SUPPLEMENTARY MATERIALS AND METHODS ### **Immunohistochemistry for TMPRSS4** For immunostaining, slides were deparaffinized and rehydrated. Endogenous peroxidase was blocked with a 3% hydrogen peroxide solution and antigen retrieval was carried out by heating the samples in a microwave oven using citrate buffer (10 mM, pH 6). Tissues were then incubated overnight at 4°C with anti-TMPRSS4 antibody (1:500 Ingenasa Inc, Madrid, Spain). Detection of primary antibody was performed with the AdvanceTM HRP system (Dako, Denmark) and peroxidase activity was developed with diaminobenzidine (Dako). Finally, slides were counterstained with haematoxylin, dehydrated and coverslipped with DPX mounting medium (VWR, Soulbury, UK). #### **DNA** isolation Briefly, samples were deparaffinized for 20 min at 60°C; immediately after, sections were immersed in xylene and absolute ethanol in consecutive steps and DNA was extracted according to the manufacturer's instructions. In the case of cell lines, NucleoSpin Tissue® kit (Macherey-Nagel) was used to extract DNA from frozen pellets. DNA concentrations were measured with Quant-it Picogreen dsDNA Assay Kit (Life Technologies). #### RNA isolation and real time PCR Purified RNA was obtained from frozen pellets with the Nucleospin RNA extraction kit (Macherey-Nagel) following manufacturer's instructions and reverse transcription was performed with PrimeScript kit (Takara). SYBR Green was used to carry out real time PCR and GAPDH was used as housekeeping gene. **Supplementary Figure S1: A.** Representative image of non-malignant lung parenchyma immunostained with anti-TMPRSS4 antibody. Labeling is observed in some type II pneumocytes. **B.** Comparison of the H-score between non-malignant and tumor samples. **C-D.** Kaplan-Meier curves for stage I NSCLC patients (n=52) according to high or low TMPRSS4 protein expression. A significant reduction in OS is observed in patients with high TMPRSS4 (D). No statistical significance is reached in the case of RFS (C). **E-F.** Kaplan-Meier curves show similar results for stage II patients (n=27), regarding RFS (E) and OS (F). **G.** P-values corresponding to logRank tests after excluding patients that were treated with adjuvant chemotherapy/radiotherapy. Statistical differences show significant association between high TMPRSS4 levels and reduced RFS and OS. ***: p<0.001. **Supplementary Figure S2: A-D.** RFS Kaplan-Meier curves for all NSCLC patients according to promoter methylation status for probes CG27300950 (A), CG25116503 (B), CG22957898 (C) and CG5416223 (D). **E.** A significant positive correlation is found between methylation status analyzed by pyrosequencing for probes CpGs -116 bp (CG03634928) and -99 bp (CG27300950) (average value of both CpGs) and methylation status from the 450K array. Pearson's correlation: r=0.80, p<0.0001. **F.** Overexpression of TMPRSS4 upon treatment with the demethylating agent 5-aza-2'-deoxycytidine (Aza) in lung cancer cells with low TMPRSS4 expression. Exposure to either 2 or 4 μM 5-aza-2'-deoxycytidine after 48h caused increased expression of TMPRSS4 in all the cells tested. **G.** Average values of methylation, obtained by pyrosequencing, in CpG sites -116 bp and -99 bp after treatment with Aza, showed decreased methylation levels in TMPRSS4. Supplementary Table S1: Clinical and pathological characteristics of the patients | | TMA Cohort | Validation Cohort | | | |-----------------------|------------|-------------------|--|--| | | (n=79) | (n=88) | | | | | n (%) | n (%) | | | | Age (median \pm SD) | 65±10.1 | 65±8.5 | | | | Gender | | | | | | Female | 12 (15.2) | 13 (14.8) | | | | Male | 67 (84.8) | 75 (85.2) | | | | Smoking status | | | | | | Never smoker | 8 (10.1) | 9 (10.2) | | | | Former smoker | 53 (67.1) | 57 (64.8) | | | | Current smoker | 18 (22.8) | 22 (25.0) | | | | Histology | | | | | | ADC | 39 (49.4) | 28 (31.8) | | | | SCC | 33 (41.8) | 52 (59.1) | | | | Others | 7 (8.9) | 8 (9.1) | | | | Stage | | | | | | I | 52 (65.8) | 47 (53.4) | | | | II | 27 (34.2) | 28 (31.8) | | | | III | | 11 (12.5) | | | | IV | | 1 (1.1) | | | | Missing | | 1 (1.1) | | | | Grade | | | | | | Well | 9 (11.4) | 8 (9.1) | | | | Moderately | 33 (41.8) | 42 (47.7) | | | | Poorly | 30 (38.0) | 35 (39.8) | | | | Missing | 7 (8.9) | 3 (3.4) | | | | pT | | | | | | T1 | 31 (39.2) | 37 (42.0) | | | | T2 | 43 (54.4) | 39 (44.3) | | | | T3 | 5 (6.3) | 10 (11.4) | | | | T4 | | 1 (1.1) | | | | Missing | | 1 (1.1) | | | | pN | | | | | | N0 | 65 (82.3) | 64 (72.7) | | | | N1 | 14 (17.7) | 16 (18.2) | | | | N2 | | 7 (8.0) | | | | Missing | | 1 (1.1) | | | pN = pathological N stage; pT = pathological T stage. Supplementary Table S2: Relationship between TMPRSS4 expression and clinicopathological characteristics of NSCLC patients | | NSCLC (n=79) | | ADC (n=39) | | SCC (n=33) | | | | | |-----------------|--------------|-----------|------------|-----------|------------|-------|-----------|-----------|-------| | | n (%) | n (%) | | n (%) | n (%) | | n (%) | n (%) | | | | Low | High | P | Low | High | P | Low | High | P | | Age | | | | | | | | | | | ≤65 | 24 (57.1) | 18 (42.9) | 0.141 | 16 (69.6) | 7 (30.4) | 0.394 | 8 (50.0) | 8 (50.0) | 0.226 | | >65 | 15 (40.5) | 22 (59.5) | | 9 (56.3) | 7 (43.8) | | 5 (29.4) | 12 (70.6) | | | Gender | | | | | | | | | | | Female | 7 (58.3) | 5 (41.7) | 0.500 | 6 (66.7) | 3 (33.3) | 0.955 | 1 (50.0) | 1 (50.0) | 0.751 | | Male | 32 (47.8) | 35 (52.2) | 0.500 | 19 (63.3) | 11 (36.7) | 0.855 | 12 (38.7) | 19 (61.3) | 0.751 | | Smoking sta | atus | | | | | | | | | | Never
smoker | 4 (50.0) | 4 (50.0) | | 4 (57.1) | 3 (42.9) | | | | | | Former smoker | 29 (54.7) | 24 (45.3) | 0.292 | 19 (70.4) | 8 (29.6) | 0.392 | 9 (42.9) | 12 (57.1) | 0.590 | | Current smoker | 6 (33.3) | 12 (66.7) | | 2 (40.0) | 3 (60.0) | | 4 (33.3) | 8 (66.7) | | | Histology | | | | | | | | | | | ADC | 25 (64.1) | 14 (35.9) | | | | | | | | | SCC | 13 (39.4) | 20 (60.6) | 0.017 | | | | | | | | Others | 1 (14.3) | 6 (85.7) | | | | | | | | | Stage | | | | | | | | | | | I | 25 (48.1) | 27 (51.9) | 0.750 | 15 (62.5) | 9 (37.5) | 0.702 | 10 (40.0) | 15 (60.0) | 0.000 | | II | 14 (51.9) | 13 (48.1) | | 10 (66.7) | 5 (33.3) | 0.792 | 3 (37.5) | 5 (62.5) | 0.900 | | Grade | | | | | | | | | | | WD/MD | 21 (50.0) | 21 (50.0) | 0.576 | 14 (66.7) | 7 (33.3) | 0.455 | 7 (36.8) | 12 (63.2) | 0.727 | | PD | 13 (43.3) | 17 (56.7) | | 7 (53.8) | 6 (46.2) | 0.433 | 6 (42.9) | 8 (57.1) | | | pT | | | | | | | | | | | T1 | 17 (54.8) | 14 (45.2) | 0.434 | 13 (81.3) | 3 (18.8) | 0.063 | 4 (28.6) | 10 (71.4) | 0.275 | | T2/T3 | 22 (45.8) | 26 (54.2) | | 12 (52.2) | 11 (47.8) | 0.003 | 9 (47.4) | 10 (52.6) | 0.273 | | pN | | | | | | | | | | | N0 | 32 (49.2) | 33 (50.8) | 0.058 | 20 (64.5) | 11 (35.5) | 0.916 | 12 (41.4) | 17 (58.6) | 0.530 | | N1 | 7 (50.0) | 7 (50.0) | 0.958 | 5 (62.5) | 3 (37.5) | 0.910 | 1 (25.0) | 3 (75.0) | 0.550 | WD = well differentiated; MD = moderately differentiated; PD = poorly differentiated. # Supplementary Table S3: Cell lines and their corresponding histological type used in the study | | | 1 0 0 11 | | | | |-----------|----------------------|-----------|-------------------------|--|--| | Cell line | Type | Cell line | Туре | | | | COR-L88 | Small cell carcinoma | H2009 | Adenocarcinoma | | | | H1436 | Small cell carcinoma | H2087 | Adenocarcinoma | | | | H187 | Small cell carcinoma | H2126 | Adenocarcinoma | | | | H209 | Small cell carcinoma | H2228 | Adenocarcinoma | | | | H345 | Small cell carcinoma | H23 | Adenocarcinoma | | | | H446 | Small cell carcinoma | H322 | Adenocarcinoma | | | | H510 | Small cell carcinoma | H358 | Adenocarcinoma | | | | H69 | Small cell carcinoma | H441 | Adenocarcinoma | | | | H82 | Small cell carcinoma | H650 | Adenocarcinoma | | | | N417 | Small cell carcinoma | HCC-44 | Adenocarcinoma | | | | 103H | Large cell carcinoma | HCC-827 | Adenocarcinoma | | | | 97TM1 | Large cell carcinoma | LXF-289 | Adenocarcinoma | | | | H1299 | Large cell carcinoma | PC-14 | Adenocarcinoma | | | | H460 | Large cell carcinoma | H1703 | Squamous cell carcinoma | | | | H661 | Large cell carcinoma | H1869 | Squamous cell carcinoma | | | | A549 | Adenocarcinoma | H2170 | Squamous cell carcinoma | | | | H1395 | Adenocarcinoma | H226 | Squamous cell carcinoma | | | | H1437 | Adenocarcinoma | H520 | Squamous cell carcinoma | | | | H1568 | Adenocarcinoma | HCC-15 | Squamous cell carcinoma | | | | H1648 | Adenocarcinoma | NH91 | Squamous cell carcinoma | | | | H1650 | Adenocarcinoma | SW900 | Squamous cell carcinoma | | | | H1792 | Adenocarcinoma | HCC-366 | Adenosquamous | | | | H1975 | Adenocarcinoma | H727 | Carcinoid | | | # Supplementary Table 4: Primers used in this study | Primers | Sequence | | | |------------------------------|---------------------------------|--|--| | Real time RT-PCR | | | | | TMPRSS4 forward | GGTCAGCATCCAGTACGACA | | | | TMPRSS4 reverse | GCACCTTCCAGTTGAACACA | | | | GADPH forward | ACTTTGTCAAGCTCATTTCC | | | | GADPH reverse | CACAGGGTACTTTATTGATG | | | | Bisulfite genomic sequencing | | | | | TMPRSS4 forward | GTATTTAGAAGGTAGGGGAGG | | | | TMPRSS4 reverse | CAACAAATCAAAAATCCCTAATC | | | | Pyrosequencing | | | | | TMPRSS4 forward | AGTTAATATTTAGTTGGGTGGAAGT | | | | TMPRSS4 reverse | [Btn]AAACAACCCTACAAATAAAATTACCA | | | | TMPRSS4 sequence | GTTGGGTGGAAGTTATTTA | | | [Btn] = biotinylated.