<u>Setd1a and NURF mediate chromatin dynamics and gene regulation during lineage</u> <u>commitment and differentiation</u>

Ying Li^{1,2}, Vincent P. Schulz³, Changwang Deng¹, Guangyao Li⁴, Yong Shen¹, Betsabeh Khoramian Tusi¹, Gina Ma⁵, Jared Stees¹, Yi Qiu^{6,7,8}, Laurie A. Steiner⁹, Lei Zhou^{3,7,8}, Keji Zhao¹⁰, Jörg Bungert^{1, 7}, Patrick G. Gallagher^{3*}, and Suming Huang^{1,2,7,8*}

RT primer	sequence
mβ-major-globin	For: CACCTTTGCCAGCCTCAGTG
	Rev: GGTTTAGTGGTACTTGTGAGCC
mβH1-globin	For: AGTCCCCATGGAGTCAAAGA
	Rev: CTCAAGGAGACCTTTGCTCA
mey-globin	For: AACCCTCATCAATGGCCTGTGG
	Rev: TCAGTGGTACTTGTGGGACAGC
mp4.2	For: GGGTGAGTAGACACTTGAAATCG
	Rev: GGGGCCTCTAAGGAGTTGTG
mNotch2	For: AACTGTCAGACCCTGGTGAAC
	Rev: CGACAAGTGTAGCCTCCAATC
mβ-actin	For: GTGGGCCGCTCTAGGCACCA
	Rev: TGGCCTTAGGGTGCAGGGGG
mTal1	For: GAGATTTCTGATGGTCCTCAC
	Rev: TCTTGCTTAGTTTCTTGTCTGG
mGata1	For: CAGGGATCCCATGGATTTTCCTGGTC
	Rev: TCCACAGTTCACACACTCTCTGGC
mKlf1	For: TCGCCGGAGACGCAGGCT
	Rev: CCCAGTCCTTGTGCAGGA
mBptf	For: TTCAGGAGCCATAGTACATACAG
	Rev: CAGAGCCGCACAGAAGTC

 Table S1. Primer sequences:

ChIP primer	sequence
mLCR5'	For: ACCCAATGGACTATCCCCTGTCTC
	Rev: GCCAATGTGATGAGTGCAGAGTTC
mHS2	For: TGCAGTACCACTG TCCAAGG
	Rev: ATCTGGCCACACACCCTAAG
mHS6	For: ATTCTCCTGCTGTATTCACTGG
	Rev: CCTCATCTTTCAACAATGCTCTG
mey pro.	For: CAAAGAGAGTTTTTGTTGAAGGAGGAG
	Rev: AAAGTTCACCATGATGGCAAGTCTGG
mβH1pro.	For: CAAGGTCCAGGGTGAAGAATAAAAGG
	Rev: CAGGAGCCTAAGACATAGTGCATTAGC
mβ maj pro.	For: AAGCCTGATTCCGTAGAGCCACAC
	Rev: CCCACAGGCAAGAGACAGCAGC

mβ min pro.	For: TGCCCACTCTGTCCTCTC
	Rev: CCTGTGTAGATATGGTTGTCATC
mβ min 3'	For: AGCCCAAGAGCATTGAGTTGTATC
	Rev: TCAGACTGTGGAGGAGGAGGAG
mp4.2 pro	For: GCAGGTCATCTCCAAAGAGC
	Rev: CGAACCCAACTCTGAACCTC
mp4.2 3'UTR	For: TCTTTCCCTGGTGGCTATTG
	Rev: AGAGTACCCCCGAAAACACC
mNotch2 pro.	For: TGGATGGACGGATGAATG
	Rev: GAGACTGTCAACGGAAGG
mNotch2 3'UTR	For: GAATGTACGAGGACTGTT
	Rev: GAGGAAGTTGCCATAGTA
mMyoD	For: TGCCTGTCCAGCATAGTG
	Rev: ACTCTGGTGGTGCATCTG

3C primer	sequence
mHS2/3	ACATGAGGCTACTCTATTGTCAGACTGTGC
mHS2	ATGACTCAGCACTGCTGTGCTCAAGCC
mβH1pro.	TCAGGAATGTTCCCAACTTTCACTCAATTCCCC
mβ maj pro.	GGTGGAAGGGGGTATTATGAACATTCGG
m-3'distal	TAGCTGTGGAGAGCAGGAGGTCTGCTAATGCC
mHS2-BglII	For: TCCTACACATTAACGAGCCTCTG
	Rev: GCTAACCTCCTCTGCCCTTG
β maj-Bgl II	For: GCCTAGCCATAAAGATAGGATGAG
	Rev: AGCCACCAGCACTGTCTG
mβh1-Bgl II	For: AAGCCACAATATAGAATTACATCC
	Rev: AATGTCTCAGTCTCACAAGATG

Supplemental Figure Legends:

Figure S1. Loss of Setd1a in erythroid compartment resulted in impaired H3K4me3 and BPTF recruitment at erythroid gene promoters. ChIP analysis of H3K4me3 enrichment (A), ASH2L occupancy (B), and BPTF recruitment (C) at p4.2 promoter comparing $Setd1a^{fl/fl}$ and Setd1a CKO BM cells. Data are shown as mean ± SD. *P<0.05; **P<0.01.

Fig S2.Consistent colocalization of genome wide USF1 and USF2 binding. Two replicates of

<u>ChIP-seq analyses of USF1 and USF2 binding at the β -globin locus.</u>

Figure S3. USF1, USF2, BPTF and H3K4me3 ChIP-seq signal are colocalized at transcription start sites (TSSs) and correlate with transcription levels in human primary erythroid cells. (A) Heatmaps represent USF1, USF2, BPTF and H3K4me3 ChIP enrichment at TSSs in R3/R4 erythroid cells. (B) Line-plots for USF1, USF2, BPTF and H3K4me3 ChIP enrichment at TSSs correlates with gene expression in R3/R4 erythroid cells (GEO accession number: GSE53983).

Figure S4. Directed differentiation of erythroid progenitors/precursors from murine embryonic stem cells (mESCs). (A) Schematic outline of induced erythroid differentiation of murine ES cells. (B) qRT-PCR analysis of the expression patterns of genes that are specifically expressed in definitive erythroid cells during EB differentiation. (C) qRT-PCR analysis of expression patterns of embryonic and adult globin genes during EB differentiation comparing the control and *Setd1a* KD cells. Data are shown as mean \pm SD. *P<0.05; **P<0.01. (D) The 19-day differentiated EBs exhibited reddish color (Left). HEMA staining of erythroblast cells in differentiated ES cells at different days (Right).

Figure S5. Depletion of *Setd1a* suppresses erythroid gene p4.2 and Notch2 transcription. (A) Stable ESC clones harboring vector control or shSet1d1a-expressing constructs were induced with EPO and other cytokines for erythroid differentiation and total RNA was extracted at day 0, 4, and 19. The *p4.2* (Top) and *Notch2* (Bottom) transcripts were analyzed by qRT-PCR and normalized with β -actin. (B) ChIP analysis of H3K4me3 on *p4.2* (Top) and *Notch2* (Bottom) promoters at day 19 in control and *Setd1a* KD cells. Data are shown as mean ± SD. *P<0.05; **P<0.01.

Figure S6. Setd1a is required for β -globin transcription and chromatin accessibility at the β -globin locus during MEL cell differentiation. (A) Western blot of Setd1a expression in *Setd1a* KD MEL cells compared to control, β -actin, as a loading control. (B) qRT-PCR analysis of expression levels of genes required for erythroid differentiation, *Tal1* and *p4.2*, upon the Setd1a KD. (C) β -major globin transcripts were analyzed by qRT-PCR and normalized with β -actin in Setd1a KD MEL cells upon DMSO differentiation for 5 days. (D and E) ChIP analysis of H3K4me3 (D) and SNF2L recruitment (E) over the β -globin locus at days 5 upon Setd1a KD. (F) FAIRE assay on β -globin locus at days 5 upon Setd1a KD MEL cells. Data are shown as mean \pm SD. *P<0.05; **P<0.01.

Figure S7. Loss of Setd1a disrupts enhancer /promoter interaction over β -globin locus during MEL cells differentiation. (A) and (B) The 3C analysis of the interaction between the HS2/3 or HS2 enhancer and β -globin promoters in the β -globin locus at DMSO-induced MEL cells upon *Setd1a* KD. Data are shown as PCR quantitation of the 3C products. Data are shown as mean \pm SEM. *P<0.05; **P<0.01.

P4.2 Promoter

3'UTR

**

EB19

EB 4 days

EB13

0

EB19 days

EB16 EB19

