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Exome and deep sequencing of clinically aggressive neuroblastoma 

reveal somatic mutations that affect key pathways involved in cancer 

progression 

Supplementary Material 

 

 

 

1. Somatic mutation identification 
 

Next generation sequencing data processing and mutation calling 

Illumina paired-end reads were mapped versus the reference genome (GRCh37/hg19 downloaded 

from UCSC Genome Browser) using the Burrows-Wheeler Aligner [1] algorithm; we disallowed 

indels within 15bp towards the ends of the read and trimmed down bases with quality less than 10 

at 3’ to reduce false positives due to sequencing errors. Alignment information, stored in Binary 

Alignment-Map files, for tumor and control tissue pairs, was piled up with SamTools [2] and 

variants were called using VarScan2 [3] with default parameters (minimum coverage to call a 

variant = 8, minimum coverage to call Somatic = 8 in normal, and = 6 in tumor). Genetic variants 

identified were annotated for their presence in several databases such as dbSNP-135, 1000 Genome 

Project, COSMIC [4]
 
(version 68) and ESP6500 using ANNOVAR [5]. Annotated variants were 

strongly filtered to get a high confidence set of somatic changes. We kept only the variants: i) with 

the p-value < 0.01 (Fisher Exact Test implemented in VarScan2); ii) not registered in either 

dbSNP135 or 1000 Genome Project; iii) not located in duplicated genomic regions. 

Putative somatic variants were then split on the basis of their functional class as annotated by 

ANNOVAR. Off-target variants, annotated as intergenic, intronic, upstream or downstream 

(variants up to 1-Kb away from the transcription start or end site) were discarded. Variants with a 

strand bias over the 90% were set aside to reduce false positive calls. The set of mutations obtained 

was manually curated and visually inspected with the IGV - Integrated Genome Viewer [6].  

To detect probable somatic mutations of 17 HR-Event3 tumors and 17 cell lines that not have 

matched germline DNA, we excluded all variants reported in all dbSNP builds, 1000 Genome 

Project, ESP6500 database and 106 exomes from in-house Italian controls. 

DT-Seq (Deep Targeted Sequencing) raw variant calls were filtered with the same parameters used 

for WES (Whole Exome Sequencing) data, except for the somatic p-value from VarScan2 (less than 

0.05; see above), a minimum total depth of 10, and an altered allele frequency in the normal tissue 

under 3%. After filtering steps described above, of variant allele frequencies in tumor were >= 20% 

and >=17% for the exome and for the DT-Seq, respectively. 

 

In-silico validation 

All steps of our analyses were followed by consistency checks of the results. As yardsticks we used 

the list of somatic mutations of recent next generation sequencing-based screenings on primary 

neuroblastomas: Molenaar et al. [7], Pugh et al. [8] and Sausen et al. [9]. We searched for the 

presence of our mutated genes in their datasets (Supplementary Table 3a,b), compared mean values 

of somatic variants per sample (Supplementary Table 2c). A somatic signature profile was built on 

these data (Supplementary Figure 2) and compared to ours (Figure 1c,d). Cancer driver analysis 

was run on the above mentioned lists of variants in order to obtain sets of somatic driver mutations 

that were further investigated by KEGG Pathway analysis (see below) and compared to our data. 

 

Prioritization of driver mutations  

Neuroblastoma is known to harbour few somatic mutations [7-9]. Therefore, to identify rare driver 

mutations, we decided to use algorithms that do not take into account the recurrence of mutations in 
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a cohort of cancer patients. We used Cancer-Related Analysis of Variants Toolkit (CRAVAT [10]) 

version 3.2, which implements the Cancer-specific High-throughput Annotation of Somatic 

Mutations (CHASM [11]) tool, to distinguish passenger variation events from driver ones. In brief 

CHASM implements a random forest machine learning method trained on a positive class of driver 

events curated from the COSMIC database and a negative set of in silico generated passengers 

consistent with passenger base substitution frequencies estimated for a specific tumor type. The 

program predictions are based on the probability that a somatic missense variant can increase the 

fitness of cancer cells. The Variant Effect Scoring Tool VEST [12], a supervised machine learning-

based classifier implemented in CRAVAT, was used to assess the functional effect of variants and 

prioritize them on the basis of the likelihood of their involvement in human disease. To select 

cancer driver events, we maintained WES somatic variants on the basis of the following criteria: i) 

genes with p<0.05, which was calculated by CHASM, ii) genes with p<0.05 which was calculated 

by VEST. Moreover, we included all splicing and stop-gain somatic events and only 

Insertion/Deletion (indel) variants predicted to be damaging by SIFT [13]. This approach allowed 

us to identify functional significance of frequent and rare mutations. This process readily included 

well-studied cancer drivers such as ALK, ERBB3, PTEN, PTK2, FGFR1 and excluded many 

common passenger mutations, for example, TTN and the genes encoding mucins, cytoskeletal 

dyneins and olfactory receptors. Using this approach on WES data, we selected a total of 125 

candidate driver genes (highlighted in grey in Supplementary Table 3a), which were subjected to 

DT-seq in 82 neuroblastomas. We also included 9 other candidate genes manually selected 

according to the following criteria: i) genes (ATRX, PTPN11, NRAS, ARID1A, MYCN) found 

significantly mutated in previous studies [7-9] and registered in Cancer Gene Census database; ii) 

TENM3 and ADCY10 found mutated in Molenaar et al. [7] and functionally similar to the genes 

TENM4, ADCY6, ADCY3 that were mutated in our discovery set; iii) BARD1 since it is a known 

neuroblastoma susceptibility gene [14] and found mutated in our discovery set; iv) RET as 

functionally relevant gene in neuroblastoma according to not published data of our laboratory and 

registered in Cancer Gene Census database.  

To identify cancer driver genes in combined cohorts from WES and DT-seq, we recalculated the p-

values for all mutations and selected candidate cancer driver genes by applying the following 

filtering criteria: i) False Discovered Rate (FDR) ≤0.25 for CHASM or FDR≤0.1 for VEST; ii) 

genes mutated in at least two cases. After this analysis, 22 genes resulted to be significantly 

mutated. The combined p-value for each gene was calculated based on Stouffer's Z-score method 

[15].  

 

Gene expression analysis  

Normalized gene expression array data of two independent sets of neuroblastoma patients were 

downloaded from the website “R2: Genomics Analysis and Visualization Platform 

(http://r2.amc.nl)”: i) "Affymetrix data" composed of 88 samples (Affymetrix Human Genome 

U133 Plus 2.0 Array, GEO ID: GSE16476); ii) "Agilent data" composed of 498 samples (Agilent-

020382 Human Custom Microarray 44k, GEO ID: GSE49710). Log2 transformed data were used 

for both gene expression datasets. The comparison of gene expression profiles among low-risk, 

high-risk and HR-Event3 patients was performed by the R2: Genomics Analysis and Visualization 

Platform using the following parameters: 1) T-test to assess the statistical significance; 2) FDR to 

correct for multiple tests. Enriched gene sets were supported by significance statistical analysis with 

hypergeometric test. As the elevate number of patients in Agilent dataset, we were able to use two 

different categories of HR-Event characterized patients: high-risk individuals with any adverse 

event within i) 36 (HR-Event3) and ii) 18 (HR-Event1.5) months from diagnosis (Supplementary 

Figure 4 and Supplementary Table 5). 

To identify the relative expression of genes in neuroblastomas, the 25
th

 percentile value of the 

expression of the significantly mutated genes (Figure 2A) was computed. This analysis was 

conducted on the Affymetrix and Agilent microarray data. The median percentiles for NEB, 
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COL6A6, GABRB2, SIRPB2, DTHD1, PCDHGB1, MYH7 (less than the 25
th

 percentiles in both 

datasets) suggest low expression in neuroblastoma tumors (Supplementary Figure 3Aand 3B) Gene 

expression comparison across 491 types of cancers was performed by Genevisible webtool 

(Supplementary Figure 3C and 3D).  
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URLs:  

Cosmic: cancer.sanger.ac.uk/cosmic. SIFT: sift.jcvi.org. PolyPhen: genetics.bwh.harvard.edu. 

Mutation Assessor: mutationassessor.org. Mutation Taster: www.mutationtaster.org. KEGG 

Pathway Database: www.genome.jp/kegg/pathway. cBioPortal: www.cbioportal.org. R2: Genomics 

Analysis and Visualization Platform http://r2.amc.nl. 1000 Genomes Project: 

http://www.1000genomes.org/. PhosphoSitePlus: http://www.phosphosite.org/ Candidate Cancer 

Gene Database (CCGD): http://ccgd-starrlab.oit.umn.edu/. The Cancer Genome Atlas: 

http://cancergenome.nih.gov/. Genevisible: http://genevisible.com/. the Drug Gene Interaction 

database, DGIdb: http://dgidb.genome.wustl.edu/. 

 

 

http://cancer.sanger.ac.uk/cosmic
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://mutationassessor.org/
http://www.mutationtaster.org/
http://www.genome.jp/kegg/pathway
http://www.cbioportal.org/
http://r2.amc.nl/
http://www.1000genomes.org/
http://www.phosphosite.org/
http://ccgd-starrlab.oit.umn.edu/
http://cancergenome.nih.gov/
http://genevisible.com/
http://dgidb.genome.wustl.edu/
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Supplementary Figure 1 

Research strategy to identify somatically mutated genes and pathways. Whole exome 

sequencing was performed on 17 HR-Event3 neuroblastoma and matched control tissue samples, 

whereas deep targeted sequencing was performed on a total of 82 samples. The significantly 

mutated genes and those manually selected (see Supplementary information) were included in the 

targeted gene panels. Mutated genes and pathways were evaluated combining data obtained from 

both cohorts (discovery and validation). The cancer driver mutations were prioritized by CHASM 

and VEST algorithms that do not consider recurrence of the variants and thus are suitable to detect 
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infrequently mutated genes for a pediatric cancer like neuroblastoma, which is known to harbor few 

somatic mutations. The plots on the right report the time to first event from the date of diagnosis for 

each patient. 

 

 
Supplementary Figure 2 

Signature of somatic mutations in neuroblastoma. Each panel shows the detailed spectrum of 

somatic point mutations, for each group of trinucleotides, found in neuroblastoma. The Y axis 

reports the frequency of nucleotide substitutions, while X axis shows the trinucleotides (the variant 

site plus the bases at 5’ and 3’) in which the somatic changes occur. The top right boxes indicate the 

frequency of the six types of base substitutions caused by somatic mutations in each data set. A, 

Somatic mutations published in Sausen et al. [9], B, in Pugh et al. [8], C, in Molenaar et al. [7]. 
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Supplementary Figure 3 

Comparison of expression levels of significantly mutated genes in neuroblastoma. The 

distribution of expression values of each gene in A, 88 primary neuroblastoma tumors profiled by 

Affymetrix Human Genome U133 Plus 2.0 Array (GEO ID: GSE16476) and B, 498 primary 

neuroblastoma tumors profiled by Agilent 44K expression microarrays (GEO ID: GSE49710). 

PCDHGB1 and RPS13 were not included in Affymetrix array. C, Expression of CHD9 (212616_at) 

and D, ALK (208212_s_at) across 491 types of cancers tested by Genevisible web tool 

(http://genevisible.com/). These two genes seem to be specifically expressed in neuroblastoma. 

http://genevisible.com/
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Supplementary Figure 4A  

Gene expression profiles of significantly mutated genes in 498 neuroblastomas: 322 low risk (LR), 63 high risk (HR) and 113 HR-Event3 
(high-risk individuals with any adverse event within 36 months from diagnosis).  

Y axis indicates the mRNA levels for each gene. GEO ID: GSE49710.  
*P-value calculated by Manny-Whitney test comparing LR and HR tumors °P-value calculated by Manny-Whitney test comparing HR and HR-Event3 tumors 
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Supplementary Figure 4B 

Gene expression profiles of significantly mutated genes in 498 neuroblastomas: 322 low risk (LR), 102 high risk (HR) and 74 HR-Event1.5 
(high-risk individuals with any adverse event within 18 months from diagnosis).  

Y axis indicates the mRNA levels for each gene. GEO ID: GSE49710.  
*P-value calculated by Manny-Whitney test comparing LR and HR tumors °P-value calculated by Manny-Whitney test comparing HR and HR-Event1.5 tumors 
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Supplementary Figure 5  
CHD9, NAV1 and NAV3 expression levels and survival rates. Low CHD9 and NAV3 expression 

is associated with negative prognosis and metastatic neuroblastoma stage. A-B-C, Changes in 

expression for CHD9, NAV1 and NAV3 respectively, in advanced-stage neuroblastoma using 

published array data (R2 bioinformatics tool). Data are shown for International Neuroblastoma 

Staging System, stages 1–4 and 4s. The number of tumors is indicated in parentheses. D-E-F, 

Kaplan-Meier analysis is shown, with individuals grouped by median of expression of CHD9, 

NAV1 and NAV3, respectively. Log-rank P values are shown. 
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Supplementary Figure 6  
Research strategy to identify neuroblastoma-predisposing variants. Germline variants were 

filtered step by step to pick up the potentially interesting cancer genes candidates. First, the non-

silent variants including missense, nonsense, indels, and splice-site variants were selected. Second, 

novel variants that have not been reported in dbSNP database (dbSNP135) were selected. Then, 

variants predicted to be pathogenic (VEST tool) with a p-value < 0.10 were selected. After that, for 

14 genes, the fold of enrichment of the germline variants in neuroblastoma patients were calculated 

comparing the frequency in the control cohort and performed Fisher’s exact test to calculate the P 

values. Finally, potentially interesting genes based on significant P-values (<0.05) were selected. 

 


