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An	interesting	prediction	of	the	old	model	is	that	there	is	non-monotonicity	

in	the	signal	discriminatory	capabilities	of	the	network	as	a	function	of	the	ZAP70	
binding	kinetics	(Figure	S3/S4).	In	other	words,	if	we	fix	a	binding	rate	for	ZAP70	
to	phosphorylated	ITAM	and	vary	the	unbinding	rate,	we	will	see	the	signal	
discrimination	increase	for	intermediate	values	and	then	decrease	when	the	off	rate	
becomes	too	large.	To	calculate	signal	discriminatory	capability	of	the	null	model	
over	a	wide	range	of	ZAP70	binding	kinetics,	we	use	as	a	metric	of	discriminatory	
capability	the	area	under	the	ROC	curve6	(Receiver	Operator	Characteristic)	based	
on	plots	of	(probability	of	detection,	probability	of	false	alarm)	for	various	choices	of	
a	level	of	phosphorylated	ZAP70	which	sets	the	threshold	for	activation.	We	can	
think	of	this	as	a	plot	of	(PD,PF)	for	every	possible	deterministic	decision	rule	a	T-
cell	can	make,	where	a	decision	rule	is	uniquely	defined	by	a	threshold	of	activated	
ZAP70	that	must	be	reached	before	an	immune	response	is	mounted.		

This	result	at	first	glance	may	seem	strange	since	the	McKeithan	model	of	
kinetic	proofreading	suggests	that	faster	off	rates	should	improve	discriminatory	
abilities.	However,	the	important	point	is	that	the	McKeithan	model	actually	
predicts	that	a	larger	difference	in	off	rate	between	self	and	non-self	improves	
discrimination.	By	increasing	the	off	rate	of	ZAP70,	we	are	effectively	making	it	
harder	for	T	cells	engaged	with	self	and	non-self	peptides	alike	to	reach	a	state	of	
activated	ZAP70.		

An	intuitive	explanation	for	this	result	is	that	when	the	ZAP70	off	rate	is	too	
low,	as	soon	as	it	binds	it	is	likely	to	remain	bound	long	enough	to	get	
phosphorylated	regardless	of	whether	or	not	the	T-cell	is	exposed	to	self	or	non-self	
antigen.	Thus,	activated	ZAP70	concentrations	in	the	presence	of	self	or	non-self	
may	be	similar.	If	the	ZAP70	off	rate	is	too	high,	neither	self	nor	non-self	peptide	can	
result	in	ZAP70	activation,	so	again	the	activated	ZAP70	concentrations	in	both	
cases	are	the	same	(very	low).	Thus,	the	model	predicts	an	intermediate	regime	of	
ZAP70	kinetics	that	maximizes	signal	discrimination	(FIGURE	S3).		We	note	that	
this	simple	and	intuitive	result	can	be	captured	by	a	discrete-space	Markov	chain.	
	 To	explain	the	non-monotonicity	in	the	signal	discrimination	capability	of	the	
old	model	as	a	function	of	ZAP’s	unbinding	rate,	we	built	a	very	simple	four	state	
continuous	time	Markov	chain	to	represent	an	individual	TCR.	The	four	states	
include	a	TCR	unbound	to	pMHC	(state	1)	which	transitions	to	TCR-pMHC	complex	
(state	2).	When	the	TCR-pMHC	complex	has	formed,	Zap70	can	bind	(state	3).	It	is	
possible	for	pMHC	to	unbind	after	ZAP70	has	bound,	leading	to	state	4,	which	has	
Zap70	bound	to	a	TCR	with	no	pMHC	present;	ZAP70	can	also	unbind	from	the	TCR-
pMHC	complex	before	the	pMHC	does,	leading	back	to	state	2.	We	use	state	3	as	a	
proxy	for	activated	T-cell	in	this	simplified	picture,	since	in	the	actual	T-Cell,	ZAP70	
must	be	bound	simultaneously	with	Lck	associated	coreceptor	for	activation.		
	 We	calculate	two	different	rate	matrices	for	self	and	non-self	by	using	the	
same	parameters	for	all	transitions	except	for	pMHC	off	rate,	which	is	chosen	to	be	
larger	in	the	case	of	non-self.	We	then	calculate	the	steady	state	distribution	by	
finding	the	kernel	of	the	rate	matrix.	The	steady	state	distributions	under	self	and	
non-self	allow	us	to	compute	P(activation|self)	and	P(activation|non-self),	where	
P(activation)	is	equivalent	to	the	steady	state	probability	of	the	markov	chain	



occupying	state	3.	A	plot	of	the	likelihood	ratio	as	a	function	of	ZAP70’s	off-rate		
shows	non-monotonicity	for	a	fixed	ratio	of	Koff(non-self)/Koff(self)	and	at	a	fixed	
Kon(Zap70)	(Figure	S1).		

To	ensure	that	the	non-monotonicity	is	seen	when	considering	metrics	
besides	just	the	likelihood	ratio,	we	also	calculated	the	mutual	information	between	
the	random	variables	S	the	signal={self,non-self},	and	R	the	response={activated	or	
not	activated}.	Calculating	the	mutual	information	requires	knowledge	of	the	prior	
probabilities	over	S={self,non-self},	but	the	channel	capacity	can	be	calculating	by	
maximizing	mutual	information	over	the	prior	probability.	The	channel	capacity	is	
zero	when	response	is	independent	of	signal	(i.e.	when	both	self	and	non-self	lead	to	
equal	odds	of	activation),	and	is	maximal	when	the	signal	is	a	deterministic	function	
of	the	input,	i.e.	when	p(activation|self)=0,	p(activation|non-self)=1	(in	which	case	
the	prior	probability	that	maximizes	the	information	is	50/50	over	self	and	non-
self).	The	channel	capacity	can	be	derived	by	writing	down	mutual	information	as	a	
function	of	p,	the	prior	probability	for	encounters	with	non-self	peptide,	and	
maximizing.	The	p*	maximizer	is	plugged	back	in	to	the	expression	for	mutual	
information	to	give:	

! !∗ = ℎ!!! − ℎ!(1− !!)
(1− !! − !!)

+ log 1+ 2(!!!!!)/(!!!!!!!) 	
where	e0=P(not-activated|non-self),	e1=P(activated|self)	(these	quantities	are	
derived	from	the	steady	states	of	the	Markov	chain)	,	and	h0,h1	are	entropies	of	a	
Bernoulli	random	variable	parametrized	by	e0,e1:	

ℎ! = −!! log !! − 1− !! log (1− !!)	
The	channel	capacity	is	non-monotonic	as	a	function	of	ZAP70’s	kinetic	off	rate	at	a	
fixed	on	rate	(Figure	S2).	

In	the	text,	we	calculated	the	AUROC	for	the	null	model	based	on	plots	of	
detection	probability	and	false	alarm	probability	for	various	thresholds.	To	quantify	
signal	discrimination,	we	must	choose	a	metric	that	is	agnostic	to	the	particular	
prior	probabilities	of	encountering	self	and	non-self,	since	such	priors	(though	
undoubtedly	skewed	towards	encounters	with	self)	vary	by	individual	and	are	most	
likely	not	stationary.	Almost	every	metric	of	binary	signal	discrimination	used	in	
decision	theory	takes	into	account	both	a	probability	of	detection	and	a	probability	
of	false	alarm.	The	probability	of	detection	in	our	model	is	the	probability	for	a	T-
cell	to	mount	a	response	in	the	presence	of	foreign	antigen,	while	the	probability	of	
false	alarm	is	the	probability	that	a	T-cell	incorrectly	activates	in	response	to	self	
pMHC.	A	decision	rule	could	be	deterministic,	in	which	case	it	takes	the	form	of	a	
sharp	threshold	above	which	the	T-cell	decides	to	mount	a	response	(in	our	case	the	
threshold	represents	a	sufficiently	high	concentration	of	phosphorylated	ZAP70),	or	
stochastic,	meaning	that	the	T-cell	does	not	always	respond	in	the	same	way	to	the	
same	concentration	of	phosphorylated	ZAP70,	but	responds	in	some	instances	and	
not	in	others.		

Determining	the	optimal	decision	rule	would	require	detailed	knowledge	of	
the	prior	probability	distribution	over	self/non-self	and	a	cost	function	that	
specifies	the	cost	of	various	types	of	mistakes	(namely,	not	detecting	foreign	
antigen,	and	incorrectly	responding	to	self).		In	this	case,	the	optimal	decision	rule	



on	the	part	of	a	T	cell	will	be	of	the	form	of	a	likelihood	ratio,	and	implies	that	the	
decision	to	mount	a	response	occurs	only	if	the	amount	of	activated	ZAP	exceeds	a	
threshold	that	is	a	function	of	the	prior	probabilities	and	cost	function.	This	leads	to	
the	Bayes	Least	Cost	decision	rule4.	(In	certain	cases	in	which	there	are	outcomes	
that	set	the	likelihood	ratio	equal	to	the	optimal	threshold,	a	randomized	decision	
rule	is	optimal).	If	one	does	not	know	the	prior	probabilities	but	is	instead	willing	to	
maximize	the	detection	probability	while	insisting	the	false	alarm	probability	
remain	below	a	certain	threshold,	the	Neyman-Pearson	lemma	states	that	the	
optimal	decision	rule	will	still	be	of	the	form	of	a	likelihood	ratio	with	its	own	
associated	threshold5.		

In	our	case,	it	is	not	clear	what	the	prior	probabilities	should	be	nor	do	we	
wish	to	specify	a	threshold	for	the	probability	of	false	alarm.	Thus,	we	instead	use	as	
a	metric	of	discriminatory	capability	the	area	under	the	ROC	curve6	(Receiver	
Operator	Characteristic)	based	on	plots	of	(PD,PF)	for	various	choices	of	a	level	of	
phosphorylated	ZAP70	which	sets	the	threshold	for	activation.	We	can	think	of	this	
as	a	plot	of	(PD,PF)	for	every	possible	deterministic	decision	rule	a	T-cell	can	make,	
where	a	decision	rule	is	uniquely	defined	by	a	threshold	of	activated	ZAP70	that	
must	be	reached	before	an	immune	response	is	mounted.	
	

Appendix	II.	
	 One	of	the	reasons	the	ZAP70-opening	model	(referred	to	in	the	text	as	the	
new	model)	has	a	discriminatory	advantage	over	the	old	model	is	that	the	
association	of	Lck	with	ZAP70	through	its	SH2	domain	provides	an	extra	degree	of	
stabilization	to	the	entire	complex,	and	the	effective	rate	at	which	any	species	leaves	
the	complex	is	slower	(Figure	S5).	Presumably	a	greater	degree	of	complex-
stabilization	will	lead	to	greater	discriminatory	advantages.		

To	calculate	the	effective	rate	at	which	various	species	leave	the	complex	
between	co-receptor,	TCR	and	pMHC,	we	built	a	discrete	space	continuous	time	
Markov	chain	for	a	single	complex,	calculated	the	mean	first	passage	time	(mfpt)	for	
various	species	to	exit	the	complex,	and	calculated	the	effective	rate	by	1/mfpt.	The	
complex	has	a	total	of	three	bonding	interactions,	namely	that	between	the	
coreceptor	and	pMHC	(interaction	1),	between	the	TCR	and	the	pMHC	(interaction	
2)	and	between	Lck	attached	to	the	coreceptor	and	Zap70	on	the	ITAM	(interaction	
3).		

The	states	of	the	Markov	chain	represent	the	various	interactions	that	are	
still	intact	(Figure	S6).	In	the	figure	S6,	blue	states	are	states	for	which	2	bonds	are	
still	in	tact,	and	red	states	are	those	for	which	only	one	bond	is	in	tact	(i.e.	one	
species	has	effectively	left	the	complex).	For	instance,	a	transition	from	(1,2,3)	to	
(1,2)	indicates	that	bond	3	has	broken	but	1,2	are	still	in	tact.	This	indicates	that	the	
pMHC-TCR	bond	is	still	in	tact	and	CD8	is	still	engaged	with	the	pMHC,	but	that	Lck	
is	no	longer	associated	with	ZAP70	through	its	SH2	domain.	At	this	point,	either	the	
Lck-ZAP70	bond	will	reform	(and	return	to	state	1,2,3),	or	bond	1	or	2	can	break.	If	
for	example	bond	1	breaks	next,	the	Markov	chain	exits	to	state	2,	meaning	that	CD8	
has	effectively	left	the	complex.	

As	an	example	of	how	we	can	use	this	Markov	chain	to	calculate	the	effective	
rate	at	which	any	species	will	leave	the	complex,	we	can	calculate	the	mean	first	



passage	time	for	the	Markov	chain	beginning	at	state	(1,2,3)	to	exit	to	any	of	the	red	
states.	Note	that	in	principle	this	can	happen	an	infinite	number	of	ways,	as	the	
Markov	process	can	bounce	between	any	of	the	blue	states	an	infinite	number	of	
times.	To	solve	for	the	mean	first	passage	times	summing	over	all	possible	paths,	we	
solve	a	standard	set	of	recursive	equations.	Let	!! 	indicate	the	mean	first	passage	
time	for	a	Markov	process	starting	in	state	i	to	exit	to	a	red	state,	and	!! 	be	the	total	
rate	of	leaving	state	i	(meaning	that	the	expected	time	to	leave	state	i	is	1/!!).	As	an	
example:	

!(!,!,!) = !!""!"! + !!""!"#$ + !!""!"# 	
The	recursive	equations	are	obtained	from:	

!! =
1
!!
+ !!→!!!

!
	

The	!!→! 	is	the	probability	to	transition	from	state	i	to	j,	and	is	obtained	by	dividing	
the	rate	of	transitioning	from	i->j	over	the	total	rate	of	leaving	state	i.	We	do	the	
calculation	assuming	that	on	rates	within	the	complex	are	the	same	as	those	in	the	
well	mixed	state.	For	instance,	the	rate	from	state	(2,3)	to	(1,2,3)	is	chosen	to	be	the	
on	rate	between	CD8	and	a	pMHC	that	would	be	recognized	if	CD8	and	pMHC	were	
not	bound	together	in	a	complex.	Undoubtedly	the	on	rate	within	the	complex	will	
be	much	higher,	and	therefore	the	effective	off	rates	from	this	calculation	are	likely	
to	be	conservative,	in	that	the	actual	effective	stabilization	of	the	complex	will	be	
much	greater	than	that	predicted	from	this	calculation.		
	 To	calculate	the	effective	rate	at	which	a	species,	for	instance	CD8,	leaves	the	
complex,	we	weight	the	rate	calculated	above	by	the	probability	that	CD8	leaves	
first.	This	is	calculated	in	a	similar	manner	as	before	by	a	recursive	set	of	equations.	
We	call	!! 	the	probability	that	the	Markov	chain,	beginning	in	state	i,	first	reaches	
the	red	state	corresponding	to	(2)	before	reaching	any	of	the	other	red	states.	The	
recursive	equations	are	

!! = !!→!!!
!

	
The	above	equations	are	solved	subject	to	appropriate	boundary	conditions:	
!! = 1,!! = !! = 0.	Combining	the	results	of	the	previous	calculations,	the	effective	
rate	at	which	CD8	leaves	the	complex	is	given	by	!(!,!,!)!(!,!,!).	What	we	find	is	that	
this	calculation	predicts	the	complex	will	be	enhanced	considerably	due.	The	
effective	off	rate	of	CD8	is	reduced	by	a	factor	of	roughly	4-10	for	the	range	of	
peptide	off	rates	considered	here.		We	thus	make	an	estimate	that	CD8	off	rates	
become	.25	the	values	considered	in	Appendix	IV	when	the	full	complex	is	in	tact.		
	

Appendix	III.	
To	account	for	the	fact	that	TCR	is	able	to	become	sufficiently	

phosphorylated	for	a	steady	state	proportion	of	ZAP70	binding,	but	ZAP70	is	not	
able	to	become	phosphorylated	by	Lck,	it	was	suggested	that	perhaps	kinetics	of	
ZAP70	are	fast.	Perhaps	ZAP70	unbinds	with	a	faster	rate	than	Lck	phosphorylation,	
and	therefore	Lck	diffuses	from	the	ITAM	before	it	is	able	to	phosphorylate	ZAP70.	
(We	note	that	the	corresponding	on-rate	of	ZAP70	would	also	have	to	be	high	
enough	for	a	steady	state	fraction	of	ZAP70	to	be	appreciably	bound).	An	immediate	



implication	of	this	model	is	that,	since	ZAP70	certainly	does	become	phosphorylated	
and	activated	upon	TCR	engagement	with	foreign	peptide-MHC,	the	kinetics	of	
ZAP70	must	be	different	in	the	presence	of	foreign	antigen	so	that	ZAP70	is	then	
able	to	remain	bound	long	enough	for	phosphorylation	by	active	Lck.		

One	way	to	account	for	this	is	to	postulate	two	sets	of	ZAP70	off	rates,	one	
off-rate	for	ZAP70	from	a	TCR	that	is	not	ligated	with	pMHC,	and	another	slower	off-
rate	for	ZAP70	from	TCR	that	is	ligated	with	pMHC.	This	will	result	in	ZAP70	
unbinding	faster	on	average	from	the	TCR	when	only	self	peptide	is	around	(since	
the	TCR	is	more	likely	to	be	un-ligated	due	to	the	low	binding	affinity	of	self	peptide)	
and	ZAP70	unbinding	slower	on	average	from	the	TCR	in	presence	of	foreign	
antigen.	We	note	that	there	is	not	significant	experimental	evidence	that	such	a	
difference	in	kinetic	off	rates	exists,	nor	is	there	a	molecular	mechanism	by	which	
this	can	be	explained.	However,	we	aim	here	to	explore	whether	or	not	such	a	model	
could	recapitulate	the	experimental	results	and	also	outperform	the	other	two	
models,	and	if	so,	can	it	do	so	in	a	parameter	regime	that	is	biologically	realistic.	

To	simulate	this	model,	we	hold	constant	the	ZAP70	kinetics	when	the	TCR	is	
ligated	(and	choose	these	kinetics	to	coincide	with	values	used	for	the	main	text	
calculations—see	APPENDIX	IV),	but	vary	the	second	off	rate	for	ZAP70	from	an	
ITAM	that	is	not	ligated.	What	we	find	is	that	the	non-monotonicity	described	for	the	
original	model	(FIGURE	S3/S4)	disappears.	That	is,	increasing	the	second	off	rate	
for	Zap70	from	non-ligated	ITAM	only	increases	the	discrimination	(FIGURE	
S7/S8).	The	kinetic	model	outperforms	the	discriminatory	capabilities	of	the	
original	model.	However,	we	also	see	that	the	kinetic	model	predicts	that	very	little	
ZAP70	will	be	bound	in	the	absence	of	agonist,	and	much	of	the	ZAP70	bound	is	still	
phosphorylated	(FIGURE	S9).	Therefore	the	kinetic	model	cannot	replicate	
experimental	results.	Note	that	Figure	S9	shows	results	for	model	of	TCR	signaling	
in	which	Lck	must	undergo	an	activation	step.		

We	also	find	that,	for	the	kinetic	model	to	outperform	the	original	model	in	
terms	of	signal	discrimination	requires	a	10-20x	difference	in	kinetic	off	rates	for	
ZAP70	from	ligated	and	non-ligated	TCR.		

We	also	compared	the	energetic	costs	for	both	the	kinetic	and	original	model	
at	steady	state	in	the	presence	of	only	self	peptide;	this	is	the	relevant	value	to	
compare	(as	opposed	to	energetic	consumption	in	the	presence	of	non-self,	or	some	
weighted	combination	of	the	two)	since	the	T-cell	will	spend	the	vast	majority	of	its	
time	exposed	to	endogenous	peptide.	What	we	find	is	that	increasing	the	second	off	
rate	monotonically	increases	the	energetic	consumption	over	the	range	of	values	
considered	(FIGURE	S10).		

An	intuitive	explanation	for	this	is	that	driving	up	the	second	off	rate	of	
ZAP70	leaves	the	ITAM	exposed	and	requires	more	frequent	phosphorylation	and	
dephosphorylation.	The	technical	explanation	is	that	dephosphorylation	of	ITAM	in	
the	absence	of	coreceptor	occurs	at	a	much	faster	rate	than	the	reverse	process,	
phosphorylation	of	ITAM	by	free	Lck	not	attached	to	coreceptor.	Increasing	the	
second	off	rate	of	ZAP70	and	leaving	ITAM	open	to	more	frequent	
dephosphorylations	means	that	a	greater	frequency	of	irreversible	reactions	must	
occur	at	steady	state,	leading	to	a	greater	energetic	cost.	On	the	other	hand,	in	the	
limit	of	very	strong	ZAP70	binding	affinity,	the	network	will	look	like	a	simple	birth	



death	process	tracking	the	number	of	phosphorylated	ZAP70.	Such	networks	are	at	
equilibrium	and	satisfy	detailed	balance,	meaning	they	require	no	energy	at	steady	
state.	This	suggests	that	the	kinetic	model	outperforms	the	original	model	in	
discrimination,	but	does	so	at	an	energetic	cost,	with	greater	discrimination	
requiring	greater	energetic	expenditure.		

	
Appendix	IV.	

To	simulate	the	protein	interaction	networks	outlined	above,	we	use	the	
Gillespie	algorithm	for	simulating	Markov	jump	processes1-3.	The	Gillespie	algorithm	
is	based	on	the	fact	that	time	intervals	between	chemical	reactions	are	exponentially	
distributed	with	a	rate	equal	to	the	sum	of	all	reaction	events	that	can	occur	given	
the	current	state	of	the	system	(namely,	the	copy	number	of	all	molecules	in	the	
simulation	volume).	The	system	is	updated	by	drawing	from	an	exponential	
distribution	to	determine	the	time	of	the	next	reaction,	and	a	multinomial	
distribution	to	determine	the	particular	reaction	that	occurred.		
	 Stochastic	simulations	of	the	membrane	APC	interface	are	carried	out	in	a	1	
micron	by	1	micron	simulation	box.	Simulations	are	carried	out	using	both	well-
mixed	and	diffusive	(spatially	resolved)	settings.	For	spatially	resolved	calculations,	
the	box	is	divided	into	10,000	boxes	of	.01	micron	squared	area.	Parameter	values	
listed	in	the	table	below	carry	‘bare’	units	of	1/s,	but	can	easily	be	converted	to	
conventional	units	of	micromolar	using	a	subvolume	edge	of	.01	micron.	Values	of	
k_on	in	the	below	tables	are	for	well	mixed	simulations.	For	spatially	resolved	
calculations,	these	must	be	multiplied	by	10,000.		
	 The	reaction	scheme	involves	TCR+pMHC+CD8	complex	formation.	Figures	
in	the	main	text	show	results	in	which	Lck	only	phosphorylates	at	a	single	rate,	and	
in	Figure	6	we	show	the	effect	of	modulating	the	amount	of	coreceptor	with	active	
Lck.	Calculations	have	also	been	done	allowing	Lck	to	be	initially	inactive,	and	
requiring	an	additional	step	of	Lck	activation	(Figures	S9-S12).	For	calculations	with	
an	Lck	activation	step,	we	allow	Lck	activation	when	CD8	is	in	the	complex,	and	
deactivation	occurs	only	off	of	the	complex.	Once	TCR	has	been	phosphorylated	
twice,	ZAP70	can	bind	to	the	ITAM.	After	binding,	ZAP70	undergoes	an	‘opening’	
step	(with	an	opening	rate	that	is	varied	in	the	main	text).	Once	open,	ZAP70	can	
become	activated	by	Lck.		
	 Note	that,	though	not	specified	below,	there	is	an	implicit	multiplication	of	2	
for	phosphorylation	events	of	TCR	that	are	not	phosphorylated	at	all,	and	for	
dephosphorylation	of	doubly	phosphorylated	ITAM.		
	
Table	1:	Reactions	and	rate	constants	used	
Reaction	 kon		 koff			 kcat				 Reference	
1.	TCR+pMHC	 .0052	 Varied	 	 7	
2.	TCR+CD8	 .1	 20	 	 7	
3.	Lck	activation	 	 	 1	 7	
4.	Phosphorylation	by	
basal/active	Lck	

	 	 .05/6.26	 7/8	

5.	Lck	deactivation	 	 	 .15	 7	



6.	ITAM	dephosphorylation	 	 	 .05	 7	
7.	Zap70	 .0075/Varied	 1/Varied	 	 	
8.	Diffusion	 	 	 50	 	
	
Table	2:	Initial	conditions	
Molecule	 Concentration	 Reference	
Ligand	(self+nonself)	 100	 9	
TCR	 700	 9	
CD8	 266	 9	
Zap70	 300		 9	
	
It	is	found	that	spatial	resolution	does	not	change	the	qualitative	results	of	the	
calculations.	All	figures	with	the	exception	of	Figure	S11	are	shown	for	well-mixed	
systems.	Figure	S11	(done	with	spatial	resolution)	demonstrates	how	the	
qualitative	trend	is	unchanged	when	including	diffusion.		
		

Appendix	V.	
	

Entropy	production/energy	consumption	is	calculated	by	keeping	a	running	
sum	of	the	natural	log	of	the	ratio	of	forward	reaction	propensity	over	reverse	
reaction	propensity	for	each	reaction	event	that	occurs.	By	reaction	propensity,	we	
mean	the	reaction	rate	constant	times	combinatorial	factors	related	to	protein	
number.	Due	to	reference	10,	it	is	shown	that	the	slope	of	the	time	average	of	this	
quantity	equals	the	rate	of	entropy	production	for	non	equilibrium	steady	states.	To	
calculate	entropy	production,	it	is	necessary	to	include	reverse	reactions	for	all	
involved	steps.	We	choose	rate	constants	to	be	sufficiently	small	for	reactions	not	
listed	above	that	should	not	occur	in	the	time	scales	of	a	single	trajectory	such	that	
they	are	not	observed	(for	instance,	the	phosphorylation	rate	by	free	Lck	not	
associated	with	coreceptor	is	chosen	such	that	we	do	not	observe	any	of	these	
reaction	events	in	the	course	of	a	single	trajectory—phosphorylation	by	free	Lck	
serves	as	the	reverse	reaction	to	dephosphorylation	of	a	TCR	not	associated	with	
CD8-Lck/pMHC	complex).	Varying	the	reverse	rate	of	these	reactions	between	10e-
5	and	10e-20	shifts	only	the	baseline	entropy	production	but	does	not	change	the	
qualitative	trends.		

	
As	long	as	the	rate	of	the	composite	process	of	Lck-mediated	

phosphorylation	of	Tyrosine	319	on	Zap70	and	its	subsequent	binding	via	its	SH2	
domain	is	slower	than	the	rate	of	dissociation	of	the	TCR	from	self	ligands,	the	
qualitative	results	discussed	in	the	main	text	are	valid	regarding	the	new	model	for	
Zap70	activation.			In	this	range	of	parameter	space,	the	new	model	consumes	less	
energy	at	steady	state	than	the	conventional	model	(Figure	S14).	This	result	can	be	
understood	intuitively	by	noting	that	in	the	conventional	model,	if	Zap70	is	bound	to	
ITAMs	upon	stimulation	by	self	ligands,	a	large	fraction	of	bound	Zap70	is	
phosphorylated.	This	means	that,	in	the	conventional	model,	there	are	many	more	
phosphorylation	and	dephosphorylation	events,	which	consume	ATP.	A	more	



technical	explanation	for	the	entropy	production	(measure	of	energy	consumption	
in	non-equilibrium	systems)	is	that	the	new	model	behaves	more	like	a	birth	death	
process	in	which	most	Zap70	molecules	are	bound	and	the	state	space	counts	the	
number	of	Zap70	molecules	that	are	phosphorylated.	Birth	death	processes	are	
exactly	reversible	and	thus	have	no	entropy	production	at	steady	state.	
	

Additionally,	we	see	in	Figure	S13	that	by	doubling	the	amount	of	active	Lck	
not	associated	with	co-receptor,	the	qualitative	results	in	the	main	text	hold.		
	
	
SI	figure	captions:	
Figure	S1:	A	very	simple	4	state	markov	chain	was	analyzed	to	explain	non-
monotonicity	in	signal	discrimination	of	the	null	model	(referred	to	in	the	text	as	
‘old	model’)	as	a	function	of	ZAP-70’s	unbinding	rate.	We	find	that	the	likelihood	
ratio	of	non-self	over	self	(calculated	using	the	steady	state	probability	of	occupying	
state	3)	is	non-monotonic	as	a	function	of	ZAP-70	off-rate.		
	
Figure	S2:	Using	the	same	4	state	markov	chain	as	before,	one	can	reframe	the	TCR	
signaling	as	a	binary	asymmetric	channel,	and	calculate	the	channel	capacity.	We	see	
that	the	non-monotonicity	observed	in	the	likelihood	ratio	is	present	in	the	channel	
capacity	as	well.			
	
Figure	S3:	These	are	results	from	1000	trajectories	of	length	500s	averaged	at	
every	second	over	a	burn	time	of	100s.	The	off	rate	for	self	is	10s^(-1)	and	for	non-
self	is	1s^(-1),	and	2%	of	the	100	total	peptide	is	non-self.	The	AUROC	is	shown	for	
various	values	of	kinetic	parameters	of	ZAP-70	binding/unbinding.	We	see	that	the	
null	model	demonstrates	a	non-monotonicity	in	the	kinetic	parameters	of	ZAP-70.	
For	a	fixed	on	rate,	the	signal	discrimination	as	a	function	of	off	rate	is	non	
monotonic,	and	exhibits	an	optimal	value.		
	
Figure	S4:	We	plot	the	same	results	as	Figure	S3	on	a	3D	axis	to	demonstrate	the	
non	monotonicity.		
	
Figure	S5:	To	calculate	the	effective	off	rate	of	coreceptor	from	the	TCR	complex,	we	
build	a	markov	chain	whose	state	space	represents	the	interactions	that	are	
currently	in	tact	in	the	complex.	Here,	we	number	the	interactions	as	1-3,	between	
CD8,	TCR	and	MHC.		
	
Figure	S6:	Using	the	numbering	convention	from	Figure	S5,	we	build	a	markov	
chain	whose	state	space	represents	the	interactions	that	are	currently	in	tact.	The	
system	begins	in	state	(1,2,3)	with	all	interactions	in	tact.	A	transition	from	(1,2,3)	
to	(1,3)	indicates	that	the	pMHC-TCR	bond	has	broken,	but	coreceptor/TCR	
interaction	and	Lck/ZAP-70	interactions	are	still	in	tact.		
	
Figure	S7:	Here	we	use	calculations	similar	to	figure	S3/S4	but	for	a	‘kinetic	model’	
in	which	ZAP-70	has	two	sets	of	kinetic	off	rates.	The	off	rate	when	TCR	is	ligated	is	



fixed	at	.5s^(-1),	and	the	off-rate/on-rate	for	ZAP-70	from	unligated	TCR	is	varied.	
This	demonstrates	that	for	a	fixed	off	rate	when	TCR	is	ligated,	increasing	the	off	
rate	when	TCR	is	not	ligated	will	only	serve	to	increase	the	discriminatory	
capabilities.		
	
Figure	S8:	We	plot	the	same	results	as	Figure	S7	on	a	3D	axis.			
	
Figure	S9:	In	panel	1,	we	see	the	percent	of	total	ZAP-70	in	the	simulation	that	is	
bound	to	TCR	in	steady	state	in	the	absence	of	agonist	peptide.	The	null	model	and	
ZAP-opening	model	have	high	percent	of	ZAP-70	bound,	whereas	the	kinetic	model	
has	significantly	lower	bound	ZAP-70.	In	panel	2,	we	see	the	percent	of	bound	ZAP-
70	that	is	activated.	What	we	find	is	that	the	ZAP-opening	model	has	a	much	lower	
fraction	of	ZAP-70	bound	to	be	activated;	this	implies	that	the	ZAP-opening	model	
does	the	best	job	at	recapitulating	experimental	results	that	allow	for	ZAP-70	to	be	
both	bound	and	not	phosphorylated	at	steady	state.	In	panel	3	we	compare	the	
percent	increase	in	activated	ZAP-70	upon	introduction	of	2%	agonist	peptide	to	the	
system.	We	find	that	both	the	kinetic	model	and	the	ZAP-opening	model	outperform	
the	null	model.	However,	a	very	large	difference	in	the	two	kinetic	parameters	is	
required	for	the	kinetic	model	to	outperform	the	ZAP-opening	model.	Shown	are	
results	from	simulations	in	which	the	kinetic	off	rate	of	ZAP-70	from	a	non-ligated	
TCR	is	20x	larger	than	the	off	rate	from	a	ligated	TCR.	
	
Figure	S10:	For	the	kinetic	model,	we	see	that	increasing	the	off	rate	of	ZAP-70	
from	an	unligated	TCR	increases	the	energetic	costs	(entropy	production)	of	the	
system	at	steady	state.		

	
Figure	S11:	The	average	from	150	trajectories	each	(with	self	and	self+non-self)	for	
spatially	resolved	calculations	to	compare	the	null	and	Zap	opening	model.	The	
results	are	qualitatively	unchanged	from	well-mixed	simulations.	Spatial	resolution	
serves	only	to	enhance	the	trends	seen	before	as	there	is	the	pronounced	effect	due	
to	pMHC	rebinding.		
	
Figure	S12:	These	figures	are	to	be	compared	with	Figure	4	a-c	in	the	main	text.	We	
see	that	including	an	explicit	step	of	Lck	activation	does	not	change	the	qualitative	
results.		
Figure	S13:	After	doubling	the	amount	of	active	Lck	not	associated	with	co-
receptor,	we	see	the	results	are	qualitatively	unchanged.		
Figure	S14:	Energy	consumption	at	steady	state	in	the	absence	of	agonist	peptide	is	
minimized	in	the	parameter	regime	for	which	koff	self	>	kopen.		
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Figure'S1:'A'very'simple'4'state'markov'chain'
was'analyzed'to'explain'non>monotonicity'in'
signal'discrimina?on'of'the'null'model'(referred'
to'in'the'text'as'‘old'model’)'as'a'func?on'of'
ZAP>70’s'unbinding'rate.'We'find'that'the'
likelihood'ra?o'of'non>self'over'self'(calculated'
using'the'steady'state'probability'of'occupying'
state'3)'is'non>monotonic'as'a'func?on'of'
ZAP>70'off>rate.''

Figure'S2:'Using'the'same'4'state'markov'
chain'as'before,'one'can'reframe'the'TCR'
signaling'as'a'binary'asymmetric'channel,'
and'calculate'the'channel'capacity.'We'see'
that'the'non>monotonicity'observed'in'the'
likelihood'ra?o'is'present'in'the'channel'
capacity'as'well.'''
'
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Figure'S3:'These'are'results'from'1000'trajectories'
of'length'500s'averaged'at'every'second'over'a'
burn'?me'of'100s.'The'off'rate'for'self'is'10s^(>1)'
and'for'non>self'is'1s^(>1),'and'2%'of'the'100'total'
pep?de'is'non>self.'The'AUROC'is'shown'for'
various'values'of'kine?c'parameters'of'ZAP>70'
binding/unbinding.'We'see'that'the'null'model'
demonstrates'a'non>monotonicity'in'the'kine?c'
parameters'of'ZAP>70.'For'a'fixed'on'rate,'the'
signal'discrimina?on'as'a'func?on'of'off'rate'is'non'
monotonic,'and'exhibits'an'op?mal'value.''

Figure'S4:'We'plot'the'same'results'as'Figure'
S3'on'a'3D'axes'to'demonstrate'the'non'
monotonicity.''
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Figure'S5:'To'calculate'the'effec?ve'off'rate'
of'coreceptor'from'the'TCR'complex,'we'
build'a'markov'chain'whose'state'space'
represents'the'interac?ons'that'are'
currently'in'tact'in'the'complex.'Here,'we'
number'the'interac?ons'as'1>3,'between'
CD8,'TCR'and'MHC.''
'

Figure'S6:'Using'the'numbering'conven?on'
from'Figure'S5,'we'build'a'markov'chain'whose'
state'space'represents'the'interac?ons'that'are'
currently'in'tact.'The'system'begins'in'state'
(1,2,3)'with'all'interac?ons'in'tact.'A'transi?on'
from'(1,2,3)'to'(1,3)'indicates'that'the'pMHC>
TCR'bond'has'broken,'but'coreceptor/TCR'
interac?on'and'Lck/ZAP>70'interac?ons'are's?ll'
in'tact.''
'
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Figure'S7' Figure'S8'

Figure'S7:'Here'we'use'calcula?ons'similar'to'
figure'S3/S4'but'for'a'‘kine?c'model’'in'which'
ZAP>70'has'two'sets'of'kine?c'off'rates.'The'off'
rate'when'TCR'is'ligated'is'fixed'at'.5s^(>1),'and'
the'off>rate/on>rate'for'ZAP>70'from'unligated'
TCR'is'varied.'This'demonstrates'that'for'a'
fixed'off'rate'when'TCR'is'ligated,'increasing'
the'off'rate'when'TCR'is'not'ligated'will'only'
serve'to'increase'the'discriminatory'
capabili?es.''
'

Figure'S8:'We'plot'the'same'results'as'
Figure'S7'on'a'3D'axis.'''
'
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Figure'S9:'Here,'we'compare'various'models'of'TCR'signaling,'including'in'the'simula?on'an'extra'
step'of'Lck'ac?va?on.'In'panel'1,'we'see'the'percent'of'total'ZAP>70'in'the'simula?on'that'is'bound'
to'TCR'in'steady'state'in'the'absence'of'agonist'pep?de.'The'null'model'and'ZAP>opening'model'
have'high'percent'of'ZAP>70'bound,'whereas'the'kine?c'model'has'significantly'lower'bound'
ZAP>70.'In'panel'2,'we'see'the'percent'of'bound'ZAP>70'that'is'ac?vated.'What'we'find'is'that'the'
ZAP>opening'model'has'a'much'lower'frac?on'of'ZAP>70'bound'to'be'ac?vated;'this'implies'that'
the'ZAP>opening'model'does'the'best'job'at'recapitula?ng'experimental'results'that'allow'for'
ZAP>70'to'be'both'bound'and'not'phosphorylated'at'steady'state.'In'panel'3'we'compare'the'
percent'increase'in'ac?vated'ZAP>70'upon'introduc?on'of'2%'agonist'pep?de'to'the'system.'We'
find'that'both'the'kine?c'model'and'the'ZAP>opening'model'outperform'the'null'model.'However,'
a'very'large'difference'in'the'two'kine?c'parameters'is'required'for'the'kine?c'model'to'
outperform'the'ZAP>opening'model.'Shown'are'results'from'simula?ons'in'which'the'kine?c'off'
rate'of'ZAP>70'from'a'non>ligated'TCR'is'20x'larger'than'the'off'rate'from'a'ligated'TCR.'
'
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Figure'S10:'For'the'kine?c'model,'we'see'
that'increasing'the'off'rate'of'ZAP>70'
from'an'unligated'TCR'increases'the'
energe?c'costs'(entropy'produc?on)'of'
the'system'at'steady'state.''
'

Figure'S11:'The'average'from'150'
trajectories'each'(with'self'and'self
+non>self)'for'spa?ally'resolved'
calcula?ons'to'compare'the'null'and'
Zap'opening'model.'The'results'are'
qualita?vely'unchanged'from'well>
mixed'simula?ons.'Spa?al'resolu?on'
serves'only'to'enhance'the'trends'seen'
before'as'there'is'the'pronounced'
effect'due'to'pMHC'rebinding.''
'



Figure'S12:'These'figures'are'to'be'compared'with'Figure'4'a>c'in'the'
main'text.'We'see'that'including'an'explicit'step'of'Lck'ac?va?on'does'
not'change'the'qualita?ve'results.''
'
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Figure	S13:	Aeer	doubling	the	amount	of	ac?ve	Lck	not	associated	with	
co-receptor,	we	see	the	results	are	qualita?vely	unchanged.		
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Figure	S14:	Energy	consump?on	at	steady	state	in	the	absence	of	
agonist	pep?de	is	minimized	in	the	parameter	regime	for	which	koff	self	>	
kopen	.	


