Consolidating soil carbon turnover models by improved estimates of 1 belowground carbon input 2

3

Arezoo Taghizadeh-Toosi^{1,*}, Bent T. Christensen¹, Margaret Glendining² & Jørgen E. Olesen¹ 4

¹Aarhus University, Department of Agroecology, AU-Foulum, DK-8830 Tjele, Denmark 5

²Rothamsted Research, Department of Computational and Systems Biology, West Common, Harpenden, Herts 6 7 AL5 2JQ, UK

- *Corresponding author: Arezoo.Taghizadeh-Toosi@agro.au.dk 8
- 9

Supplementary online material 10

C-TOOL allometric equation 11

Allometric equations to calculate C inputs into the soil is described in Taghizadeh-Toosi et al. (2014) 12

- as part of the C-TOOL model and Keel et al. (2016). The amount of C (C_P) in dry matter yield (Y_{DM}) of 13
- the grain and straw is calculated as Equation 1, CC is a C concentration of 0.45 g g^{-1} in all crop parts: 14

15
$$C_P = Y_{DM} CC$$
 Equation 1

16 The aboveground carbon in crop residues (C_s) depends on winter wheat harvest index (HI = the ratio of

17 grain to total above ground biomass = 0.45) and is calculated as:

18
$$C_S = C_P/HI$$
 Equation 2

The amount of aboveground residues left after harvesting grain and straw (C_L) is calculated as the 19 difference between C_s and C_p (grain & straw). 20

21 $C_L = C_s - C_{p(grain)} - C_{p(straw)}$

Belowground C input from roots and rhizodeposition C_{iRE} is calculated as: 22

23
$$C_{iRE} = Cs/((1 - F_{RE}) - Cs)$$
 Equation 3

where F_{RE} root and rhizodeposition C (belowground C) as proportion of total C assimilation (F_{RE} = 24 0.25 for winter wheat). 25

The C-TOOL model has a topsoil (0-25cm) and a subsoil layer (25-100cm) to which C inputs are 26 distributed as follows: 27

$$28 C_{top} = C_L + F_{top} C_{iRE} Equation 4$$

- $C_{sub} = (1 F_{top}) C_{iRE}$ 29 Equation 5
- F_{top} is the proportion of belowground C deposited in the topsoil and is set to 0.7 for winter wheat. 30

Measurement of SOC in the Broadbalk experiment 31

SOC was calculated from measured % SOC and a standard soil weight of 2.88 x 10⁶ kg ha⁻¹ 0-23cm. The 32 1843 value was estimated, and the 1865 value calculated from total soil N content in 1865 and C:N ratio in 1893. 33 34 SOC measurements started in 1881, as total soil C minus CaCO₃-C, with analysis of air-dried finely ground 35 (0.354mm) soil. Samples were taken from the whole experiment up to 1966, then from the continuous wheat sections (sections 1, 6 and 9) only. Samples from 1881, 1893, 1914, 1936 and 1944 were re-analysed in 36 37 2001 – 4 for total C by combustion (LECO) and for CaCO₃-C by manometry; this method was also used for samples from 1992 onwards. For further details, refer to http://www.era.rothamsted.ac.uk/ 38 39 Broadbalk Soil Organic Carbon Open Access data.

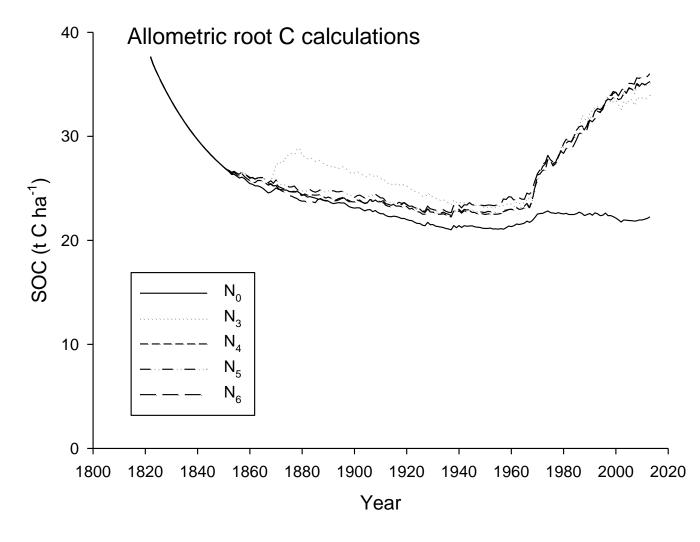
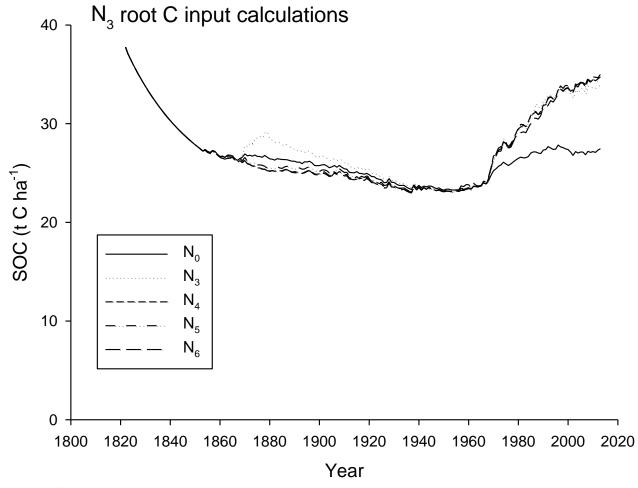
References

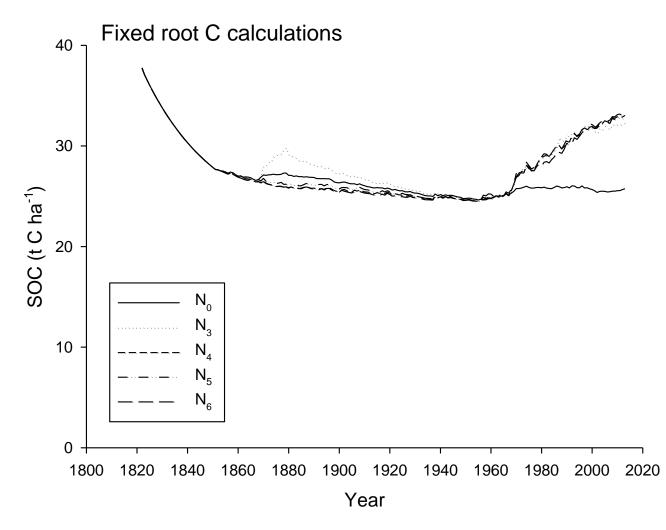
41	Taghizadeh-Toosi, A. et al. C-TOOL: A simple model for simulating whole-profile carbon storage in						
42	temperate agricultural soils. Ecological Modelling 292, 11-25 (2014b).						
43	Keel, S. G. et al. Large uncertainty in soil carbon modelling related to carbon input calculation method.						
44	Accepted in European Journal of Soil Science (2016).						
45							
46							
47							
48							
49							
50							
51							
52							
53							
54							
55							
56							

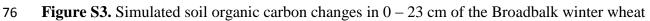
Table S1. Average measured and simulated SOC contents in 0 - 23 cm using three methods of root C

58 input calculations from 1987 to 2010.

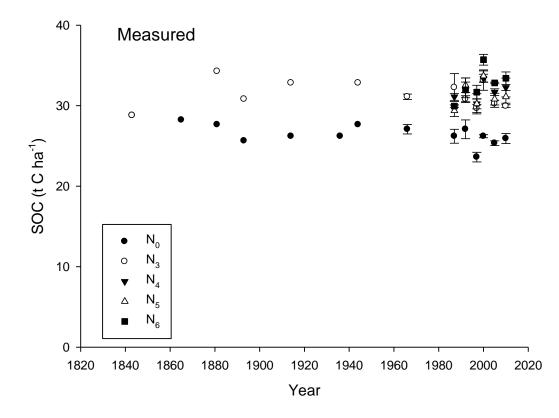
	N_0	N ₃	N_4	N ₅	N ₆
Average measured SOC contents 1987-2010 (t C ha ⁻¹)	25.73	31.01	31.78	31.30	32.59
Average simulated SOC (t C ha ⁻¹) contents 1987-2010 Allometric root C calculations	22.22	33.02	33.25	33.38	33.43
Average simulated SOC (t C ha^{-1}) contents 1987-2010 N_3 root C input calculations	27.27	33.04	33.10	33.16	33.00
Average simulated SOC (t C ha ⁻¹) contents 1987-2010 Fixed root C calculations	25.71	31.48	31.54	31.60	31.44


Figure S1. Simulated soil organic carbon changes in 0 – 23 cm of the Broadbalk winter wheat
experiment at Rothamsted, UK, allometric functions were used to calculate C input. See Table 1 for
details of N treatments.


70 71 Figure S2. Simulated soil organic carbon changes in 0 - 23 cm of the Broadbalk winter wheat

experiment at Rothamsted, UK, N_3 root C input calculations were used. See Table 1 for details of N 72


treatments. 73

experiment at Rothamsted, UK, fixed root C input calculations were used. See Table 1 for details of Ntreatments.

81

Figure S4. Measured soil organic carbon in 0 - 23 cm of the Broadbalk winter wheat experiment at Rothamsted, UK. 1843 value estimated, 1865 values calculated from total soil % N and soil C:N in 1893. The other values calculated from % SOC and a standard soil weight of 2.88×10^6 kg ha⁻¹. Whole experiment up to 1966, then continuous wheat sections (sections 1, 6 and 9) only (error bars = ± s.e.m., n = 2 for year 1987 and n =3 for year 1992, 1997, 2000, 2005 and 2010). See Table 1 for details of N treatments.