Supplementary information

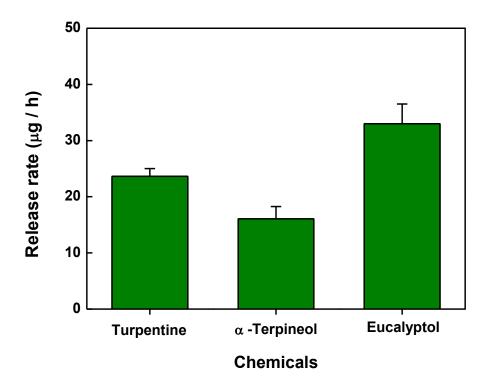
Non-Host Plant Volatiles Disrupt Sex Pheromone

Communication in a Specialist Herbivore

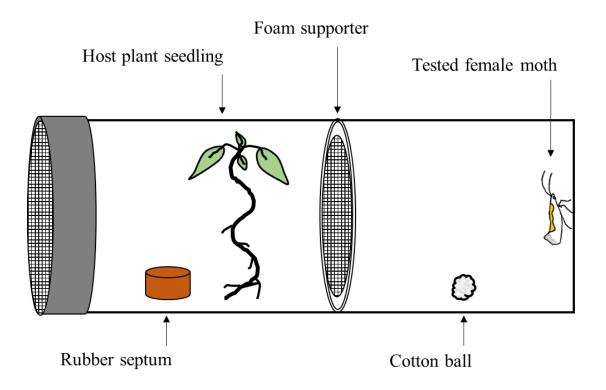
Fumin Wang¹, Jianyu Deng^{1,*}, Coby Schal^{2,*}, Yonggen Lou³, Guoxin Zhou¹, Bingbing Ye¹, Xiaohui Yin¹, Zhihong Xu¹, Lize Shen¹

¹Department of Plant Protection, School of Agriculture and Food Science, Zhejiang

Agriculture and Forestry University, Lin'an, Hangzhou, Zhejiang, 311300, China;


²Department of Entomology and W. M. Keck Center for Behavioral Biology, North

Carolina State University, Campus Box 7613, Raleigh, NC 27695–7613, USA;


³National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China;

*To whom correspondence should be addressed.

E-mail: jydeng70@aliyun.com ; coby@ncsu.edu

Figure S1 Mean estimated release rates + SEM (N = 30) of NHPVs loaded at 1000 µg per rubber septum used in observations of calling behavior. Groups of 10 rubber septa were weighed together on an electronic balance (Mettler-Toledo, d = 0.0001 g). Release rates were calculated as mass loss of the rubber septa throughout the 11-h observation period (18:00 – 5:00).

Fig S2 Schematic diagram of arena utilized in observation of calling behavior of female diamondback moth. Odor sources and insect were compartmentalized by window screening supported by a foam loop.

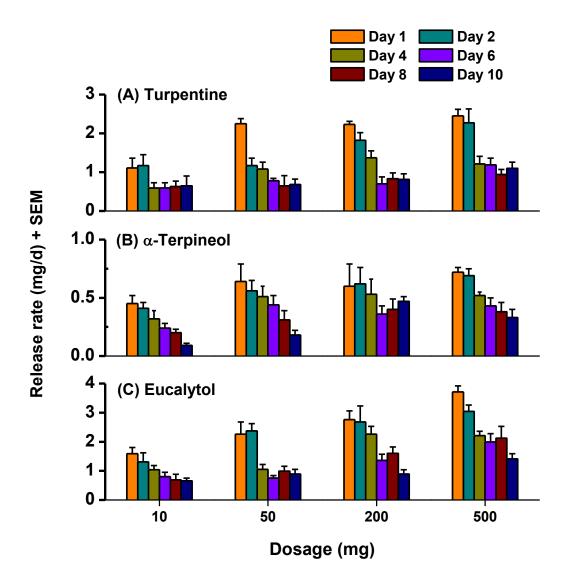


Figure S3 Mean estimated release rates + SEM (n = 5) of NHPVs in a Chinese cabbage (*Brassica rapa Linnaeus* var. *glabra* Regel) field. Release rates were calculated by the decreasing weights of polyethylene centrifuge tubes over consecutive days.