Ghigo, “Silent Mischief: Bacteriophage Mu Insertions Contaminate 
Products of Escherichia coli Random Mutagenesis Performed Using Suicidal 
Transposon Delivery Plasmids Mobilized by Broad-Host-Range RP4 
Conjugative Machinery  ,” J. Bacteriol. , vol. 192 , no. 24 , pp. 6418–6427, 
Dec. 2010. 


	Turbidostat design
	Images of experimental setup
	Day-to-day variability of background levels and dynamics of gene expression
	PI controller tuning
	Additional input profiles for Fig. 2
	Cell size response to environmental changes
	Growth rate control
	Data processing
	Dynamic range
	Growth rate drift
	Additional experiments

	Accuracy of the autosampling system
	Cross-sample contamination
	Comparison with manual sampling

	Flow cytometry data processing
	Gating procedure
	Evolution of flow cytometry histograms over time

	Need for gain scheduling
	Dose-response characterization
	Derivation of discrete-time model equations
	Particle filter for state and parameter estimation
	Model Predictive Controller (MPC)
	Figure 1.pdf
	Turbidostat design
	Images of experimental setup
	Day-to-day variability of background levels and dynamics of gene expression
	PI controller tuning
	Additional input profiles for Fig. 2
	Cell size response to environmental changes
	Growth rate control
	Data processing
	Dynamic range
	Growth rate drift
	Additional experiments

	Accuracy of the autosampling system
	Cross-sample contamination
	Comparison with manual sampling

	Flow cytometry data processing
	Gating procedure
	Evolution of flow cytometry histograms over time

	Need for gain scheduling
	Dose-response characterization
	Derivation of discrete-time model equations
	Particle filter for state and parameter estimation
	Model Predictive Controller (MPC)

	Supplementary Tables 2.pdf
	Turbidostat design
	Images of experimental setup
	Day-to-day variability of background levels and dynamics of gene expression
	PI controller tuning
	Additional input profiles for Fig. 2
	Cell size response to environmental changes
	Growth rate control
	Data processing
	Dynamic range
	Growth rate drift
	Additional experiments

	Accuracy of the autosampling system
	Cross-sample contamination
	Comparison with manual sampling

	Flow cytometry data processing
	Gating procedure
	Evolution of flow cytometry histograms over time

	Need for gain scheduling
	Dose-response characterization
	Derivation of discrete-time model equations
	Particle filter for state and parameter estimation
	Model Predictive Controller (MPC)

	Supplementary Notes 3.pdf
	Turbidostat design
	Images of experimental setup
	Day-to-day variability of background levels and dynamics of gene expression
	PI controller tuning
	Additional input profiles for Fig. 2
	Cell size response to environmental changes
	Growth rate control
	Data processing
	Dynamic range
	Growth rate drift
	Additional experiments

	Accuracy of the autosampling system
	Cross-sample contamination
	Comparison with manual sampling

	Flow cytometry data processing
	Gating procedure
	Evolution of flow cytometry histograms over time

	Need for gain scheduling
	Dose-response characterization
	Derivation of discrete-time model equations
	Particle filter for state and parameter estimation
	Model Predictive Controller (MPC)

	Supplementary Methods 4.pdf
	Turbidostat design
	Images of experimental setup
	Day-to-day variability of background levels and dynamics of gene expression
	PI controller tuning
	Additional input profiles for Fig. 2
	Cell size response to environmental changes
	Growth rate control
	Data processing
	Dynamic range
	Growth rate drift
	Additional experiments

	Accuracy of the autosampling system
	Cross-sample contamination
	Comparison with manual sampling

	Flow cytometry data processing
	Gating procedure
	Evolution of flow cytometry histograms over time

	Need for gain scheduling
	Dose-response characterization
	Derivation of discrete-time model equations
	Particle filter for state and parameter estimation
	Model Predictive Controller (MPC)

	Bibliography 5.pdf
	Turbidostat design
	Images of experimental setup
	Day-to-day variability of background levels and dynamics of gene expression
	PI controller tuning
	Additional input profiles for Fig. 2
	Cell size response to environmental changes
	Growth rate control
	Data processing
	Dynamic range
	Growth rate drift
	Additional experiments

	Accuracy of the autosampling system
	Cross-sample contamination
	Comparison with manual sampling

	Flow cytometry data processing
	Gating procedure
	Evolution of flow cytometry histograms over time

	Need for gain scheduling
	Dose-response characterization
	Derivation of discrete-time model equations
	Particle filter for state and parameter estimation
	Model Predictive Controller (MPC)




