
Supporting information text

Derivation of the MSS objective function

This supporting information explains how the MSS objective function is derived. It is a
review of the respective section in [14].

Given observations O0,O1, . . . ,On at time points t0, t1, . . . , tn, the observation based
likelihood function L(O, θ) gives the probability to obtain the data O given a parameter
θ. This likelihood function can be factorized into

L(O, θ) =
n
∏

i=1

P (Oi;Oi−1, . . . ,O0, θ), (35)

where P (Oi;Oi−1, . . . ,O0, θ) is the probability to observe Oi given previous observations
Oi−1, . . . ,O0. This probability can be written as

P (Oi;Oi−1, . . . ,O0, θ) =
∑

νi∈Ωi,νi−1∈Ωi−1

P (Oi; νi)P (νi; νi−1, θ)P (νi−1;Oi−1, . . . ,O0, θ)

(36)

Measurement noise

The first factor describes the measurement noise: P (Oi; νi) is the probability to measure
Oi if being in state νi. As this is in most cases a Gaussian distribution, its calculation
is computationally fast because it does neither involve stochastic simulations nor ODE
solutions.

Transition probability

The second probability is the transition probability for a transition from to νi−1 to νi. Its
distribution is generally unknown. It could be calculated with the use of simulations and
density estimation methods or the solution of a high dimensional chemical master equation
system. Both are from computational point very time consuming. Therefore, [13, 14]
suggest to approximate it with a normal distribution:

P (νi; νi−1, θ) ≈ p(νi; νi−1, θ) = f (νi|x(∆t; θ, νi−1),Σ(∆t; θ, νi−1)) , (37)

where f(y|µ,Σ) is the probability density function of a multivariate normal distribution
with mean µ and covariance Σ which is calculated by a linear noise approximation as in
equation (12).

As the Gaussian distribution has a continuous support, the probability for P (Oi;Oi−1, . . . ,O0, θ)
in equation (36) is calculated with an integral instead of the sum:

P (Oi;Oi−1, . . . ,O0, θ) ≈ (38)
∫

νi∈Λi,νi−1∈Λi−1

P (Oi; νi)p(νi; νi−1, θ)P (νi−1;Oi−1, . . . ,O0, θ)dνidνi−1 (39)

where Λi stands for the state space at time point ti. In many cases the state space will
be constant over time, hence Λ = Λ1 = Λ2, . . . = Λn.
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State estimation

The third probability P (νi−1;Oi−1, . . . ,O0, θ) is the probability to be in a state νi−1

given the observations Oi−1, . . . ,O0. This probability is challenging from a computational
point of view due to two reasons: first, its evaluation needs computational expensive
formulas from hidden Markov processes (equation 1 in [51]). Second, even once it is eval-
uated for every point νi−1 in the state space Λi−1, the transition probability p(νi; νi−1, θ)
has to be calculated for any of these points. This is, even with the approximation,
computationally challenging (see also comment in discussion).

Therefore, a state updating is used instead of the full probability distribution
P (νi−1;Oi−1, . . . ,O0, θ) to estimate the state νi−1 at time point ti−1: Given a state
estimate ν̂i−1 at time ti−1, the probability to see the observation Oi at time ti is the
product of the probability to move from state ν̂i−1 to a state νi and the probability to
see Oi if the state is νi. A state estimate ν̂i can be defined as the state that leads to the
highest probability to observe Oi:

ν̂i = argmaxνi

(

f (νi|x(∆t; θ, ν̂i−1),Σ(∆t; θ, ν̂i−1)) · f
(

Oi|ν
obs
i ,Σmeas

))

(40)

for i = 1, . . . , n− 1 and x as in equation (2) and Σ as in equation (12). The initial state
ν̂0 is included into the optimization vector. This is a quadratic optimization problem
with an analytical solution and therefore computationally very fast.

By definition the state estimate incorporates information available from the previous
observations. The state estimate ν̂i−1 is then used to evaluate P (Oi,Oi−1, . . .) as

P (Oi;Oi−1, . . . ,O0, θ) ≈

∫

νi∈Λi

P (Oi; νi)p(νi; ν̂i−1, θ)dνi (41)

The state estimation procedure can be considered as a 1-point evaluation of the integral
or an approximation of the distribution with a point distribution. Although this seems
to be a rough approximation, extensive simulation studies [14] have shown that this
allows to estimate states and parameters. When considering different models, there
are two options to check whether the approximation is appropriate: first, stochastically
simulating time courses, applying this approach to them, and checking how well the
states are estimated. Second, using updates formulas for P (νi−1;Oi−1, . . . ,O0, θ) (such
as equation 1 in [51]) to evaluate the term in equation (36) and comparing the result to
equation (41). The wide use of Kalman-filtering techniques [52] shows that the use of
state estimates allows for an successful analysis.

The MSS objective function

Taking the logarithm of equation (35), inserting the approximation of equation (41)
and considering Gaussian measurement error, leads to the MSS objective function as
displayed in equation (15).

Settings for the parameter estimations

Immigration-Death model:

The parameter estimation for the Immigration-Death model was carried out by opti-
mizing the MSS objective function (equation (15)). The optimization was performed
with the FindMinimum algorithm in the software Mathematica 9 [53]. The search was
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initialized with the true parameter and terminated with at maximum 500 iterations.
Only for the parameter estimations with the benchmark method, the version 10.4 [54]
was used as the version 9.0 seemed to be much slower here.

Lotka-Volterra model:

The parameter estimation for the Lotka-Volterra model was also carried out with the
FindMinimum algorithm in the software Mathematica 9. The search was initialized with
the true parameter θ(0) and (1.1, 1.1, 1.1, 0.9)θ(0) as a second start value.

Calcium oscillation model:

The parameter estimation for the fully observed Calcium oscillation model was carried
out using a Particle Swarm [55] algorithm implemented in Mathematica [53]. The search
domain of the Particle Swarm was

[50, 400]× [2.75, 3.25]× [1.4, 1.75]× [.01, 1000]× [3, 7]× [1, 5000]× [1., 1.4] (42)

×[27500, 40000]× [20000, 40000]× [10, 20]× [130000, 170000]× [100, 200] (43)

with 125 iterations and 25 particles per iteration. The partially observable Calcium
model had a search domain of

[1, 400]× [2.7, 3.75]× [1, 2.5]× [0.1, 1000]× [0.1, 7]× [0.1, 10000]× [0.25, 2.5](44)

×[10000, 40000]× [10000, 75000]× [5, 500]× [100000, 300000]× [10, 300] (45)

×[0.001, 1000]× [0.01, 1000] (46)

with 300 iterations and 150 particles per iteration.

Calculation of the Fisher information for the exact approach for

the Immigration-Death model

The Fisher information FIex (equation 30) is derived as follows (see also [56]) with

Bi =
∂

∂ϑj

log(Pex(νi, ti − ti−1; νi−1, θ))
∂

∂ϑk

log(Pex(νi, ti − ti−1; νi−1, θ)) (47)
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as an abbreviation

FIex(T, ϑ)jk = EO

[

∂

∂ϑj

logLex(O, ϑ)
∂

∂ϑk

logLex(O, ϑ)

]

(48)

=
∑

ν1,...,νn

(

n
∑

i=1

∂

∂ϑj

log(Pex(νi, ti − ti−1; νi−1, θ)) (49)

∂

∂ϑk

log(Pex(νi, ti − ti−1; νi−1, θ))

)

P (ν1, . . . , νn) (50)

=
∑

ν1

. . .
∑

νn

(

n
∑

i=1

Bi

)

P (νn|νn−1) . . . P (ν1, ν0) (51)

=

n
∑

i=1

∑

ν1

. . .
∑

νn

BiP (νn|νn−1) . . . P (ν1, ν0) (52)

=

n
∑

i=1

∑

νi

∑

νi−1

Bi

∑

νn

. . .
∑

νi+1

∑

νi−2

. . .
∑

ν0

P (νi|νi−1) (53)

=

n
∑

i=1

∑

νi

∑

νi−1

BiP (νi|νi−1)P (νi−1|ν0) (54)

In the second equality the Markov property is used, the third and fourth change the
summation in a suitable order and the fifth uses the following relations:

∑

νj

P (νj |νj−1) = 1 for j = i+ 1, . . . , n,

∑

νj

P (νj+1|νj) P (νj |νj−1) = P (νj+1|νj−1) for j = 1, . . . , i− 2.
(55)
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