Supporting Material

For

Efficient and regioselective synthesis of β-GalNAc/GlcNAc-lactose by a bifunctional transglycosylating β-N-acetylhexosaminidase from *Bifidobacterium bifidum*

Xiaodi Chen Li Xu Lan Jin Bin Sun Guofeng Gu Lili Lu* Min Xiao*

State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, P. R. China

*Corresponding author. Fax: +86 531 88365128.

E-mail: lililu@sdu.edu.cn(L. Lu); minxiao@sdu.edu.cn (M. Xiao).

Table of Contents

1. Fig. S1 (SDS-PAGE of thirteen recombinant enzymes and TLC analysis of their	
catalyzed reaction mixtures)	S1
2. Fig. S2 (Effects of pH and temperature on BbhI activity and stability)	S1
3. Fig. S3–S8 (MS and NMR spectra of GalNAc-Lac)	S2
4. Fig. S9–S14 (MS and NMR spectra of GlcNAc-Lac)	S5
5. Fig. S15 (Putative 3D model of BbhI)	S8
6. Table S1 (Sequence analysis of thirteen β - <i>N</i> -acetylhexosaminidases)	S9

Fig. S1 SDS-PAGE analysis of thirteen recombinant β-*N*-acetylhexosaminidases purified from *E. coli* (A) and TLC analysis of the reactions by incubation of these enzymes with lactose as acceptor and *pNP*-β-GalNAc or *pNP*-β-GlcNAc as donors (B). Transglycosylation activities of the purified recombinant enzymes were screened by incubation of 0.5 mg/mL enzymes with 20 mM *pNP*-β-GalNAc or *pNP*-β-GlcNAc as donors and 200 mM lactose as acceptor at 37 °C for 10 min to 6 h. The reactions were stopped by heating at 100 °C for 10 min and then detected by TLC.

Fig. S2 Effects of pH (A) and temperature (B) on BbhI activity and stability. The optimal pH was assayed by incubating the enzymes with *p*NP- β -GlcNAc in 30 mM buffers from pH 2.5 to 12.0. The effect of pH on enzyme stability was determined by incubation in the same range at 4 °C overnight. The optimal temperature was measured at 30 to 70 °C for 10 min. Thermal stability was studied by assessing enzyme activity after incubation at 30 to 70 °C for 30 min. Data points represent the means ± S.D. of three replicates.

Fig. S3 MS spectrum of GalNAc β 1-3Gal β 1-4Glc (M_r 545).

Fig. S4 ¹H NMR spectrum of GalNAc β 1-3Gal β 1-4Glc.

Fig. S5 ¹³C NMR spectrum of GalNAc β 1-3Gal β 1-4Glc.

Fig. S6 COSY spectrum of GalNAcβ1-3Galβ1-4Glc.

Fig. S7 HSQC spectrum of GalNAc β 1-3Gal β 1-4Glc

Fig. S8 HMBC spectrum of GalNAcβ1-3Galβ1-4Glc

Fig. S9 MS spectrum of GlcNAc β 1-3Gal β 1-4Glc (M_r 545).

Fig. S10 ¹H NMR spectrum of GlcNAcβ1-3Galβ1-4Glc.

Fig. S11 ¹³C NMR spectrum of GlcNAcβ1-3Galβ1-4Glc.

Fig. S12 COSY spectrum of GlcNAc β 1-3Gal β 1-4Glc.

Fig. S13 HSQC spectrum of GlcNAc β 1-3Gal β 1-4Glc.

Fig. S14 HMBC spectrum of GlcNAc β 1-3Gal β 1-4Glc.

Fig. S15 Putative 3D model of BbhI. Homology modelling of BbhI was performed with PHYRE2 (http://www.sbg.bio.ic.ac.uk/phyre2/), using the structure of *Bb*LNBase from *B. bifidum* JCM 1254 (PDB entry 4h04) as template. Colors from cyan to orange represent *N*-terminus to *C*-terminus.

Enzyme source	Signal peptide ^a	Transmembrane region ^b
	(Amino acid No.)	(Amino acid No.)
B. fragilis ATCC 25285		
BF0669	1–23	7–26
BF0953	Ν	Ν
BF1807	Ν	7–29
BF1811	Ν	Ν
BF4033	1–20	Ν
C. perfringens ATCC 13124		
CPF1103	Ν	Ν
CPF1238	Ν	Ν
CPF0184	1–30	13–35
CPF1487	1–35	1145–1167
CPF1473	Ν	Ν
B. bifidum JCM 1254		
BbhI	1–32	9–31, 1600–1622
BbhII	1–36	7–29, 1033–1055
BbhIII	Ν	Ν

Table S1 Sequence analysis of thirteen β -N-acetylhexosaminidases

N, no signal peptide or transmembrane region

a, Signal peptide was predicted using online tools (http://www.cbs.dtu.dk/services/SignalP/).

b, Transmembrane region was predicted using online tools (http://www.cbs.dtu.dk/services/TMHMM/)