A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice

Fei Chen^{1,*}, Guojun Dong^{2,*}, Limin Wu¹, Fang Wang³, Xingzheng Yang¹, Xiaohui Ma¹, Haili Wang¹, Jiahuan Wu¹, Yanli Zhang¹, Huizhong Wang¹, Qian Qian^{2,#} and Yanchun Yu^{1,#}

¹College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China

²State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China

3Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China

[#]Correspondence authors.

E-mails: <u>ycyu@hznu.edu.cn</u> and <u>qianqian188@hotmail.com</u>.

Supplemental Figure S1. Comparison of tiller number per plant (a), seed setting ratio (b), and 1,000-grain weight (c) between wild-type and *yl1-1* mutant plants. Data in (a)-(c) were measured from plants grown within 60×60 cm spacing in field. All the data are means \pm SD (n = 10). **, P<0.05.

Supplemental Figure S2. Transmission electron microscopy (TEM) of chloroplasts from leaf 2 (a, b, c, d) and leaf 3 (e, f, g, h) of 40-day-old wild-type (WT, left) and *yl1-1* (right) seedlings. Leaf 1 to Leaf 4 represent leaves from the youngest to the oldest ones. (c), (d), (g), and (h) Enlarged images of chloroplasts shown in (a), (b), (e), and (f), respectively. Bars = $2.0 \,\mu$ m in (a), (b), (e) and (f); and $0.5 \,\mu$ m in (c), (d), (g) and (h).

Supplemental Figure S3. Complementation test of YL1. (a) Schematic diagram of the complementation plasmid containing the entire *YL1* (genomic DNA). (b) Restriction enzyme map of *AciI*. An *AciI* restriction site was abolished by the C-to-T transition in mutation sequence. Primers (YP2869 and YP2870) were used for amplify a 207-bp DNA fragment around the mutation position.

Supplemental Figure S4. Knockout mutant *yl1-2*, **by T-DNA insertion, presents similar phenotype of** *yl1-1*. a, Localization of T-DNA insertion site in the *YL1* gene. Exons, introns and UTR regions are indicated in black boxes, black lines and brown boxes, respectively. The triangle indicates the T-DNA insertion in *yl1-2* (RMD_03Z11BQ88). Positions of primers used in (b), (c) and (d) are indicated by arrowheads. b, PCR analysis of genomic DNA from the wild type (WT) and *yl1-2* mutants confirms the homozygosity of the mutants. Band 1, amplification with primers YP3180 and YP3181; Band 2, amplification with primers YP3189 and YP3181; c and d, RT-PCR (c) and qRT-PCR (d) analysis of *YL1* expression in the wild type and *yl1-2* plants. Data for WT and *yl1-2* plants are presented as mean \pm SD (n = 3). e, Phenotypes of WT and *yl1-2* mutant plants. (i) Phenotypes of two-week-old wild type and *yl1-2* seedlings cultured in nutrition solution. (ii) Phenotypes of wild type and *yl1-2* mutant. Chl.a, Chlorophyll a; Chl.b, chlorophyll b. Data are means \pm SD (n = 5).

Supplemental Figure S5. Sequence analysis and phylogenetic tree of YL1 homologs. a, Schematic representation of the predicted protein structure of YL1. cTP, chloroplast transit peptide; tm, transmembrane domain. b, Phylogenetic analysis of YL1 and its homologous proteins. Amino acid sequences of YL1 orthologous proteins were analyzed using MEGA5 software (version 5.05) with neighbor-joining method. The numbers at the nodes represent percentage bootstrap values based on 1,000 replications. YL1 (LOC_Os02g05890) is highlighted by the red box. c, Sequence alignment of YL1 and its homologous proteins. The alignment was performed using ClustalW (http://www.ebi.ac.uk/Tools/msa/). High and low consensus residues are shown in red and blue, respectively. Transmembrane region is predicted by TMHMM (http://www.cbs.dtu.dk/).

Supplemental Figure S6. Diagram (a) and chlorophyll contents (b) of different leaves from wild-type plants. L1 to L5 (Leaf1 to Leaf5) represent leaves from the youngest to the oldest ones in 80-day-old wild-type plants grown under field condition. Data are means \pm SD (n = 5).

Supplemental Figure S7. Expression analysis of genes involved in photosynthesis in wild type (WT) and *yl1-1* leaves. The relative expression level of each gene were analyzed by qRT-PCR and normalized using the Actin gene (LOC_Os03g50885) as an internal control (mean \pm SD, n=3).

Supplemental Figure S8. 2D BN/SDS-PAGE fractionation of thylakoid membrane protein complexes. Thylakoid membrane proteins were extracted from leaves of 4-week-old wild type and *yl1-1* mutant plants. Proteins were loaded on an equal chlorophyll content basis. I, PSI-PSII supercomplex; II, PSI-PSII dimer; III, PSI monomer; IV, CP43-less PSII core monomer; V, LHCII dimer; VI, LHCII monomer.

Supplemental Figure S9. ATPase activity in isolated chloroplasts of wild type and *yl1-1* mutant plants. Intact chloroplasts were isolated from the leaves of wild type and *yl1-1* mutant, and ATPase activity (equal fresh weight basis) was determined as described in Materials and Methods. Data are means \pm SD (n = 4). Asterisks indicate a statistically significant difference from the wild type (**, P<0.01).

	$Pn \qquad (\mu mol CO_2 m^{-2} s^{-1})$	Gs (mol CO ₂ m ⁻² s ⁻¹)	$\operatorname{Tr}_{(\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1})}^{\text{Tr}}$
Wide type	20.6±0.28	0.65 ± 0.06	7.44±0.23
yl1-2	15.0±0.26**	0.31±0.03**	4.92±0.30**

Supplemental table S1. Photosynthetic parameters in wild type and *yl1-2* mutant plants.

Data are presented as means \pm SD (n = 6). The asterisk indicates significant difference between the wild type and *yl1-1* mutant (Student's t-test, **, p < 0.01). Chl, chlorophyll; Pn, net photosynthetic rate; Gs, stomatal conductance; Tr, transpiration rate.

Primer name	Forward primer
Map-based cloning	
RM7562-F	AGACATGCCAATGTGATGGC
RM7562-R	TCGGTAGTATGGGGGCTTGTC
RM3703-F	GAGAGAGAGGGAAGGGAAGG
RM3703-R	GCTCCCCGACATTTAAACTG
YP1957-F	ATTCCTCTACATGGTTGATTT
YP1957-R	TTGTCCGTCTCCGAATCGCT
YP1959-F	ATGCTTGATTCGCCATGCTAC
YP1959-R	CTAGGAGATATTTGTAGCTA
YP2033-F	AGGTGCGTTCCTTCGCTCGAT
YP2033-R	GCCTCTGATTCAAGAATCACT
YP1963-F	ACAATAGCGTAGTACTACCA
YP1963-R	GAGGCAGAGATGAAGCTGCA
YP2039-F	AGCGTAGTACTACCATGTACT
YP2039-R	CATTGCATTGCAACACAGAT
RM3495-F	ACTCTCTAAACTGGAGCAAT
RM3495-R	CTTGATGCCTAATCTAATCC
YP1755-F	AATCCGATCGTACGAGCAAC
YP1755-R	GACAAGGGAAGGAAACCCTC
RM279-F	GCGGGAGAGGGATCICCI
RM2/9-R	GGCTAGGAGTTAACCTCGCG
YP2344-F	
YP2344-R	
YP2392-F	
YP2392-K	
1P2809-F VD2870 D	
v/1-2 mutant genotyping	ACUAACAUUATUAATCCACC
VD2180 E	CATCTTCTCTCCTCCCC
1P3160-F	
YP3181-R	GAATATGCAAGGAGCGCTTC
YP3189-F	ATAGGGTTTCGCTCATGTGTTGAGCAT
Quantitive real time PCR	
YL1-F (YP2496)	ATGCCTCCACTTGCCACAAT
YL1-R (YP2520)	CACGAACAGGATGAATCCAC
V1-F	AGAATCAGCGCGAGAAGAAGAACCT
V1-R	TACACCAGCTTTGGAGGAGCTGAA
V2-F	AGCAGATCCGTGATTACATGGCGA
V2-R	TGCCTCTTCACTCTCTGCAACCAA
V3-F	AACGAGAGATCTGGGCTGAATGCT
V3-R	CTCTCATTAACATGTGTTGC
RpoA-F	TAGATGCTGTATCCATGCCT

Supplemental Table S2. A list of primers used in this study.

CTCTTCCTCCGTGTGAAGAA	
AGTCTTATGGCATCTTGAGTG	
GACCGCTTCTTCTTTGAGG	
AGATACGGAGACTTGCTTCA	
GCTCCCTAATATCCAACTGACT	
AAGCAGACAGTGATGACATC	
ATCTTTGCACAATCACCAAG	
CCGGAGACGTTCGCCAAGA	
ATGAGCACCACCTGCACCG	
CTTGGCAGCATTCCGAGTAA	
TGTTAGTAACAGAACCCTCT	
TAGCCTGGTTCCAAGACGTA	
TTTGGACCAATTCAAGGTGA	
AGAGACGCGAAAGTACAAGC	
AAGTTGCGGTCAATAAGGTA	
GAAGgAGATCAAGAACGGCC	
TTGCCGGGGACGAAGTTGGT	
ATGGGTTTGCCTTGGTATCGT	
CTCCACATTGGATCCAGAACAGG	
CGAGTTCCAGAAGACCAAGC	
GTGGCGACCAGATTCTTGAT	
GGTCTATAATGCAACGTCAACAGGT	
CCTTGAACGCGTAATGGATCCTG	
CATCTTGGCATCTCTCAGCAC	
AACTTTGTCCACGCTAATGAA	
AACTTTGTCCACGCTAATGAA	
AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC	
AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT	
AACTTTGTCCACGCTAATGAA act tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT	
AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC	
AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG	
AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG	
AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT	
AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT gtcgacTTGGGGAGCGAGCCCATTGT	
AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT gtcgacTTGGGGAGCGAGCCCATTGT	
AACTTTGTCCACGCTAATGAA AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT gtcgacTTGGGGAGCGAGCCCATTGT catatgATGCCTCCACTTGCCACAAT	
AACTTTGTCCACGCTAATGAA AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT gtcgacTTGGGGAGCGAGCCCACTTGT catatgATGCCTCCACTTGCCACAAT ggatcccTTGGGGAGCGAGCCCATTGT	
AACTTTGTCCACGCTAATGAA AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT gtcgacTTGGGGAGCGAGCCCATTGT catatgATGCCTCCACTTGCCACAAT ggatccCTTGGGGAGCGAGCCCATTGT gaattcTTGGCGGGTCTCTTTGTATGTC	
AACTTTGTCCACGCTAATGAA AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT gtcgacTTGGGGAGCGAGCCCATTGT catatgATGCCTCCACTTGCCACAAT ggatcccTTGGGGAGCGAGCCCATTGT gagttcTTGGCGGGTCTCTTTGTATGTC gagctcCTATCCTACTGCAATAATTCTCGCTAAG	
AACTTTGTCCACGCTAATGAA AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT gtcgacTTGGGGAGCGAGCCCATTGT catatgATGCCTCCACTTGCCACAAT ggatccTTGGGGAGCGAGCCCATTGT gaattcTTGGCGGGTCTCTTTGTATGTC gagctcCTATCCTACTGCAATAATTCTCGCTAAG catatgTTGAACTTCTACTTTCCTTTAGAATTTAGGC	
AACTTTGTCCACGCTAATGAA AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT gtcgacTTGGGGAGCGAGCCCATTGT catatgATGCCTCCACTTGCCACAAT ggatccCTTGGGGAGCGAGCCCATTGT gaattcTTGGCGGGTCTCTTTGTATGTC gagctcCTATCCTACTGCAATAATTCTCGCTAAG catatgTTGAACTTCTACTTTCCTTTAGAATTTAGGC ctgcagTTATGTTTGTTCCTGAAGGGAAAACC	
AACTTTGTCCACGCTAATGAA AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT gtcgacTTGGGGAGCGAGCCCATTGT catatgATGCCTCCACTTGCCACAAT ggatcccTTGGGGAGCGAGCCCATTGT gaattcTTGGCGGGTCTCTTTGTATGTC gagctcCTATCCTACTGCAATAATTCTCGCTAAG catatgTTGAACTTCTACTTTCCTTTAGAATTTAGGC ctgcagTTATGTTTGTTCCTGAAGGGAAAACC catatgATGAACCAATCCTACTACTTCTCG	
AACTTTGTCCACGCTAATGAA AACTTTGTCCACGCTAATGAA ict tctagaAGTCCCATGTAAATAGGGTC gtcgacGCTTCTCGGATAACGACTCT ggtaccAGTCCCATGTAAATAGGGTC ccatggGATATGCAGCAGCTGTGTAG gagctcATGCCTCCACTTGCCACAAT gtcgacTTGGGGAGCGAGCCCATTGT catatgATGCCTCCACTTGCCACAAT ggatcccTTGGGGAGCGAGCCCATTGT gaattcTTGGCGGGTCTCTTTGTATGTC gagctcCTATCCTACTGCAATAATTCTCGCTAAG catatgTTGAACTTCTACTTCCTTTAGAATTTAGGC ctgcagTTATGTTTGTTCCTGAAGGGAAAACC catatgATGAACAATCCTACTACTTCTCG ggatccTCATTTCTTCAATTGTTCTCCTCTCT	

Cytf-R	ctgcagCTAGAAATTCATTTCGTACAATTGAAC	
BiFC assay		
YL1-F	ggatccATGCCTCCACTTGCCACAAT	
YL1-R	gtcgacTTGGGGAGCGAGCCCATTGT	
YL1 _{CDS285} -R	gtcgacCCTCACTTTCTCTTTTAACTGAC	
YL1 _{CDS286} -F	ggatccAGTCCAAAGCTTGACGATGG	
AtpB-F	ggatccATGAGAACCAATCCTACTACTTCT	
AtpB-R	ggtaccTTTCTTCAATTTGTTCTCCTCTTCT	