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Part I.  Total Calorimetry, Core Temperature (Tc), and N2O Administration 

Chambers 

The lab has 6 independent total-calorimetry chambers that also measure Tc telemetrically 

and serve as gas-tight exposure chambers for N2O.  Total calorimetry simultaneously 

measures the rates of total heat loss (HL) and metabolic heat production (HP) that are the 

underlying determinants of Tc and which reflect the influence of control mechanisms 

involved in regulating Tc.  

 

A thermoelectric direct calorimeter (Seebeck gradient layer calorimeter, SEC-A-0701, 

Thermonetics Corporation, La Jolla, CA) generates a millivolt signal that is directly 

proportional to the heat flowing across its gradient layer.  This measure is referred to as 

dry heat loss (DHL), which includes HL derived from conduction, convection, and 

radiation.  The millivolt signal from the calorimeter is sent to a custom RC time circuit 

(made using a 33 kilo-ohm resistor and a 33 micro-farad capacitor) to yield a 1-sec time 

delay that reduces the noise in the differential signal.  The signal is then amplified by 100 

times using a precision instrumentation amplifier (AD624, Analog Devices, Inc. 

Norwood, MA) prior to being sent to a Universal Interface 2 device (UI-2, Sable 

Systems, Las Vegas, Nevada) and then to data acquisition and instrument control 

software written in LabVIEW (version 6.8, National Instruments, Austin, TX).  The 

direct calorimeter is calibrated using an electric heater that produces an appropriate range 

of outputs (~0.8 - 3 Watts).   
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Stabilizing the temperature surrounding the outer aspect of the gradient layer facilitates 

measuring DHL from the animal in the calorimeter because it minimizes changes in heat 

flow resulting from dynamic changes in the surrounding temperature of the lab.  This is 

accomplished by sending cold tap water through an automotive radiator provided with 

good air exchange from an adjacent room fan.  The water is then directed through a 

secondary heat exchanger that consists of 18 meters of coiled copper tubing (i.d. = 1.9 

cm, with each coil separated by ~5 cm) immersed in a ~290-liter reservoir of room 

temperature water.  The large mass of water in the reservoir enables dampened 

temperature variation throughout the day relative to the more variable temperature of the 

lab.  The water passing through the copper tubing becomes the same temperature as the 

surrounding water and is then sent through insulated PVC pipe to the calorimeters.  

Approximately 100 ml/min of water flow is diverted to each calorimeter where it 

circulates through copper tubing attached in a serpentine pattern to all 6 sides of the outer 

surface of the gradient layer within the calorimeter’s housing.  The temperature of the 

water entering a single calorimeter and exiting all six calorimeters is measured (SS-TC 

thermistors, Sable Systems, Las Vegas, Nevada) before the water exits the lab via a floor 

drain. 

 

The internal dimensions of the direct calorimeter are 19 x 19 x 19 cm.  The calorimeter 

serves as the N2O-exposure chamber and so all joints of all internal surfaces are treated 

with RTV silicone sealant to make the chamber gas-tight.  Each calorimeter’s lid and 

body are compressed against a closed cell rubber gasket using adjustable fasteners.  Gas 

enters through a threaded hole in the top center of the lid and exits through a threaded 
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hole centered on a lateral wall. A rat is placed directly into a calorimeter on a removable 

floor made of 0.635-cm diameter acrylic rods with a 0.318-cm gap between each rod. A 

plastic waste tray is below the rod flooring and sits on the antenna platform that is on the 

floor of the calorimeter.  The surface of the rod flooring is ~5.2 cm above the floor of the 

calorimeter.  Thus, the effective volume for the rat in the calorimeter is 19 x 19 x 13.8 

cm.    

 

Medical grades of O2, N2O, and N2 from compressed gas cylinders are mixed to provide 

the gas blend used for total calorimetry.  Each direct calorimeter chamber receives its 

blended gas from three, one for each gas, independent Mass Flow Controllers (MFC, 

model 840L-2-0V1-SV1-E-V1-S1, Sierra Instruments, Monterrey, CA) that are 

controlled by a Sable Systems Mass Flow Controller 4 (MFC-4).  The MFC-4 is 

computer-controlled via the UI-2 and the UI-2 digital I/O accessory board (Sable 

Systems).  The designated mass flows of O2, N2O, and N2 enter a custom manifold 

(Industrial Specialties, Englewood CO) where they are blended and the gas leaving the 

manifold goes through tubing containing an in-line spiral element that ensures thorough 

mixing of the component gasses.  The blended gas enters the influent gas port centered on 

the ceiling of each direct calorimeter at a flow rate of 1.5 l/min standard temperature and 

pressure, dry (STPD).  The control-gas mixture consists of 21% O2 and 79% N2. To 

rapidly establish the target concentration of 60% N2O, the first 6.5 min of gas delivery 

consist of 72% N2O, 21% O2, and 7% N2.  After 6.5 min, the gas delivery is changed to 

60% N2O, 21% O2, and 9% N2 which continues until the end of the N2O-delivery 

period when the gas is switched back to the control gas mixture. 
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Indirect calorimetry requires measuring each rat’s oxygen consumption, which is 

determined by comparing the O2 concentration entering the chamber (i.e., the baseline 

measurement) to the O2 concentration leaving the chamber.  O2 concentration is 

measured using a Sable Systems O2 analysis system (FoxBox).  In order to compute 

evaporative HL, the humidity of the gas leaving the chamber must be determined relative 

to the baseline value.  Water vapor pressure is measured using a sensitive Sable Systems 

water vapor analyzer (RH-300). A Sable System Dewpoint Generator (DG-4) is used to 

calibrate the RH-300.  A computer-controlled Sable Systems Respirometer Multiplexer 

(TR-RM4) controls the gas plumbing connections that determine whether baseline or 

exfluent gas samples are taken for measurement.  The exfluent gas is measured 

continuously except when baseline samples are collected once every 20 min for a 

duration of 1.2 min.  The baseline gas sample is collected after it exits the in-line spiral 

blender, the RH300 and the FoxBox and has been returned to the influent gas line that 

enters the ceiling of the direct calorimeter.  The exfluent gas sample is taken after the gas 

has left the direct calorimeter chamber and the digital mass flow meter (GFM-1109, 

Dwyer Instrument Inc., Michigan City, IN).  The exfluent gas sample is sent to the RH-

300, and then to the FoxBox before being returned to the exhaust gas line.  Prior to being 

vented from the lab, the concentrations of N2O, O2, and CO2 are measured using an 

infrared gas analyzer (Normocapoxy, Datex Instruments Corp., Helsinki, Finland) that 

draws gas samples via a t-connector placed in the exhaust gas line. 

 

Part II.  Rationale For Not Adjusting For Multiple Comparisons. 
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We believe that multiple comparison adjustment (MCA) presents a host of problems that 

make it inappropriate for our research.  The problems with MCA are discussed in detail 

elsewhere (Feise, 2002; Perneger, 1998; Rothman, 1990).  A summary with additional 

references that are germane to this issue is presented below.  

 

Original motivation emphasized automated decision-making in accordance with the 

needs of industrial quality control efforts, not science.  In a paper with enormous 

influence in the adoption of MCA (Neyman & Pearson, 1933), Jerzy Neyman and Egon 

Pearson wrote: “We are inclined to think that as far as a particular hypothesis is 

concerned, no test based upon the theory of probability can by itself provide any valuable 

evidence of the truth or falsehood of that hypothesis.  But we may look at the purpose of 

tests from another view-point.  Without hoping to know whether each separate hypothesis 

is true or false, we may search for rules to govern our behaviour with regard to them, in 

following which we insure that, in the long run of experience, we shall not be too often 

wrong.  Here, for example, would be such a “rule of behavior”: to decide whether a 

hypothesis, H, of a given type be rejected or not, calculate a specified character, x, of the 

observed facts; if x > x0 reject H, if x  < x0 accept H.  Such a rule tells us nothing as to 

whether in a particular case H is true when x < x0 or false when x > x0.  But it may often 

be proved that if we behave according to such a rule, then in the long run we shall reject 

H when it is true not more, say, than once in a hundred times, and in addition we may 

have evidence that we shall reject H sufficiently often when it is false.” (p. 291). 
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Accordingly, the Neyman-Pearson decision framework (Neyman & Pearson, 1928, 1933) 

was, in the words of Ronald Feise (Feise, 2002), initially adopted as a means “…to aid 

decisions in repetitive industrial circumstances, not to appraise evidence in studies.” 

Subsequently, the concept of “statistical significance” (alpha, itself a decision metric that 

originated with Neyman-Pearson) took on an undeserved aura of importance among a 

vast army of scientists and consumers of scientific information that alpha simply does not 

deserve.  

 

Irrational interpretation of p-values.  Adjusting p-values creates the conundrum whereby 

the significance of each is interpreted in light of the number of dependent variables that 

are encompassed in the “family-wise” null hypothesis, an ambiguous concept that raises a 

host of vexing questions.  In the words of Feise (Feise, 2002): “Does “family” include 

tests that were performed, but not published?  Does it include a meta-analysis upon those 

tests? Should future papers on the same data set be accounted for in the first publication?  

Should each researcher have a career-wise adjusted p-value?  Should we publish an 

issue-wise adjusted p-value and a year-end-journal-wise adjusted p-value?”   

 

No consensus on methodology.  Owing, in part, to the preceding conundrum, an 

impressive number of alternative multiple comparison adjustment methods have been 

developed and advocated (e.g., 18 methods are provided for the general linear model in 

SPSS Statistics 21), with no consensus as to which (if any) is best justified for each of an 

array of different study designs. 
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Type 2 error is a serious problem and p-values are a poor evidential metric.  Increased 

protection against type 1 error comes at the cost of increased type 2 error, a serious 

problem given the contemporary context of resource scarcity and the much amplified 

concern regarding the overuse of animals in research.  The problematic nature of under-

protection against type 2 error is exacerbated by the fact that the failure to achieve 

statistical significance is frequently interpreted to mean that the null hypothesis is true, an 

utterly fallacious conclusion that confuses p-values with evidence (Goodman, 1999a, b; 

Johansson, 2011).  As noted above, the argument for adjusting for multiple comparisons 

is motivated by the school of thought developed by Jerzy Neyman and Egon Pearson in 

1933 (Neyman & Pearson, 1933) that emphasizes controlling long-term type 1 error rates 

in an automated fashion that is largely divorced from the scientific quest of judging, to 

the extent possible, the truth or falsity of a statistical hypothesis (let alone a scientific 

hypothesis), i.e., decision error control.  This scheme rests, ultimately, on reducing 

statistical decision making to a binary choice: a statistical finding is or is not “statistically 

significant” based on an arbitrary p-value cutoff (usually p<0.05) and the arbitrary 

definition of a “family-wise” null hypothesis, as discussed above.  Tellingly, however, 

Neyman and Pearson did not themselves regard p-values as an evidential metric (see 

above), rather they only sought to control the long run type 1 error rate using simple fixed 

decision rules [discussed in detail by (Johansson, 2011)].  Well (and long) understood 

among statisticians is that p-values are of sharply limited evidential value, as they are 

conditioned solely on the null hypothesis and are uniformly distributed if the null is true 

such that the probability of obtaining any given p-value is essentially constant if the null 

is true (see Supplemental Figure 2).  A renewed effort is underway to inform working 
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scientists as to the use and misuse of p-values.  For example, a classic paper by David 

Lykken (Lykken, 1968) was recently recommended by distinguished University of 

Alabama biostatistican David Allison (http://f1000.com/prime/718373355).  In this 

paper, Lykken wrote that “…the finding of statistical significance is perhaps the least 

important attribute of a good experiment; it is never a sufficient condition for concluding 

that a theory has been corroborated, that a useful empirical fact has been established 

with reasonable confidence – or that an experimental report ought to be published. 

Arguably the most engaging denouncement of p-values-as-evidence was articulated by 

Jacob Cohen in his wonderful 1994 paper titled, “The Earth is Round 

(p<.05)” (Cohen, 1994): “What’s wrong with [null hypothesis significance testing]?  

Well, among many other things, it does not tell us what we want to know, and we so much 

want to know what we want to know that, out of desperation, we nevertheless believe that 

it does!  What we want to know is “Given these data, what is the probability that Ho is 

true?”  But …what it tells us is “Given that Ho is true, what is the probability of these (or 

more extreme) data?  These are not the same, as has been pointed out many times over 

the years by [many others].”  The point is that p-values cannot be used to judge the truth 

or falsity of the null hypothesis, and they cannot be regarded as evidence for or against 

the alternative hypothesis.  For detailed treatments of the problems with p-values see 

(Cohen, 1994; Goodman, 1999a, b; Johansson, 2011; Lykken, 1968).  

 

If not p-values, what then? Confidence intervals, effect sizes, data patterns and 

replication.  In his classic paper, David Lykken (Lykken, 1968) asserted that “The value 

of any research can be determined, not from the statistical results, but only by skilled, 

http://f1000.com/prime/718373355
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subjective evaluation of the coherence and reasonableness of the theory, the degree of 

experimental control employed, the sophistication of the measuring techniques, the 

scientific or practical importance of the phenomena studied, and so on.”  

Jacob Cohen (Cohen, 1994) recommended the use of graphic methods (pictures!), 

improvements in and the standardization of measurement, an increased emphasis on 

estimating effect sizes using confidence intervals, “and the informed use of available 

statistical methods is suggested.”  [We do so by employing modern correlated-measures 

regression models, e.g., linear mixed model analysis].  Cohen (1994) stressed that 

“psychologists must finally rely, as has been done in all the older sciences, on 

replication.”  Astonishingly, however, it would seem that what Cohen refers to as “the 

older sciences” is a classification that does not as yet adequately pertain to many 

contemporary biomedical studies published in prestigious journals.  Consider that 

following recent disclosures that many highly cited and very influential findings 

published in Science and Nature could not be replicated, NIH director Francis Collins and 

principal deputy director Lawrence Tabak published in Nature an article underscoring the 

importance of replication in biomedical research (and the pressing need for better 

statistical training), and emphasizing that journals should be more welcoming of papers 

that replicate noteworthy findings (Collins & Tabak, 2014).  Similarly, Marcia McNutt, 

the Editor-in-Chief of Science called for increased priority on reproducibility in a 2014 

editorial (McNutt, 2014). 
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Supplemental Figure 2. Monte Carlo simulation illustrating that p-values are uniformly 

distributed when the null hypothesis is true, i.e., when groups are sampled from a single 

population.  This simulation involved two groups (n=12 each) and was performed using 

an analysis of covariance power simulation program written in R.  The point is that the 

probability of obtaining any given p-value is essentially constant across p-values (in 

theory, the probability distribution is totally flat) such that one cannot gauge the truth or 

falsity of the null hypothesis when the null is true.  
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