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Supplemental information 
 
Structure of the microbiome types 

16S rRNA gene libraries were rarefied to the lowest number of sequences across libraries 

(excluding one replicate of the TSA inoculum, which had <100 sequences after quality 

processing), which was 11,667 reads.  After sequence processing, 2323 operational taxonomic 

units (OTUs) (with singletons removed) were recovered in the three microbiome types prior to 

the incubation.  Of these, 2225, 785, and 520 OTUs were observed in the INIT, CO-M, and REG-

M microbiomes, respectively (Supplementary Fig. 3a). The cultured microbiome subsets shared 

405 OTUs (45%), while 802 OTUs (36%) were shared between the INIT microbiome and the 

two cultured microbiome subsets.  Our high estimates of cultivable bacterial diversity are 

undoubtedly inflated to some extent by remnant DNA in the irradiated soil, which still contained 

DNA from a wide range of taxa (Supplementary Fig. 4).  However, the amount of DNA extracted 

from uninoculated sterile soil was more than 20 times lower than what we obtained from our 

initial microcosms.  In addition, the number of OTUs observed in the crude oil + glucose media 

was more than three times higher than what we observed in the TSA media, which yielded the 

lowest number of OTUs (Supplementary Fig. 3), and certain phyla observed in the initial and 

gamma-irradiated soil were either absent or extremely rare in the extracts of the culture media 

(Supplementary Figs. 3-4).  We also found that the relative abundance of phyla and the most 

abundant OTUs (represented by the first two PCoA axes) in both the TSA media and the TSA + 

crude oil media was nearly identical (Supplementary Fig. 3), indicating that this easily accessed 

carbon source, and not petroleum toxicity, determined the dominant cultured bacteria.  This is in 

spite of the fact that petroleum hydrocarbons can have toxic effects on microbial cell walls (1, 2) 

and can force physiological tradeoffs in bacteria (3).  Although abundant bacteria in petroleum-
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contaminated soils are likely to be petroleum-tolerant, they may not metabolize petroleum 

contaminants when other easily-accessed carbon sources are available. 
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Supplementary Table 1. Mean concentrations of polycyclic aromatic hydrocarbon (PAH) 

compounds measured at the end of a 6-week incubation with crude oil from five replicates of 

each treatment and three replicate soil samples that were spiked with crude oil but not incubated 

(BASELINE).	
  

	
  
PAH compound CO-M REG-M INIT BASELINE 
            
Acenaphthene 0.1 ± 0 0.1 ± 0 0.1 ± 0 0.1 ± 0 
Acenaphthylene 0.1 ± 0 0.1 ± 0 0.1 ± 0 0.1 ± 0.1 
Anthracene 0.2 ± 0 0.2 ± 0 0.1 ± 0 0 ± 0 
Benzo[a]anthracene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Benzo[a]pyrene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Benzo[b]fluoranthene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Benzo[j]fluoranthene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Benzo[k]fluoranthene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Benzo[c]phenanthrene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Benzo[g,h,i]perylene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Chrysene   0.3 ± 0 0.3 ± 0 0.3 ± 0 0.1 ± 0.1 
Dibenzo[a,h]anthracene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Dibenzo[a,i]pyrene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Dibenzo[a,h]pyrene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Dibenzo[a,l]pyrene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Dimethyl-7,12-
benzo[a]anthracene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Fluoranthene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Fluorene   0.6 ± 0.1 0.6 ± 0 0.3 ± 0.1 0.3 ± 0 
Indeno[1,2,3-cd]pyrene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Methyl-3-cholanthrene 0 ± 0 0 ± 0 0 ± 0 0 ± 0 
Naphthalene 0 ± 0 0.4 ± 0 0 ± 0 0.7 ± 0.1 
Phenanthrene 1.2 ± 0.2 1.3 ± 0.1 0.5 ± 0.1 0.5 ± 0 
Pyrene   0.1 ± 0 0.1 ± 0 0.1 ± 0 0 ± 0 
Methyl-1-naphthalene 1.1 ± 0.1 1.8 ± 0.2 0.4 ± 0.3 1.5 ± 0.1 
Methyl-2-naphthalene 0.3 ± 0.2 1 ± 0.1 0.4 ± 0.2 1.9 ± 0.2 
Dimethyl-1,3-naphthalene 3.2 ± 0.3 2.7 ± 0.2 2.2 ± 0.7 3.3 ± 0.3 
Trimethyl-2,3,5-naphthalene 1.2 ± 0.1 0.9 ± 0.1 1 ± 0.1 0.7 ± 0.1 
            
	
  
	
  
	
  
	
  
	
  
	
  



	
   4	
  

Supplementary Table 2. Summary of sequence statistics from metagenomics sequencing on the 

Illumina HiSeq.  Values reported are means of 5 replicates from week 6 after crude oil addition 

(REG-M, CO-M, INIT) or of 3 replicates from the original unsterilized soil. 

 

a Percent of guanine and cytosine bases in sequences. 
b QC = quality control 
c FC = identified functional categories

 REG-M CO-M INIT Initial soil 
Predicted rRNA features 70781 55795 80550 62315 
Predicted protein features 3485623 3540681 5945513 7441989 
rRNA/protein 0.021±0.001 a 0.016±0.001 b 0.014±0.001 b 0.008±0.000 c 
GCa % 66.4 64.4 67.2 62.7 
Functional categories 1632898 1857715 2449697 2384184 
Sequences post QCb 10085426 7944149 9676980 8561399 
FCc/seq 0.16±0.01 b 0.23±0.02 a 0.25±0.01 a 0.28±0.02 a 
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Supplementary Table 3. Genera found in our dataset and in the Minnesota Biodegradation and 

Biocatalysis Database (MBBD) that are indicated as degrading hydrocarbons of C10 or greater in 

the MBBD. 

Phylum Class Order Family Genus 

Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae Corynebacterium 
Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Arthrobacter 
Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium 
Actinobacteria Actinobacteria Actinomycetales Nocardia Nocardia 
Actinobacteria Actinobacteria Actinomycetales Nocardiaceae Rhodococcus 
Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Nocardioides 
Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae Streptomyces 
Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 
Firmicutes Bacilli Bacillales Bacillus Bacillus 
Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus 
Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium 
Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingobium 
Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 
Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingopyxis 
Proteobacteria Betaproteobacteria Burkholderiales Variovorax Variovorax 
Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 
Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Stenotrophomonas 
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Supplementary Figure 1. (a) Schematic illustration of the experimental design. 1) Collected 

several kg of the top 20 cm of soil at a site in Varennes, QC, Canada; 2) 16S rRNA gene 

amplicon sequencing and shotgun metagenomic sequencing were performed on subsamples of the 

initial unsterilized soil; 3) a portion of the soil collected from Varennes was sterilised with a 

minimum gamma-irradiation exposure of 50 kGy; 4) dilutions of the initial soil were plated onto 

regular media and media containing crude oil, and incubated for 2, 7, 14, or 28 days (start dates 

synchronized so that all incubations ended on the same day); 5) the sterilized soil was used as the 

matrix in soil microcosms and was inoculated with all bacteria cultivated on regular media (REG-

M), all bacteria cultivated media containing crude oil (CO-M), or with the initial unsterilized soil 
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(INIT); 6) the inoculated microcosms were incubated for eight weeks to let the microbiomes 

stabilize before we added 6000 mg/kg of crude oil to each microcosm ; 7) after six weeks of 

incubation, microbiomes were examined with 16S rRNA gene amplicon sequencing and shotgun 

metagenomic sequencing, and total remaining hydrocarbons were quantified in each microcosm. 

(b) Plot showing microbiome stabilization, estimated by DNA quantification (ng/g soil) in two 

replicate microcosms per treatment at weeks 1, 2, 4 and 8.  By 8 weeks post-inoculation, 

microbiome growth (estimated by DNA quantification) had mostly levelled off, and was similar 

between microbiome types.  (c) Plot showing microbiome stabilization, estimated by DNA 

quantification (ng/g soil) in 10 replicate microcosms per treatment at weeks 0, 3, and 6 following 

the addition of crude oil and monoammonium phosphate.  Bars represent standard error.   
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Supplementary Figure 2. Comparison between TSA plates inoculated with a 10-1 dilution of the 

gamma-irradiated soil and the initial unsterilized soil, both 3 days and 2 weeks post-inoculation.  

Plates inoculated with the initial soil were covered in colonies, while no colonies were observed 

in plates inoculated with the irradiated soil. 
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Supplementary Figure 3. Principal coordinate analysis (PCoA) ordinations of Bray-Curtis 

dissimilarity at the OTU level. Shapes coloured in white represent the mean of replicate DNA 

extractions from the initial inocula.  For the REG-M and CO-M inocula, they represent the mean 

of the two and three media types used to produce them, respectively, as bacteria from each media 

type were added in equal amounts. Circles = INIT; triangles = REG-M; diamonds = CO-M; white 

= initial inocula; grey = week 0; red = week 3; black = week 6. 
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Supplementary Figure 4. Summary of microbiome subsets captured through isolation. A 

solution containing scraped bacterial colonies was added to gamma-irradiated, at which point 

DNA was extracted from soil immediately. (a) Proportional Venn diagram showing the number 

of OTUs found within the initial soil, regular media (TSA, M9 + Glucose), or crude oil-amended 

media (TSA + Crude oil, M9 + Glucose + Crude oil, M9 + Crude oil).  Histograms show the 

number of OTUs from each major bacterial phylum identified in the regular media, crude oil 

media, or both. (b) Total number of OTUs identified across the four replicate extractions of the 

initial soil (replicates pooled) and each medium after rarefying to the lowest number of reads 
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across treatments. (c) Relative abundance of sequences for the initial soil and each medium at the 

phylum level.  Note that most phyla are either absent or extremely rare in cultured media, 

showing that the influence of residual soil DNA on relative sequence abundance was minimal. 

The media belonging to the REG-M and CO-M sub-microbiomes are indicated by braces. (d) 

PCoA ordination of the five media types.  Ellipses enclose media containing either glucose or 

TSA, with or without crude oil added.  
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Supplementary Figure 5. (a) 16S rRNA gene taxonomy at the phylum level and (b) OTU count 

at 97% similarity for the gamma-irradiated soil.  Despite a large reduction in DNA from the 

irradiation process, a small amount of DNA remained. 
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Supplementary Figure 6.  Relative abundance of genera identified as putative degraders of C10 

or larger organic compounds (see Supplementary Table 5), based on their presence in the 

Minnesota Biodegradation and Biocatalysis Database (http://eawag-bbd.ethz.ch/) and inclusion in 

the degradation pathway of at least one organic compound of C10 or greater. 
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Supplementary Figure 7. Comparison of Level 1 functional annotations from the SEED 

subsystems database for the INIT treatment (initial soil reinoculated into gamma-irradiated soil) 

at week 6 and the initial source soil.  FDR-corrected P-values are reported, and only features that 

are significantly different in relative abundance (q<0.05) are shown.  Nitrogen and phosphorus 

metabolism, categories potentially influenced by monoammonium phosphate addition, are 

highlighted by asterisks. 
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Supplementary Figure 8. Comparison of Level 1 functional annotations from the SEED 

subsystems database for the REG-M treatment (regular media, i.e. TSA and glucose, reinoculated 

into gamma-irradiated soil) at week 6 and the initial source soil.  FDR-corrected P-values are 

reported, and only features that are significantly different in relative abundance (q<0.05) are 

shown.  Nitrogen and phosphorus metabolism, categories potentially influenced by 

monoammonium phosphate addition, are highlighted by asterisks. 
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Supplementary Figure 9. Comparison of Level 1 functional annotations from the SEED 

subsystems database for the CO-M treatment (media containing crude oil, i.e. crude oil + TSA, 

crude oil + glucose, crude oil alone, reinoculated into gamma-irradiated soil) at week 6 and the 

initial source soil.  FDR-corrected P-values are reported, and only features that are significantly 

different in relative abundance (q<0.05) are shown.  Nitrogen and phosphorus metabolism, 

categories potentially influenced by monoammonium phosphate addition, are highlighted by 

asterisks. 
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Supplementary Figure 10. Coinertia analysis of the 16S rRNA OTU tables and the functional 

gene annotations obtained in MG-RAST (SEED Subsystems annotations – Level 3).  (a) 

Coinertia ordination of paired 16S rRNA gene data (points) and functional gene annotations 

(arrowheads).  (b) Permutation test demonstrating that the coefficient of correlation between the 

16S rRNA gene data and functional annotation in this analysis (vertical line with dot) is greater 

than would be expected by chance.	
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Supplementary Figure 11.  Proportion of functional sequences projected to be related to 

Xenobiotics Biodegradation and Metabolism based on STAMP analysis of PiCrust projections 

from 16S rRNA gene data.  Although the proportion of sequences attributed to this category was 

lower in MG-RAST annotated metagenomes (for samples Initial soil, CO-M week 6, INIT week 

6 and REG-M week 6), the general pattern (e.g. highest mean in REG-M, lowest in Initial soil) 

was very similar. 
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Supplementary Figure 12.  The 10 most abundant OTUs in the Crude Oil + M9 media and the 

10 most abundant OTUs in each soil microbiome type after 6 weeks of incubation with crude oil 

and monoammonium phosphate (16 OTUs total because of overlap between the two).  OTUs are 

ranked by descending abundance in the Crude Oil + M9 media.  Genus affiliations are provided 

for each OTU.  Bars represent standard error. 
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Supplementary Figure 13. Percent degradation of polycyclic aromatic hydrocarbons (PAHs) 

after 6 weeks of microcosm incubation following the addition of crude oil and monoammonium 

phosphate (n=5).  Bars represent standard error.  Different letters over columns indicate 

significant differences between treatments based on a Tukey HSD post-hoc test following one-

way ANOVA.  INIT = sterile soil reinoculated with the initial soil; REG-M = sterile soil 

reinoculated with bacteria cultured on regular media; CO-M = sterile soil reinoculated with 

bacteria cultured on media containing crude oil.  
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