
Table I:  Top five nodes in each protein by degree and closeness 
Degree and closeness are given in parentheses for each residue. 

Protein Top 5 Nodes by           
anthranilate synthase degree L136(12) S135(10) H134(9) H107(8) R257(8) 

  closeness G485(0.20) K357(0.20) K502(0.20) D489(0.19) R469(0.19)
ATCase degree T79(11) Y240(9) R41(8) A245(7) S238(7) 

  closeness E10(0.30) V9(0.28) A11(0.28) R41(0.27) D4(0.26) 
ATP sulfurylase degree L229(8) R572(6) M332(6) T230(6) Q331(6) 

  closeness R515(1.0) D111(0.66) F330(0.21) A213(0.20) M332(0.20)
ATP-PRT degree R184(8) I55(7) S59(6) R160(6) E61(5) 

  closeness Q164(0.17) K32(0.17) R160(0.17) D33(0.17) D30(0.16) 
DAHP synthase degree K97(8) K105(7) E96(6) C61(3) D326(3) 

  closeness K105(0.46) K97(0.41) Q170(0.38) E96(0.37) R99(0.34) 
FBPase-1 degree Y57 (12) A51(12) K71(11) I59(10) A54(9) 

  closeness M18(0.11) R15(0.11) Q32(0.11) S88(0.11) A60(0.11) 
glcN-6-P deaminase degree E148(7) L153(5) K160(5) S151(5) T225(5) 

  closeness K208(0.5) T41(0.5) G43(0.42) F173(0.42) G42(0.42) 
GTP cyclo-hydrolase I degree V209(9) K230(8) E119(7) Q210(7) R226(6) 

  closeness K230(0.09) E233(0.08) R226(0.08) P229(0.08) R232(0.08)
glycogen phosphorylase degree R269(10) Y262(10) F252(9) V266(8) L254(7) 

  closeness Y75(0.32) S314(0.29) R310(0.28) D42(0.26) G317(0.26)
lactate DH degree T236(10) P60(9) R156(8) I229(8) I230(8) 

  closeness K170(0.10) P60(0.10) H54(0.10) F159(0.10) I229(0.10) 
NAD-malic enzyme degree Y112(9) N421(6) F68(6) E314(5) N467(5) 

  closeness N421(0.41) N467(0.41) L167(0.41) N466(0.41) D279(0.39)
phosphofructokinase degree A157(14) H160(11) T158(10) R162(10) S159(9) 

  closeness A157(0.43) T158(0.41) K214(0.41) R162(0.41) H160(0.40)
phosphoglycerate DH degree L142(5) Q298(3) R60(3) A143(3) K141(3) 

  closeness G18(0.54) H292(0.4) P212(0.4) A238(0.4) S216(0.38)
PTB1B degree W291(10) F182(6) S295(6) N193(6) E297(6) 

  closeness F182(0.48) R221(0.43) Q262(0.41) D181(0.40) N193(0.37)
uracil PRT degree R80(11) P114(9) L79(8) F215(7) Y123 (5) 

  closeness E87(0.18) R37(0.17) Q98(0.17) V83(0.17) R97(0.16) 
 



Table II:  list of allostery-altering mutations for three proteins 
 
1) phosphofructokinase (PFK) 
In WT, GDP counters PEP inhibition but has no effect by itself. 
 
ref mutation   effect                                      
[1] D59A, D59M   mild decrease in PEP inhib 
 R25A, D211A   severe reduction (~100fold) of PEP inhib 
[2] R252A    large increase in PEP inhib 
[3] G212V    3x weaker PEP inhib than WT 
     insensitive to GDP activation 
[4] E161Q    ~10x weaker PEP inhib, ~6x stronger GDP act. 
 E161A    ~2x weaker PEP inhib, ~4x stronger GDP act. 
[5] E161A    coupling ΔG (PEP-fru6P) similar to WT 
 R162A, E161A+R162A coupling ΔG ~2/3 of WT 
 
Summary of key positions (those used for testing of allosteric networks): 
reduce PEP inhib:  E161Q (A), R162A, G212V, R25A, D211A 
increase PEP inhib:  R252A 
 
2) fructose bisphosphatase (FBPase) 
 
ref mutation   effect                                      
[6] R140A, T31S   <10-fold –AMP inhib 
 A24F    10-100-fold –AMP inhib 
 T31A, Y113F   >1000-fold –AMP inhib 
[7] R22A    10-fold –AMP inhib 
[8] E98Q    abolish coop of AMP inhib 
[9] R22K    10-100 fold –AMP inhib 
 N9D    <10-fold –AMP inhib 
 T27A, M18R   >1000-fold –AMP inhib 
[10] K42A    >1000-fold AMP required for full inhib 
     cooperative AMP inhib disrupted 
[11] D187A    <10-fold –AMP inhib 
 E92Q, E92A   >100-fold AMP required for full inhib 
     cooperative AMP inhib disrupted 
[12] K71A    ~10-fold –AMP inhib 
 K71M+K72M   ~150-fold –AMP inhib 
 D74E, N64A   abolish AMP cooperativity 
[13] K50A, K50Q   abolish AMP cooperativity 
 R49A, R49Q   abolish AMP cooperativity + 
     >1000-fold –AMP inhib 
[14] Y57W    <10-fold –AMP inhib 
 A51P    100-1000-fold –AMP inhib 
 K50P    >1000-fold –AMP inhib 
[15] K112Q, Y113F  >1000-fold –AMP inhib 



 
key mutants:  A24, T31, Y113, R22, T27, M18, K42, E92, K72, R49, A51, K50, K112 
weak or unclear mutants:  R140, E98, N9, D187, K71, D74, N64, Y57 
 
3) Aspartate transcarbamoylase (ATCase) 
 
ref mutation   effect                                      
[16] R-K94Q   no ATP activation 
     weakened CTP inhib 
[17] C-Q108Y, R-N113G  slight alteration in ATP activation 
     slight (~1.5) weakening of CTP inhib 
[18] R-N111A   no ATP act or CTP inhib 
[19] R-K56A   no ATP act, weakened CTP inhib 
[20] C-E50[A or D]  weakened ATP act & CTP inhib 
[21] C-Q231L   weakened ATP act & CTP inhib 
 C-R167Q   no effect on ATP or CTP 
[22] C-(K164E, E239K)  no discernible ATP act or CTP inhib 
[23] R-Y77F   ATP activation -> inhibition! 
[24] R-K60H   no discernible ATP act or CTP inhib 
 K60R/Q   no effect 
 K60A    lost CTP inhib 
 R-K94H   very slight weakening of ATP act, CTP inhib 
[25] C-D160A   no discernible ATP act or CTP inhib 
[26] R-(C109H, E119D)  lost CTP inhib (pH 7) 
[27] R-(V106W, L76A, L151Q) weakened ATP act 
[28] R-(F145W, S146E, S146A, weaken or abolish ATP act 
 N148D, N148A, V149A, 
 N153G) 
[29] C-E50A   weaken ATP act 
 C-S171A   weaken CTP inhib 
[30] R-E162A   strengthen ATP act, CTP inhib 
 R-I12A   weaken CTP inhib, no ATP act 
[31] R-V106L   weakened ATP act & CTP inhib 
 R-D104G   lost ATP act 
 I103T    ATP act -> inhib 
[32] R-T82A   stronger ATP act, weaker CTP inhib 
[33] C-D162A   weakend ATP act 
[34] C-D236A   no ATP act or CTP inhib 
 
summary of mutants with significant effects: 
catalytic chain (A, C, …):  Q108, E50, Q231, K164, E239, D160, S171, D162, D236 
regulatory chain (B, D, …):  K94, N113, N111, K56, Y77, K60, C109, E119, V106, L76, 
L151, F145, S146, N148, V149, N153, E162, I12, D104, I103, T82 
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Table III:  Expected and actual occurrences of allostery-perturbing mutants in allosteric networks 
for three proteins 
For each mutant in each protein, expected is the number of monomers containing that residue, actual is the 
number of times that residue occurs in the allosteric network, and hit rate = actual / expected. 
 
A:  phosphofructokinase    
  occurences    
residue expected actual hit rate  
E161 4 4 1.00  
R162 4 4 1.00  
G212 4 2 0.50  
R25 4 4 1.00  
D211 4 2 0.50  
R252 4 4 1.00  
total 24 20 0.83  
     
     
B:  fructose bisphosphatase   
  occurences    
residue expected actual hit rate  
A24 4 4 1.00  
T31 4 4 1.00  
Y113 4 0 0.00  
R22 4 4 1.00  
T27 4 4 1.00  
M18 4 4 1.00  
K42 4 0 0.00  
E92 4 0 0.00  
K72 4 4 1.00  
R49 4 0 0.00  
A51 4 4 1.00  
K50 4 4 1.00  
K112 4 0 0.00  
total 52 32 0.62  
     
     
C:  aspartate transcarbamoylase   
The mutants in the top block are catalytic chain residues; 
those in the bottom block are regulatory chain residues. 
  occurences    
residue expected actual hit rate  
C-Q108 6 0 0.00  
E50 6 6 1.00  
Q231 6 6 1.00  
K164 6 6 1.00  
E239 6 6 1.00  
D160 6 0 0.00  
S171 6 4 0.67  



D162 6 3 0.50  
D236 6 6 1.00  
R-K94 6 6 1.00  
N113 6 3 0.50  
N111 6 6 1.00  
K56 6 3 0.50  
Y77 6 6 1.00  
K60 6 6 1.00  
C109 6 0 0.00  
E119 6 0 0.00  
V106 6 6 1.00  
L76 6 6 1.00  
L151 6 3 0.50  
F145 6 6 1.00  
S146 6 3 0.50  
N148 6 3 0.50  
V149 6 6 1.00  
N153 6 6 1.00  
E162 6 0 0.00  
I12 6 3 0.50  
D104 6 3 0.50  
I103 6 3 0.50  
T82 6 6 1.00  
total 180 121 0.67  
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Figure 2:  Allostery-perturbing mutants and closest residues in two clusters of ATCase

A:  One half of ATCase (1RAC.pdb, I structure), including one catalytic trimer (white) and parts of 
one monomer from each of the regulatory dimers (gray).  Cyan:  residues in cluster 1; green:  
allostery-perturbing mutants in cluster 1; blue:  closest residues in cluster 1 (10 per catalytic 
subunit).  The allostery-perturbing mutants and the closest residues do not overlap.

B:  one regulatory dimer from ATCase.  Cyan:  residues in cluster 2; 
green:  allostery-perturbing mutants in cluster 2; blue:  closest residues in 
cluster 2 (5 per regulatory subunit); purple:  inhibitor (CTP) molecules.  
The allostery-perturbing mutants and the closest residues do not overlap.

Continued on next page



Figure 2A shows that cluster 1 is located in the catalytic trimers and in the C-terminal 
domains of the regulatory subunits.  Most known allostery-perturbing mutants are located 
near the substrate-binding sites (not shown) near the centers of the catalytic chains or at 
the interfaces between the two domains of the regulatory chains at the periphery of this 
large cluster.  On the other hand, the 60 residues with highest closeness in this cluster (10 
per subunit) lie near the central axis of the catalytic trimer in the region where the two 
catalytic trimers interact, which is close to the substrate-binding site but far from the 
regulatory chain.  Thus, while closeness fails to illuminate the regions of this cluster 
where it is most natural to expect that there would be residues important to allostery, it 
may well have identified a new, previously untested region as being important to 
allostery in this protein.  This central region might mediate communication among the 
catalytic subunits.  ATCase clusters 2-4, which are respectively located in the three 
regulatory dimers in the N-terminal domain of each subunit, show similar situations 
(Figure 2B).  In cluster 2, most known allostery-perturbing mutations surround the 
effector binding sites, while the 10 residues with highest closeness (5 per subunit) lie at 
the dimer interface, a region which might be important for communication within the 
dimer.   
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Figure 3:  CRN residues vs. SCA residues for two proteins
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Figure 4:  Comparison of contact rearrangement network results to two normal 
mode analysis-based studies 
Graphs are formatted as in figure 4 of main text. 
A:  Comparison of CRN for myosin (1Q5G vs. 1VOM) to the top 10% dynamically 
correlated residues of the structure 1VOM as calculated by Zheng and Brooks (2005).  
Salmon:  top 10 % dynamically correlated residues captured by top 7 clusters. 
B:  Comparison of CRN for cyclin A binding transition (1HCK vs. 1FIN) to PIVET 
analysis by Gu & Bourne (2007).  Salmon and light blue:  residues in the 10 pairs with 
the greatest influence on global fluctuation according to PIVET which also appear in the 
network.  Light blue:  CRN key residues (in the top 5 by degree or closeness) which are 
also in the top 10 PIVET pairs.  Cyan:  remaining CRN key residues.  Magenta:  top 10 
PIVET interactions captured by the CRN. 
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