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CYR61 and TAZ upregulation and focal epithelial to mesenchymal 

transition may be early predictors of Barrett’s esophagus 

malignant progression 
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Chaves, José B. Pereira-Leal 

Two main reasons motivated us to develop a new bioinformatics pipeline to search for early 

biomarkers of BE malignant progression using publicly available transcriptome microarray 

data. First, while several datasets on BE are in the public domain, none of them 

simultaneously contained samples from EA, P-BE and nonP-BE that could be directly 

compared. This issue required us to merge the existing samples from distinct datasets and 

compare them by DEA. However, inter-dataset DEA is very sensitive to technical noise. 

Methods such as ComBat and SVA remove batch-associated noise (reviewed in (1)) but due 

to the reduced number of available BE samples these methods also removed most of the 

meaningful biological signal. To better deal with the inter-dataset noise and to take advantage 

of genes with bimodal expression, which are in principle more easily translated to protein 

level differences and thus the ideal biomarker candidates, we included the Gene Expression 

Barcode 2.0 binarization algorithm developed by McCall et al. (2, 3). The produced barcodes 

are very robust against random sources of noise because their calculation relies on the usage 

of a large amount of annotated public data as a reference to binarize the expression of each 

gene (1=expressed, 0=not expressed) per individual sample.  

In the context of our pipeline framework (S1 Fig), we curated three publicly available 

datasets of BE data on the Affymetrix HG-133A GeneChip® microarray platform. Overall, 

these three datasets contained a total of 33 BE samples. Samples described as collected in the 
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context of a clinically diagnosed EA (4) were assigned to the P-BE group (n=8) and samples 

not associated with EA at the time of analysis (5, 6) were assigned to the nonP-BE group 

(n=25). After frozen robust multi-array (fRMA) sample normalization (2, 3) we verified that 

individual samples in the merged set displayed highly correlated expression profiles 

(Parson’s correlation mean=0.92, min=0.80) (S2 Fig). This is indicative that despite the three 

distinct data sources and associated batch noise, the biological signal of BE samples was very 

comparable.  

We next identified differential gene expression (DGE) between P-BE and nonP-BE samples 

using a Bayesian DEA, as illustrated in S1 Fig C. Under the very conservative statistical 

criteria logarithm of the odds (Lods)≥5, probability DGE>99.33%) and a false discovery rate 

(FDR) of 3.9×10-5 for DGE, we identified 958 independent probe sets mapping to 799 

unique ENTREZ id genes (S3 Table). Among the unique genes, we have found up-regulation 

for 442 (S1 Fig C) and down-regulation for 357 genes. The 799 genes are able to correctly 

segregate P-BE from nonP-BE samples (S3 Fig A). As anticipated (see Materials and 

Methods section), no significant probe sets were found after testing of EA samples across 

distinct datasets (Kimchi et al. (4) vs. Watts et al. (6)). Barcode binarization of fRMA 

normalized BE and EA data (S1 Fig D) and the subsequent intersection of P-BE and nonP-

BE barcodes allowed us to find a set of 148 probe sets (S4 Table) expressed in the P-BE 

samples (barcode=1) but oppositely marked as non-expressed (barcode=0) in the nonP-BE 

samples (S1 Fig E). To find candidates more likely associated with malignancy we assumed 

that P-BE-specific probe sets should overlap with probe sets expressed in EA (barcode=1). 

Thus, we have next intersected the 148 and 1195 probe sets, respectively from P-BE and EA 

barcodes. This procedure resulted in the filtering of malignancy- linked barcode candidates to 

40 probe sets, corresponding to 38 unique genes (S1 Fig F), up-regulated in P-BE and EA 

samples as compared to nonP-BE samples. To maximize the discovery of BE early 
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progression biomarkers that most likely could be translated into routine clinical practice, we 

defined our top candidates as genes up-regulated according to DGE results and with barcode 

values set to 1 (S1 Fig G). With this final step we slimed down the final list of candidates to 

20 probe sets, corresponding to 19 unique genes over-expressed in P-BE (S1 Fig H). 

Systems biology approach for biomarker prioritization  

To improve biomarker prioritization we thought of integrating biological functions of filtered 

genes with functions potentially relevant for BE malignant progression, by uncovering the 

gene GO-BP categories over-represented among the 19 filtered biomarkers. First, we used a 

guilt-by-association GeneMANIA tool (7) to build a functional association network between 

the set of 19 genes and 100 network neighbors (S6 Fig A). Secondly we used all network 

players to evaluate the enriched GO-BP categories by GSEA. We have used this alternative 

strategy instead of directly applying GSEA to the set of 19 genes due its reduced number. 

GSEA on GeneMania network genes (biomarkers and neighbors) highlighted that the 

significant (FDR<0.05) GO-BP top categories related with cell adhesion/motility, 

inflammation, differentiation/wounding, vasculature development, extracellular-matrix and 

response to stimulus among others (S6 Fig B, S5 Table).  

To further increase the odds of success of downstream validation efforts, we have used 

knowledge-driven biomarker prioritization criteria. To be included, candidates must be 

functionally linked to 1) top biological functions detected by GSEA and to 2) phenotype 

features that characterizes BE (e.g. differentiation/wounding responses) and finally 3) 

candidates must have been previously associated to cancer progression in other tumors. Thus, 

we have searched the literature for functional characterization of the set of 19 ge nes and 

selected two potential biomarkers for proof-of-principle experimental validation. CYR61 

(alias CCN1) was the most significantly over-expressed gene in our DGE analysis (S3 Table) 

and according to barcode analysis is expressed in >93 % of EA samples. Its over-expression 
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is involved in the malignant progression and prognosis of major tumors (breast, prostate, 

colorectal and others outlined in Table 1). CYR61 was recently identified in the context of 

breast cancer (8) as a downstream target of WWTR1 (a lias TAZ), one of the barcode and 

differentially expressed genes. TAZ up-regulation is also implicated in the progressive 

phenotype of malignant tumors such as breast, colorectal and glioma, among others (Table 1) 

and was expressed according to barcode in 87% of the EA tumors in our dataset. In addition 

to CYR61, six other TAZ downstream target genes (SPARC, IER3, JUN, ACTN1, COL4A1, 

PPAP2B) were significantly enriched (P-value=2.2×10-4) among our group of 19 candidates 

(S7 Fig A), suggesting that specific pathways where CYR61, TAZ and likely other 

functionally- linked genes operate are deregulated during BE-associated EA progression. To 

further test this functional link hypothesis we explored CYR61 and TAZ interacting genes 

with gene GeneMania networking algorithm (S7 Fig B). Among network genes we identified 

barcode genes (e.g. FOS, JUN, LAMC1), significantly up-regulated genes (e.g. TEAD3, 

FOSB, ATF3) of which some are TAZ downstream targets (e.g. CTFG, JUN, EGR1). 

Analysis of top GO-BP categories (FDR<0.01) over-represented among CYR61, TAZ and 

neighbors (S7 Fig C) pointed to biological functions involving cell adhesion/migration, 

transcription and response to stimulus (S6 Table). One hypothesis suggested by the data is 

that P-BE samples have deregulated transcriptional responses to diverse stimuli, including an 

up-regulation of cell adhesive and migratory properties which will ultimately contribute to 

the malignant phenotype of BE cells.  
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