Identification of *cis*- and *trans*-acting elements regulating calretinin expression in mesothelioma cells

Supplementary Materials

Supplementary Figure S1: Genetic rearrangement profile of chromosome 16 analyzed on mesothelioma samples using arrayMap, a curated reference database and bioinformatics resource targeting copy number profiling data in human cancer, including mesothelioma. The plot represents 49 mesothelioma tumor samples (1, 2), of which 60% are epithelioid, 20% biphasic and 20% sarcomatoid. Percentage values represent frequency of the copy number gains (yellow) and losses (blue) account for the mesothelioma whole data set. Locus of *CALB2* gene is affected by copy number loss in less than 25% of analyzed mesothelioma samples.

Supplementary Figure S2: 1 kb of *CALB2* promoter occupied by various transcription factors identified through ChIP-seq screen. UCSC genome browser shows the presence of general TF, Polymerase II, suggesting location of *CALB2* promoter.

Supplementary Figure S3: *MAGEC1* gene promoter is methylated in both epithelioid and biphasic mesothelioma. CpG sites in the promoter region of *MAGEC1* from the Illumina HumanMethylation450 array are shown in 5' to 3' order versus methylation beta-value which represents the percent methylation of the sample. Mesotheliomas are stratified by tumor histology, epithelioid (n = 57), and biphasic (n = 23).

Supplementary Figure S4: The -161/+80bp *CALB2* promoter region has the highest transcriptional activity. Transcriptional activity of the indicated promoter constructs expressed relative to the longest *CALB2* promoter construct, -838/+80bp. The -161/+80bp region is the minimal promoter.

Supplementary Figure S5: The -161/+80bp *CALB2* minimal promoter region is active in HEK293 cells and mutation in the E2F2/NRF-1 site strongly reduced its activity. The wild-type reporter plasmid expression was arbitrarily set to 100% and the reporter activity of the mutants is expressed as a percentage of the wild-type construct. Mean \pm SD, n = 3.

human chimpanzee	TCTCAGCGCAGAGGT-AAGG-GCCCTCTAGGAGTCCGGGCCGAGCCTCTCGCGCCGCCGC
orangutan	TCTCAGCGCAGAGGT-AAGG-GCCCCCTAGGAGTCCGGGCCGAGCCTCTAGCGCCGCCGC
baboon	-CTCAGCGCAGAGGTAAGGG-CCCCCCTACGAGTCCGGGCCCAGCCTCTCGTGCCGCCGC
rat	TCTCATTGAAGACACTCTCCTGGTCCCCAGGAACCCTGGCAGAGAGGAGCCTCCGC
mouse	AGAAGAGCCCCGGTCCCCAGGAACCCTGGCAGAGAAGAGCCCCCGC
	* * * ** ** *** * * ***
	E2F2/NRF-1
human	CCCCGCCGCGCGCGCCCGGTCGGATTCCCTGAGCGCGCGC
chimpanzee	CCCCGCCGCGCGCGCCCGGTCGGATTCCCTGAGCGCGCGC
orangutan	CCCCGCCGCGCGCGCCCGGTCGGATTCCCTGAGCGCGCGC
baboon	CCTCGCCGCGCGCGCCCGGCCGGATTCCCTGAGCGAGCGCGCCCCCTGCTGGCAGCCG
rat	CCGTGCAGCGCC-GCGCCCTGCGCGATTCCCTGAGTGTGCGCGCCCCCTTCCCGCCGCCCC
mouse	CCGTGCAGCGCC-GCGCCCTGCGCGATTCCCTGAGTGTGCGCGCCCCCTTCCGGCGGCCC
	** ** ****
human	GGCGCAGGCGCAGGCTCCAGAGCGTATATAAGGGCAGCGTGGCGCACAACCCCAGCGCGA
chimpanzee	GGCGCAGGCGCAGGCTCCAGAGCGTATATAAGGGCAGCGTGGCGCACAGCCCCAGCGCGA
orangutan	GGCGCGGGGCGCAGGCTCCAGAGCGTATATAAGGGCAGCGTGGCGCACAGCCCCAGCGCGA
baboon	GGCGCGGGGCGCAGGCTCCAGAGCGTATATAAGGGCAGCGTGGCGCACAGCCCCAGCGCGA
rat	AACGCGGTGCAGCTCCGGGCTGCATATAAAGGCAGCGTGGCGCGCAGCTCCAGCGCGA
mouse	GACGCGGCGCAGCTCCGGGCTGCATATAAAGGCAGCGTGGCGCGCAGCCCCAGCGCGA
	*** * ***** * * ****** **********
human	GTGCCAGAGCCCAGCCGGCGCGGGAGCGGGAGCGGTGCAGGCTGAGGTCTCCGA
chimpanzee	GTGCCAGAGCCCAGCCGGGCGCGGAGCGGGAGCGGTGCAGGCTGAGGTCTCCGA
orangutan	GTGCCAGAGCCCAGACGGCGCGGAGCGGGAGCGGTGCAGGCTGAGGTCTCCGA
baboon	GTGCCAGAGCCCAGCCGGGCGCGGAGCGGGAGCGGTGCAGGCTAAGGTCTCCGA
rat	GAACCAGAGCCAAGCGGCACCGAGTGACAGCGCTGAGAGGCTTAAGATCTCCGG
mouse	GAACCAGAGCCAAGCGGCACCGAGTGACAGCGCGCTGAGAGAGA
	* *******
human	-GCGGCTCGCC
chimpanzee	-GCGGCTCGCC
orangutan	-GCGGCTCGCC
baboon	-GCGGCTCGCC
rat	AGCCGCTCGCC
mouse	AGCGGCTCGCC
	** *****

Supplementary Figure S6: NRF-1/E2F2 binding region is highly conserved within *CALB2* **promoter.** Nucleotide sequence comparison reveals regions with high homology in the *CALB2* promoter of different species. The analysis was performed using the ClustalW2 software. Asterisks indicate conserved nucleotides.

Supplementary Figure S7: Silencing of NRF-1 with siRNA decreases calretinin expression in SPC111 mesothelioma cells.

Covariate	n (%)		
Age at diagnosis			
Range (median)	28-81 (64)		
Mean (sd)	63 (9.8)		
Gender			
Male	71 (81.6)		
Female	16 (18.4)		
Race			
Caucasian	85 (97.7)		
Asian	1 (1.15)		
African American	1 (1.15)		
Histology*			
Epithelioid	57 (65.5)		
Biphasic	23 (26.5)		
Sarcomatoid	2 (2.3)		
Diffuse NOS	5 (5.7)		
Stage			
Ι/Π	26 (29.9)		
III / IV	61 (70.1)		

Supplementary Table S1: Patient demographic and tumor characteristics for methylation analysis of CALB2 promoter

*Epithelioid and biphasic samples were included in data analysis, NOS: not otherwise specified.

cgID	Chromosome	Genomic Location	Epithelioid Correlation Coefficient	Epithelioid <i>P</i> -value*	Biphasic Correlation Coefficient	Biphasic <i>P</i> -value*
cg08276328	X	140990738	-0.26	0.05	0.09	0.67
cg09140084	X	140990878	-0.11	0.4	0.13	0.55
cg12614283	X	140991045	-0.14	0.28	0.09	0.68
cg25651984	X	140991592	-0.19	0.15	0.28	0.2
cg03931619	X	140991599	-0.07	0.6	0.27	0.21
cg11110686	X	140991714	-0.29	0.03	0	0.99
cg02504617	X	140992417	-0.29	0.03	0.15	0.5

Supplementary Table 2: Correlation between *MAGEC1* gene promoter CpG methylation and *MAGEC1* expression (*Spearman's test)

REFERENCES

- Lindholm PM, Salmenkivi K, Vauhkonen H, Nicholson AG, Anttila S, Kinnula VL, et al. Gene copy number analysis in malignant pleural mesothelioma using oligonucleotide array CGH. Cytogenet Genome Res. 2007; 119:46–52.
- 2. Christensen BC, Houseman EA, Poage GM, Godleski JJ, Bueno R, Sugarbaker DJ, et al. Integrated profiling reveals a global correlation between epigenetic and genetic alterations in mesothelioma. Cancer Res. 2010; 70:5686–94.