
Supplementary Figures 

 

Supplementary Figure 1: Ecological determinism of the climatic debt captured by the PLS1 

model. PLS1 is fitted from the same set of explanatory variables than PLS0 but on a subsample of 

45,806 floristic observations (see Methods section in the main text). The effect of each variable is 

measured by the mean slope of the climatic debt versus this variable over the 5,000 subsamples of the 

PLS1 model. Error bars show their 95% confidence intervals. Only significant variables are shown 

(bootstrap test for difference of slope values to 0: P < 0.01, n = 5,000), and classified by categories of 

factors. Temperature heterogeneity, temporal change in species habitat aggregation, road proximity, 

precipitation change, baseline precipitation conditions and time were not significant ( Supplementary 

Data 2). Factors involved in species’ persistence and migration are specified in blue and red, 

respectively; purple depicts factors involved in both species’ persistence and migration; white depicts 

environmental pressures for species. P = baseline precipitation conditions; T = baseline temperature 

conditions; TOT = thermal-stress tolerance; TOW = water-stress tolerance; CN = interspecific 

competition for soil nitrogen; CW = interspecific competition for water; N = soil nitrogen content; pH = 



soil acidity. 



 

Supplementary Figure 2: Ecological determinism of the climatic debt captured by the PLS2 

model. PLS2 is fitted on a subsample of 45,806 floristic observations from the same set of explanatory 

variables than PLS0 plus four new variables (temperature buffering effect of forest canopy, silvicultural 

practices, anthropogenic and/or natural disturbances, the presence of exotic tree species; see Methods 

section in the main text). The effect of each variable is measured by the mean slope of the climatic debt 

versus this variable over the 5,000 subsamples of the PLS2 model. Error bars show their 95% 

confidence intervals. Only significant variables are shown (bootstrap test for difference of slope values 

to 0: P < 0.01, n = 5,000), and classified by categories of factors. Temperature buffering effect of forest 

canopy, forest management, anthropogenic and/or natural disturbances, the presence of exotic tree 

species, temperature heterogeneity, temporal change in species habitat aggregation, road proximity, 

precipitation change, baseline precipitation conditions and time were not significant ( Supplementary 

Data 2). Factors involved in species’ persistence and migration are specified in blue and red, 

respectively; purple depicts factors involved in both species’ persistence and migration; white depicts 

environmental pressures for species. P = baseline precipitation conditions; T = baseline temperature 



conditions; TOT = thermal-stress tolerance; TOW = water-stress tolerance; CN = interspecific 

competition for soil nitrogen; CW = interspecific competition for water; N = soil nitrogen content; pH = 

soil acidity.  



Supplementary Figure 3: Ecological determinism of the climatic debt in perturbed and non-

perturbed forests. (a) Perturbed forests (PLS3). (b) Non-perturbed forests (PLS4). PLS3 and PLS4 are 

fitted from the same set of explanatory variables than PLS0 on two subsamples of 17,954 and 27,852 

floristic observations, respectively (see Methods section in the main text). The effect of each variable is 

measured by the mean slope of the climatic debt versus this variable over the 5,000 subsamples of each 

model. Error bars show their 95% confidence intervals. Only significant variables are shown (bootstrap 

test for difference of slope values to 0: P < 0.01, n = 5,000), and classified by categories of factors. 

Temperature heterogeneity, temporal change in species habitat aggregation, road proximity, 

precipitation change, baseline precipitation conditions and time were not significant in both models 

( Supplementary Data 2). Soil nitrogen content and human population density were not significant in 

perturbed and non-perturbed forest plant communities, respectively. Factors involved in species’ 

persistence and migration are specified in blue and red, respectively; purple depicts factors involved in 

both species’ persistence and migration; white depicts environmental pressures for species. P = 

baseline precipitation conditions; T = baseline temperature conditions; TOT = thermal-stress tolerance; 

TOW = water-stress tolerance; CN = interspecific competition for soil nitrogen; CW = interspecific 



competition for water; N = soil nitrogen content; pH = soil acidity.  



Supplementary Figure 4: Spatial correlograms computed from the climatic debt and residuals of 

the PLS models. (a) Results for the PLS1 model. (b) Results for the PLS2 model. (c) Results for the 

PLS3 model. (d) Results for the PLS4 model. Black and white dots are mean values of the Moran's I 

index computed on the climatic debt and the model residuals (n = 5,000 bootstraps), respectively. Error 

bars show 95% confidence intervals. The red dotted line depicts the threshold of spatial autocorrelation 

significance (i.e. I = 0.05). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 5: Map of the local standard deviation of the observed temperature lag 

(dT) in plant communities. dT is computed as the difference between the temperature conditions 

(CrT) and the bioindicated temperatures (FrT) from the forest herbaceous plant communities. The map 

shows standard deviation values in a 10 km grid (i.e. the same grid used in Fig. 4) computed from the 

5,000 subsamples used to fit the PLS0 model. The standard deviation ranges from 0 to 4°C across 

France and is materialized by a color gradient ranging from light red to dark red (a detailed color scale 

is provided to the right of the map). White and gray pixels are areas without forest territory and without 



data, respectively. 

  



 

Supplementary Figure 6: Ecological explanation of the effect of temperature conditions on the 

climatic debt. (a) Insufficient recovery of the climatic debt by the regional species pool in warm 

conditions. For each floristic survey (n = 67,289), the temperature lag between maximal temperatures 

bioindicated from the species pool occurring within 10 km radius of the focal survey (FrT regional 

species pool) and temperatures observations (CrT) are computed, and its curvilinear relationship (solid 

blue lines: R² = 0.63; comparison to null model through F-test: P < 0.00001; comparison to linear 

model through F-test: P < 0.00001) with baseline temperature conditions is plotted. The climatic debt 

increases in warm conditions demonstrating that the regional species pool cannot totally counteract the 

climate warming in such conditions by providing climate-adapted species to local communities. FrT 

regional species pool is the hottest FrT value that we expect considering the regional species pool (i.e. 

the set of plant species found within a 10 km radius around the focal community and is considered as 

the set of species from which the focal community has been assembled in the field). It was computed 

for each plant community as the FrT value corresponding to 97.5% of the distribution of bioindicated 

temperatures achieved by conducting 3,000 permutations in species assemblage from the regional 

species pool. Every floristic survey located above the red dotted lines (i.e. temperature lag = 0) is in 



climatic debt situation. (b) Temperatures decrease with elevation. The temperatures at the scale of the 

French metropolitan territory is highly dependent to the topography (solid blue lines: slope = -172, R² = 

0.68; comparison to null model through F-test: P < 0.00001; n = 67,289). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 7: Relationship between the regional bioindicated temperatures and light 

availability in forest stands. The figure shows a decrease of gain in warm-adapted species from the 

regional species pool along light availability gradient in the forest stands. The solid blue line represents 

the significant linear relationship (slope = -0.15, R² = 0.02; comparison to null model through F-test: P 

< 0.00001). For each floristic survey (n = 67,289), the bioindicated temperature difference between 

maximal temperatures bioindicated from the species pool occurring within 10 km radius of the focal 

survey (FrT regional species pool) and temperatures bioindicated from the floristic assemblage 

observed in the focal survey (FrT) was computed in order to assess the potential gain in warm-adapted 

species immigrating from the regional species pool. The Ellenberg light index is a proxy of light 



availability in forest stands which increases with opening forest. Every floristic survey located above 

the red dotted lines (i.e. bioindicated temperature change = 0) shows a potential gain in warm-adapted 

species from the regional species pool which could participate to the decrease of the climatic debt in 

forest plant communities. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 8: Map of the density of floristic surveys available across France. On 

average, 12 surveys (± 20 st. dev.) were available per 100 km² area. Across France, n = 67,289 surveys 

were available in total. The number of floristic surveys per 100 km² area ranges from 1 to 660 across 

France and is materialized by a color gradient ranging from light green to dark blue (a detailed color 

scale is provided to the right of the map). White and gray pixels are areas without forest territory and 

without floristic survey, respectively.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 9: Validation of the climate model predicting the annual precipitations. R² 

= 0.83 and RMSD = 132 mm for 17,865 independent precipitation observations sampled between 1965 

and 2008. The spatial distribution of the 755 meteorological stations used for the validation is shown 

on the top left of the figure. The green line represents the perfect correspondence between observations 

and predictions (y = x). The gray scale which colors filled circles depicts an increasing gradient of 

observation number. 



 

Supplementary Figure 10: Validation of the models predicting soil chemistry conditions through 

bioindication. (a) Soil acidity predictions (pH). (b) Soil C:N ratio predictions. Both soil pH (RMSD = 

0.9) and C:N ratio (RMSD = 3.1) models are validated on the same 254 soil observations which are 

mapped on the bottom right of the panel (a). The green line represents the perfect correspondence 

between observations and predictions (y = x). The gray scale which colors filled circles depicts an 

increasing gradient of observation number. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 11: Mean annual temperatures near the ground under and without forest 

canopy. Both temperatures were computed from the microclim model for a subset of 45,806 floristic 

surveys (see Methods section in the main texte and Supplementary Methods). The red dashed and solid 

blue lines represent the perfect correspondence (y = x) and the linear trend between both temperatures 

(slope = 0.941, R² = 0.95; comparison to null model through F-test: P < 0.00001), respectively. 

 



Supplementary Figure 12: Map of the temperature heterogeneity in a 1 km² pixel across France. 

The temperature heterogeneity is computed as the standard deviation of the 2,500 m² mean annual 

temperatures between 1987 and 2008 inside a 1 km² pixel. Temperature heterogeneity ranges from 0 to 

22°C across France and is materialized by a color gradient ranging from white to red (a detailed color 

scale is provided to the right of the map). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 13: Validation of the high spatial resolution temperature model. This 

model predicts the annual mean temperature at 2,500 m² spatial resolution with high confidence (R² = 

0.93 and RMSD = 0.58°C for 13,620 independent temperature observations sampled between 1965 and 

2008). The spatial distribution of the 602 meteorological stations used for the validation is shown on 

the top left of the figure. The green line represents the perfect correspondence between observations 

and predictions (y = x). The gray scale which colors filled circles depicts an increasing gradient of 

observation number. 



 

Supplementary Figure 14: Step by step description of the computation of the distribution conservatism index (DC).



Supplementary Figure 15: Step by step description of the computation of the niche conservatism 

index (NC). 5 



 

Supplementary Figure 16: Step by step description of the computation of the resource competition indices (CW and CN). Only the case 

of the interspecific competition for water resource (CW) is shown. 



Supplementary Figure 17: Non-random species assemblages determine extreme values of 

resource competition indices. (a) Interspecific resource competition for water (CW). (b) Interspecific 

resource competition for nitrogen (CN). 

 



 

 

Supplementary Figure 18: Temperature changes in time and space. (a) Temperature anomalies 

trend between 1987 and 2008 (i.e. the time scale of the study) in France. Temperature anomalies are 

computed as the difference between yearly temperatures (CrT) and baseline temperature conditions 

over the period 1965-1986 (T) from 180 meteorological stations (mapped in panel (b)). The red line 

represents the mean trend and the surface represents the standard deviation. (b) Spatial variation of the 

contemporary climate warming in France. Temperature change is computed as the difference between 

the temperature averages over the periods 1987-2008 and 1965-1986. Temperature change ranges from 

0.5 to 1.7°C across France and is materialized by a color gradient ranging from dark blue to red (a 

detailed color scale is provided to the right of the map). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 19: Temperature change between 1965 and 2008 (TC) is independent to 

baseline temperature conditions (T). The blue line represents the linear trend (slope = 0.0038, R² = 

0.0003, n = 67,289 observations). 



 

 
Supplementary Figure 20: Temporal change in the relationship between climatic debt (dT) and 

temperature conditions (T). (a) The relationship for the period 1975-1985 (i.e. before the 

contemporary climate change and over the period of the model calibration) (slope = 0.075, R² = 0.102, 

n = 2,987 plots). (b) The relationship for the period 1987-2008 (slope = 0.326, R² = 0.3, n = 67,289). 

The blue lines represent the linear trends. 



 
Supplementary Figure 21: Impact of baseline temperature conditions on the spatial 

autocorrelation. The figure shows spatial correlograms computed on residuals of PLS0 models 

accounting (white dots) and not accounting (black dots) for the effect of baseline temperature 

conditions (T) on the climatic debt. Mean values (dots) and 95% confidence intervals (error bars) are 

shown.



Supplementary Tables 

Supplementary Table 1: Statistics of the parameters fitted in the PLS0 model. 

Factor Code 
R²  Slope value 

Average CI95%  Average CI95% p-value 

Baseline temperature conditions T 0.148 [0.13; 0.167] 0.707 [0.659; 0.753] 0

Contemporary temperature change TC 0.094 [0.077; 0.11] 0.386 [0.35; 0.421] 0 

Baseline precipitation conditions P 0.047 [0.038; 0.056] -0.010 [-0.054; 0.034] 0.328 

Contemporary precipitation change PC 0.002 [0.001; 0.004] -0.002 [-0.033; 0.031] 0.461 

Road proximity RP 0.002 [0; 0.004] -0.021 [-0.042; 0.002] 0.036 

Human population density HPD 0.007 [0.004; 0.009] 0.012 [-0.009; 0.032] 0.127 

Temperature heterogeneity THET 0.019 [0.013; 0.026] 0.019 [-0.022; 0.06] 0.172 

Light availability in forest stand L 0.014 [0.011; 0.017] 0.084 [0.038; 0.131] 0 

Soil pH pH 0.009 [0.006; 0.013] 0.078 [0.029; 0.124] 0.001 

Soil nitrogen content N 0.009 [0.004; 0.015] 0.061 [0.012; 0.112] 0.007 

Thermal-stress tolerance TOT 0.018 [0.014; 0.024] 0.075 [0.023; 0.127] 0.002 

Water-stress tolerance TOW 0.037 [0.031; 0.045] 0.378 [0.326; 0.428] 0 

Thermal niche shift DC 0.011 [0.008; 0.014] 0.068 [0.018; 0.119] 0.003 

Species competition for water CW 0.014 [0.01; 0.018] -0.218 [-0.266; -0.167] 0 

Species competition for N-nutrition CN 0.012 [0.009; 0.015] 0.070 [0.027; 0.111] 0.002 

Species longevity LG 0.006 [0.004; 0.009] 0.061 [0.025; 0.096] 0 

Thermal niche tracking NC 0.019 [0.014; 0.024] -0.173 [-0.235; -0.11] 0

Past species habitat patches' proximity HP 0.024 [0.018; 0.031] -0.060 [-0.085; -0.035] 0 

Temporal changes in species habitat aggregation dHA 0.032 [0.024; 0.04] -0.034 [-0.068; 0.001] 0.028 

Time TIME 0.040 [0.033; 0.048]  -0.029 [-0.064; 0.004] 0.046 
Average values and 95% confidence intervals (CI95%) of R² and slope values were computed from the 5,000 bootstrapped PLS0 models. The 

p-values show the results of the bootstrap test for difference of slope values to 0. The significant factors are specified by bold p-values (i.e. 

p-value < 0.01).



Supplementary Table 2: Test of the difference between the effects estimated from the PLS0 

model and PLS1 to PLS4 models. 

Factor Code PLS1 PLS2 PLS3 PLS4 
Baseline temperature conditions T 0.444 0.279 0.313 0.293 
Contemporary temperature change TC 0.035 0.038 0.142 0.027 
Baseline precipitation conditions P 0.987 0.967 0.847 0.962 
Contemporary precipitation change PC 0.93 0.866 0.765 0.912 
Road proximity RP 0.763 0.793 0.901 0.559 
Human population density HPD 0.594 0.628 0.703 0.559 
Temperature heterogeneity THET 0.878 0.901 0.753 0.872 
Light availability in forest stand L 0.935 0.865 0.844 0.95 
Soil pH pH 0.97 0.973 0.897 0.984 
Soil nitrogen content N 0.953 0.94 0.965 0.874 
Thermal-stress tolerance TOT 0.616 0.675 0.53 0.449 
Water-stress tolerance TOW 0.949 0.968 0.727 0.949 
Thermal niche shift DC 0.934 0.962 0.921 0.884 
Species competition for water CW 0.851 0.792 0.797 0.687 
Species competition for N-nutrition CN 0.956 0.968 0.94 0.952 
Species longevity LG 0.959 0.931 0.688 0.569 
Thermal niche tracking NC 0.796 0.748 0.657 0.779 
Past species habitat patches’ proximity HP 0.876 0.754 0.863 0.96 
Temporal changes in species habitat aggregation dHA 0.818 0.861 0.284 0.769 
Time TIME 0.688 0.747 0.91 0.597 

No significant difference was observed whatever the variable considered (significance threshold α = 

0.01). PLS1, PLS2, PLS3 and PLS4 columns show the p-value of the bootstrap test (n = 5,000) 

comparing each effect (i.e. slope values) estimated from the PLS0 models to PLS1, PLS2, PLS3 and 

PLS4 models, respectively. 



Supplementary Table 3: Uncertainty in explanatory variables and its effect on parameter 

estimations.  

variable n 
uncertainty 

(variance ratio) 
PLS0's 

slope (b*)
corrected 
slope (b) 

b-b* 

T 180 0.967 0.707 0.731 0.024 
TC 3,960 1.05 0.389 0.367 -0.022 
P 429 1.073 -0.01 -0.009 0.001 

PC 9,438 1.047 -0.002 -0.001 0.001 
pH 254 1.115 0.078 0.070 -0.008 
N 254 1.432 0.061 0.043 -0.018 

The uncertainty in variable computation is assessed by the ratio between variances in true observations 

and estimation1. Regression dilution impacts a variable when the ratio value is less than 0, which leads 

to underestimate parameters in regression. The impact of uncertainty on parameter estimation can be 

assessed through the comparison of original regression parameter fitted in the PLS0 model (b*) and its 

correction (b) accounting for uncertainty (b* = b x uncertainty1). n is the number of observations used 

to compute the uncertainty. The definition of variables is available in Table 1 and in  Supplementary 

Data 1.  

 



Supplementary Table 4: Test of the difference between the effects estimated from the PLS3 and 

PLS4 models.  

Factor Code p-value 
Baseline temperature conditions T 0.939 
Contemporary temperature change TC 0.791 
Baseline precipitation conditions P 0.524 
Contemporary precipitation change PC 0.830 
Road proximity RP 0.657 
Human population density HPD 0.934 
Temperature heterogeneity THET 0.888 
Light availability in forest stand L 0.843 
Soil pH pH 0.800 
Soil nitrogen content N 0.820 
Thermal-stress tolerance TOT 0.920 
Water-stress tolerance TOW 0.729 
Thermal niche shift DC 0.868 
Species competition for water CW 0.875 
Species competition for N-nutrition CN 0.841 
Species longevity LG 0.062 
Thermal niche tracking NC 0.905 
Past species habitat patches’ proximity HP 0.847 
Temporal changes in species habitat aggregation dHA 0.606 
Time TIME 0.621 

No significant difference was observed whatever the variable considered (bootstrap test for difference 

in slopes values between PLS3 and PLS4 models, significance threshold α = 0.01, n = 5,000).



Supplementary Table 5: Data used to run the microclim model. 

Variable 
category 

Parameter 
Type of 

data 
Original resolution Final resolution Source 

Spatial Time Spatial Time 

climate 
conditions 

mean air temperature model 1 km2 monthly from 1987 to 2008 [2,3] 

minimum air temperature model 0.5° (~2120 km²) monthly from 1987 to 2008 1 km² CRU TS v. 3.23 [4] 

maximum air temperature model 0.5° (~2120 km²) monthly from 1987 to 2008 1 km² CRU TS v. 3.23 [4] 

rainfall model 1 km² monthly from 1987 to 2008 [2,3] 

rainy days model 10' (~2004 km²) 
monthly average for 1961-1990 

period 1 km² CRU CL v. 2.0 [5] 

relative humidity model 10' (~2004 km²) 
monthly average for 1961-1990 

period 1 km² CRU CL v. 2.0 [5] 

cloud cover model 0.5° (~2120 km²) monthly from 1987 to 2008 1 km² CRU TS v. 3.23 [4] 

soil 
conditions 

soil moisture model 1 km² monthly from 1987 to 2008 [2,3,6] 

soil class model 1 km² 
average conditions over the past 

50 years SoilGrids1km [7] 

soil clay content model 1 km² 
average conditions over the past 

50 years SoilGrids1km [7] 

soil bulk density model 1 km² 
average conditions over the past 

50 years SoilGrids1km [7] 

topography 

altitude model 1 km² 
computed between 1987 and 

2001 
BD ALTI® 

(http://professionnels.ign.fr/bdalti) 

slope model 1 km² 
computed between 1987 and 

2001 
BD ALTI® 

(http://professionnels.ign.fr/bdalti) 

aspect model 1 km² 
computed between 1987 and 

2001 
BD ALTI® 

(http://professionnels.ign.fr/bdalti) 

hillshade model 1 km² 
computed between 1987 and 

2001 computed from BD ALTI® 

forest 
description 

shading canopy observation 625 m² date of the floristic observation IGN-IFN database [8] 

canopy height observation 225 m² date of the floristic observation     IGN-IFN database [8] 

Only the variables which differ from the default parametrization of the microclim model are listed in the Table. Original and final resolutions 

define spatial and temporal resolutions of the data provided by the source and used to parametrize the model, respectively. Only the final 



spatial and/or temporal resolutions are mentioned when a variable is transformed. References of data are given in brackets in the source 

field. 

 



Supplementary Table 6: List of exotic tree species considered. 

Species n 
Abies grandis 273 
Abies nordmanniana 84 
Acer negundo 33 
Aesculus hippocastanum 136 
Ailanthus altissima 13 
Cedrus atlantica 419 
Cupressus sempervirens 28 
Juglans regia 1,068 
Larix kaempferi 140 
Liriodendron tulipifera 3 
Picea sitchensis 258 
Pinus nigra 1,915 
Pinus nigra subsp. nigra 478 
Pinus strobus 78 
Populus robusta 0 
Populus trichocarpa 1 
Populus x-canadensis 208 
Pseudotsuga menziesii 2,285 
Quercus cerris 35 
Quercus palustris 8 
Quercus rubra 422 
Robinia pseudoacacia 2,422 
Sorbus x-intermedia 0 
Tsuga heterophylla 6 

n = species occurrence in the database. 



Supplementary Notes 

Supplementary Note 1: Baseline temperature conditions matter to explain the climatic debt.  

Circularity issues are observed in a model when one or more explanatory variables (Xi) are involved in 

the computation of the dependent variable (Y), or when similar data are used to compute both the Xi 

variable(s) and the Y variable. In the present study, this situation does not occur between the climatic 

debt (dT) and the set of explanatory variables investigated, notably the baseline temperature conditions 

(i.e. annual mean temperature during 1965-1986, T). Indeed, the climatic debt (dT = CrT – FrT) is not 

computed from T but from the difference between the yearly interpolated temperature (CrT) and the 

floristically reconstructed temperature (FrT) over a completely different time period (1987-2008).  

 Despite CrT is being related to T due to high geographic and topographic constraints on 

temperature conditions3, both variables differ in time due to the yearly anomalies that exist between 

yearly temperature conditions over 1987-2008 and baseline temperature conditions averaged over 

1965-1986 (Supplementary Fig. 18a). Both variables also differ in space because climate warming 

between 1965-1986 and 1987-2008 is not uniform across the French territory (Supplementary Fig. 

18b). These spatio-temporal differences between T and CrT limit any circularity issue between dT and 

T. 

 Circularity between Y- and Xi-variables is a modelling issue if it leads to a strong relationship 

between these two set of variables. However, circularity does not necessarily imply any relationship 

between variables. For instance, we observed no relationship between climate warming (TC) and 

baseline temperature conditions (T) (R² = 0.0003; Supplementary Fig. 19) while both variables can be 

considered as circular (TC = CrT – T). Indeed, climate has warmed independently to baseline climate 

conditions in France. It means that even in a case of circularity observed between variables, circularity 

is not necessarily an issue if it does not lead to high correlation between variables. 

 Moreover, we consider that the relationship found between dT and T during the studied period 

(1987-2008) has an ecological meaning. Under the assumption that forest plant communities are 



reshuffled as fast as the temperature rises, then we should not expect any change, over time, in the 

relationship between dT and T. Here, however, we observed that the slope of the relationship increases 

from 0.075 during the 1975-1985 period to 0.326 during the 1987-2008 period (comparison of slope 

values through Student's t-test: P < 0.0001; Supplementary Fig. 20). This result demonstrates that the 

response of forest plant communities to the contemporary climate change varies across the French 

territory in accordance to the baseline temperature conditions. Warmer is the baseline climate 

conditions higher is the climatic debt, likely due to a deficit of warm-adapted species within the 

regional species pool (see the Results section in the main text for more details). Moreover, such an 

ecological pattern confirms previous results which demonstrated that lowland forest plant communities 

(observed in warmer conditions than highland forest plant communities) are lagging more behind 

climate change than highland forest plant communities2. 

 Finally, we included baseline temperature conditions as an explanatory variable in our 

modelling framework because it captures a large amount of the spatial autocorrelation signal observed 

in the climatic debt. Indeed, we observed that a positive spatial autocorrelation signal remains in the 

first distance classes of the model residuals when baseline temperature conditions are not accounted for 

(Supplementary Fig. 21). Not considering this variable in models could have strong consequences on 

the model outputs, notably by incorporating a bias and inverting the relationships fitted by the PLS 

regression9,10. 

 All these arguments justify the use of the baseline temperature conditions as an important 

explanatory variable to explain the climatic debt. 

  



Supplementary Methods 

Modeling approach to infer temperature from the floristic assemblage. 

Our modeling approach is based on a transfer function that relates species composition within floristic 

assemblages to temperatures. This approach is similar to transfer functions commonly used in 

paleoecological studies which relate pollen (for instance) assemblages to temperatures in order to 

reconstruct past climatic conditions11-13. Our transfer function combined weighted averaging partial 

least squares14 (WA-PLS) and Breiman’s random forest15 (BRF) regressions to predict temperatures 

from the species assemblage of each floristic survey at a given location and year (hereafter, floristically 

reconstructed temperatures, FrT). Using BRF regression techniques in combination with WA-PLS 

allows the non-linearity in species temperature relationships and species dependences to be accounted 

for. 

A training data set was used to calibrate the model for inferring FrT. The 2,987 floristic surveys 

included in the training data set were sampled during 1975-1985 (i.e. before the warm period of 1987–

2008) in order (i) to avoid bias due to plant responses to climate change in the model and (ii) to fit the 

model on a relatively stable climatic period assuming an equilibrium state between plant and 

temperature conditions. This assumption was verified by the absence of climatic debt observed in the 

French forest plant communities between 1965 and 19862. The floristic surveys were selected to be 500 

m apart at least (to minimize spatial autocorrelation issues during model calibration). To ensure a good 

model fit, and to avoid misidentification issues of rare species, we focused on the most common 

herbaceous species (i.e. frequency ≥ 5 occurrences) and floristic surveys that were composed of at least 

5 of these species. To further avoid misidentification issues, we mostly focused on the species level 

(except for 25 common and non-problematic sub-species; Supplementary Data Set 3). A total of 760 

herbaceous species from 61 phylogenetic families were selected for model calibration ( Supplementary 

Data 3). To avoid overprediction from our model, the set of 67,289 floristic surveys used to investigate 

the climatic debt in the present study followed the same sampling criterion as the training data set. 



 Using the training data set, we first calibrated a WA-PLS model that linked the floristic 

assemblage (floAss; i.e. the X-variables) of each of the 2,987 floristic surveys with the corresponding 

temperatures (CrT; i.e. the Y-variable) predicted from a climate model (see the Methods section in the 

main document) at the year and location of the floristic inventory: CrT = f(floAss) (model 1). WA-PLS is 

a powerful training procedure that has already been successfully used in pollen analyses to reconstruct 

past climatic conditions11,12. It is an improvement of the Weighted Averaging method that used the 

residual correlations in the species data sets, and is based on a multi-component analysis termed partial 

least squares regression14,16. We used the WA-PLS method as a linearity filter of the plant species-

temperature relationship. A three-component WA-PLS model was selected on the basis of its low 

standard deviation of prediction error (SD = 1.02°C and 1.09°C for the training and validation [n = 

5,136 independent surveys] data sets, respectively), low bias (mean of prediction error [FrT - CrT] = 

0.02°C and -0.06°C for the training and validation data sets, respectively), high coefficient of 

determination between observed and predicted values (R² = 0.82 and 0.79 for the training and 

validation data sets, respectively), and the smallest number of ‘useful’ components13. We subsequently 

used the residuals resM1 of this WA-PLS model to calibrate a new floristic model based on floAss: 

resM1 = g(floAss) (model 2). We fitted this correlation with BRF regression techniques that incorporate 

interactions between plant species and the non-linear relationship between species and temperature. 

BRF is a non-parametric model that does not require the specification of a functional form, and 

provides good predictive accuracy without overfitting the data15. The BRF algorithm fits an average 

model from a collection of regression trees (5,000 in the present study). Each tree integrates a defined 

number of explanatory variables, which are randomly selected (fixed to 40 out of the 760 species, 

here). The BRF model explained 90% and 23% of the residual variation in the training and validation 

data sets, respectively. Finally, we combined the predictions of the WA-PLS and BRF models to infer 

the annual mean temperature provided from the floristic assemblage: FrT = model 1 - model 2. This 

original modeling approach significantly improved the relationship between mean annual temperatures 



and floristic assemblages (R² reached 0.95 and 0.83 in the training and validation data sets, 

respectively) and reduced the error of predictions (in the training data set: median value = -0.31°C, 

CI95% = [-1.06; 0.1], Wilcoxon paired signed-rank test: P < 0.0001; in the validation data set: median 

value = -0.1°C, CI95% = [-0.66; 0.32], Wilcoxon paired signed-rank test: P < 0.0001) compared to the 

initial WA-PLS model. 

 All the computation were conducted on the R freeware17 using both pls18 and randomForest19 

R packages. 

 

Method to infer the temperature buffering due to canopy cover.  

Climate data used in the present study are based on interpolation methods2,3 that infer climate 

conditions for each 1 km² (see descriptions of CrT, T, P, TC and PC variables in the Methods section) 

or 2,500 m² (see description of THET variable in the Methods section) spatial unit of the entire French 

territory. Although these interpolation methods account for the general cooler temperature observed in 

forest ecosystems than in open habitats for instance2,3, such methods do not account for the local effect 

of forest canopy on sub-canopy temperature conditions20,21. Such local conditions are important to 

consider because sub-canopy temperatures near the ground define the climate really perceived by 

understory plants22. Considering the local climate or microclimate conditions when the impact of 

climate change on animal or plant species is investigated are increasingly underlined23. Canopy cover 

filters solar radiation penetrating inside the forest stand, and thus buffers (at least partly) the exposure 

of understory plant species to climate warming3,24,25.  

 In the absence of direct measurements of sub-canopy temperatures for each of the 67,289 

surveyed plant communities, we inferred sub-canopy temperature conditions from the microclim 

model26. This model is a mechanistic model predicting hourly climate conditions (e.g. above-ground 

profiles of air temperature, soil temperature, air humidity and soil humidity) from the local 

environmental (notably shading by vegetation) and monthly macroclimate conditions. The microclim 



model has been validated for Australia27, and has been recently used to predict hourly baseline climate 

conditions throughout the world26. Here, we did not use these global predictions that we considered too 

coarse to be representative of the sub-canopy temperature conditions during the 1987-2008 period that 

we investigated. Instead, we ran the microclim model using forest stand characteristics (canopy cover 

and height) and climate conditions (estimated from spatio-temporal climate model2-5) observed and 

predicted, respectively, at the year and location of a subset of 45,806 floristic surveys (all from the 

IGN-IFN database8) for which all the data necessary to compute sub-canopy temperature conditions 

was available (Supplementary Table 5). Hourly in-situ temperature predictions near the ground (i.e. at 

0.1 m height) considering and not considering the observed canopy cover were computed for each 

month of the year of each floristic observation, and then averaged to achieve mean annual 

temperatures. We finally computed the temperature buffering effect due to canopy cover as the 

difference between the mean annual temperatures near the ground considering and not considering the 

canopy cover (Supplementary Fig. 11). 
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