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Supplementary Methods
16S rRNA gene sequencing

Amplicon library preparation was performed using an automated platform
(Biomek 4000) using a custom liquid handling method. Reagent controls were
sequenced and analyzed as quality controls. For each sample, the V4 region of
the bacterial 16S rRNA gene was amplified in duplicate reactions, using primer
set 515F/806R, which nearly universally amplifies bacterial and archaeal 16S
rRNA genes."? Each unique barcoded amplicon was generated in pairs of 25l
reactions with the following reaction conditions: 11yl PCR-grade H20, 10ul Hot
MasterMix (5 Prime Cat# 2200410), 2ul of forward and reversed barcoded primer
(5uM) and 2l template DNA. Reactions were run on a C1000 Touch Thermal
Cycler (Bio-Rad) with the following cycling conditions: initial denaturing at 94°C
for 3 min followed by 35 cycles of denaturation at 94°C for 45 seconds, annealing
at 58°C for 1 minute, and extension at 72 C for 90 seconds, with a final extension
of 10 min at 72°C. Amplicons were quantified using Agilent 2200 TapeStation
system and pooled. Purification was then performed using Ampure XT (Beckman
Coulter Cat# A63882) as per the manufacturer instructions. Sequencing was
then performed in MiSeq (lllumina) to produce 150 base-paired end reads.

The obtained 16S rRNA gene sequences were analyzed using the QIIME
package for analysis of community sequence data °. Reads were demultiplexed
and quality filtered with default parameters. Sequences were then clustered into
operational taxonomic units (OTUs) using a 97% similarity threshold with

UCLUST * and the Greengenes 16S reference dataset and taxonomy’. After
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curation and removal of sequences potentially derived from reagent controls, the
absolute OTU sequence counts were normalized to obtain the relative
abundances of the taxa within each sample. These relative abundances at 97%
OTU similarity and each of the 5 higher taxonomic levels (phylum, class, order,
family, genus) were tested for univariate associations with clinical variables. To
decrease the number of features, we only focused on major taxa and OTUs,

defined as those having mean relative abundance >1% in at least one sample.

Since the distributions of microbiome data are non-normal, and no distribution-
specific tests are available, we used non-parametric tests of association. For
association with discrete factors, we used either the Mann-Whitney test (in the
case of 2 categories) or the Kruskal Wallis ANOVA (in case of > 2 categories).
For tests of association with continuous variables, we used non-parametric
Spearman correlation tests. False discovery rate (FDR) was used to control for
multiple testing.® Weighted UniFrac was used to measure p diversity of bacterial
communities and to perform principal coordinate analysis (PCoA).” We used the
ade4 package in R to PCoA on weighted UniFrac distances.® To avoid negative
eigenvalues in the analysis, we used the Cailliez method to convert the weighted
UniFrac distance matrix into a closest corresponding matrix with Euclidean

properties, which was further used for PCoA.°
Shotgun sequencing and phageome analysis

DNA was extracted from BAL samples as described for 16S sequencing above.
Following fragmentation by ultrasonication (Covaris E210), nucleic acid was

prepared into sequencing libraries using the NEBNext Ultra DNA Library Prep Kit
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for lllumina (New England Biolabs). Equimolar concentrations of libraries were
pooled (20 samples/run) and sequenced on the lllumina Miseq platform
(Washington University Center for Genome Sciences, 2 x 250 bp paired-end
reads, 6-8 pM loading concentration, 1% PhiX spike-in). Sequences were
analyzed using VirusSeeker,'® a custom bioinformatic pipeline that assigns viral
taxonomy based on nucleotide and amino acid sequence homology to reference
databases. Briefly, adapter sequences were trimmed with Cutadapt,"’ and
overlapping Read1 and Read2 sequences were stitched into a single read using
fastg-join (ea-utils package, http://code.google.com/p/ea-utils). Sequence quality
control was performed with Prinseq'® with average PHRED cut-off of 25 and
minimum quality cut-off score of 10. Sequences were deduplicated at 95%
identity over 95% of sequence length with CD-HIT,"'* and low complexity and
repeat sequences were masked with Tantan and RepeatMasker

(http://www.repeatmasker.org), respectively. Human sequences were removed

by mapping against the reference human genome used by the 1000 Genomes
Project

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k v37.fas
ta.gz). High-quality, deduplicated sequences were then sequentially queried
against custom viral databases using BLASTn (E-value cutoff 1e-5) and BLASTx
(E-value cutoff 1e-3)." Sequences with homology to bacteriophage were binned
and used for downstream analyses. Bacteriophage sequences were converted

into a tabular datatable in MEGAN v5.10.5."° Differential taxa were identified from

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology 5


http://dx.doi.org/10.1038/nmicrobiol.2016.31

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMICROBIOL.2016.31

the datatable using Linear Discriminant Analysis (LDA) Effect Size (LEfSe)"” with

alpha value 0.01 and an “all-against-all” multi-class analysis strategy.
Measurement of metabolites in BAL fluid

Briefly, after entering the study design into the MiniX database' samples were
aliquotted and maintained at —80°C until use, at which point samples were thawed,
extracted and derivatized."® The sample was split into 15 pl aliquots which were each
extracted with 1 ml of degassed acetonitrile:isopropanol:water (3:3:2) at -20°C,
centrifuged and decanted with subsequent solvent evaporation to complete dryness. An
acetonitrile/water (1:1) clean-up step removed lipids and the supernatant was again
dried. Internal FAME standards (C8 through C30) were added and the sample was
derivatized with methoxyamine hydrochloride in pyridine and subsequently by MSTFA

(Sigma-Aldrich) for trimethylsilylation of acidic protons.

An automatic liner exchange system (ALEX, Gerstel MPS2) was used to
eliminate between run cross-contamination from sample matrix. One microliter of
sample was injected at 50°C (ramped to 250°C) in splitless mode with a 25 sec
splitless time. An Agilent 6890 gas chromatograph (Santa Clara, CA) was used
with a 30 m long, 0.25 mm i.d. Rtx5Sil-MS column with 0.25 ym 5% diphenyl film;
an additional 10 m integrated guard column was used (Restek, Bellefonte PA).%*
2 Chromatography was performed at a constant flow of 1 ml/min, ramping the
oven temperature from 50°C to 330°C over 22 min. Mass spectrometry used a
Leco Pegasus IV time-of-flight mass (TOF) spectrometer with 280°C transfer line
temperature, electron ionization at =70 V and an ion source temperature of
250°C. Mass spectra were acquired from m/z 85-500 at 20 spectra/sec and 1750

V detector voltage. Results®? were exported to the netCDF format for further data
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evaluation with BinBase '® and filtered by multiple parameters to exclude noisy or
inconsistent peaks. Quantification was reported as peak height using the unique
ion.? All database entries in BinBase were matched against the Fiehn mass
spectral library of 1,200 authentic metabolite spectra using retention index and
mass spectrum information or the NIST11 commercial library. ldentified
metabolites were reported if present with at least 50% of the samples per study
design group. Quantitative data were normalized to the intensity sum of all known

metabolites and used for statistical investigation.
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Supplementary Results
Demographics and clinical characteristics

To test the generalizability of our prior observation of two lower airway
pneumotypes among healthy subjects, we used lower airways samples obtained
from 49 subjects recruited from three separate cohorts. A significant proportion
(63%) were smokers (current or former) (Table 1). Enrolled subjects had a
relatively preserved FEV (median [IQR] = 90 [67-93] % predicted), FVC (92 [71-
104] % predicted), and FEV/VC (81 [69-85] % predicted). Similarly, for the most
part, lung volumes were within normal range (TLC = 99 [69-116], FRC = 85 [60-
121] and RV/TLC = 0.34 [0.25-0.37] % predicted). In this group, no major

diffusion abnormalities were present (DLCO = 81 [77-100] % predicted).
Bacterial 16S rRNA gene sequencing

All samples yielded 16S rRNA gene V4 sequences with a median depth of
sequencing of 12,385 reads per sample (IQR = 10840-16136). Unsupervised
hierarchical analysis based on relative abundance of most abundant taxa (> 3%
relative abundance at a genus level) in background samples and upper airway
samples showed differential clustering for both sample types (Supplemental
Figure 1, Panel A). We then applied Random Forest to identify taxa most
discriminant between background and upper airway samples (Supplemental
Figure 1, Panel B). Among the most discriminant taxa for upper airways,
Prevotella, Veillonella, and Fusobacterium were the most abundant. In contrast,
among the most discriminant taxa for background samples, Pseudomonas and

Acidocella were the most abundant taxa.
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To evaluate the relative contribution of the background microbiome to the BAL
samples, we used SourceTracker.?* This analysis showed that a large
percentage (51[45-54]%) of the taxa found in BAL samples of pneumotypegpr
were present in the saline or the bronchoscope. In contrast, the percentage of
the background taxa found in BAL samples of pneumotypespr was significantly
smaller (34[23-42]%, p=0.0009). Analysis of a-diversity showed that there were
no significant rarefaction differences between the two pneumotypes

(Supplemental Figure 2).

Since in a subgroup of these samples (n=28) 16S rRNA gene sequences were
previously obtained using a 454 platform and targeting V1-V2 variable region,®
we compared the p diversity distribution of the BAL samples between these two
sequencing approaches to evaluate consistency of the data. Supplemental
Figure 3 Panel A shows that there are significant differences in  diversity
between the two sequencing approach. Using LEfSe analysis, we identified
multiple significant (LDA>2) taxonomic differences. Samples sequenced with a
454 platform and targeting V1-V2 were enriched with the genera
Corynebacterium, Paenibacillus, Streptococcus, Staphylococcus,
Propionibacterium, and Lactococcus among others (Supplemental Figure 3
Panel B). Samples sequenced with the MiSeq platform and targeting V4 were
enriched with the genera Acidocella, Sphingomonas, Chryseobacterium,
Flavobacterium, Acinetobacter, and Janthinobacterium among others. To
examine whether these samples were still assign to similar “microbiome clusters”

(or pneumotype) despite the above-mentioned differences in these two different
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approaches we utilized a Procrustes analysis. This analysis compared the fithess
of the compositional characteristics of the microbiome in these samples (based
on B diversity distribution) when processed by two different platforms (454 and
MiSeq) and two different primers (V1-V2 and V4). This analysis showed that
there was a significant correlation between the microbial compositions of paired
samples sequenced in both platforms, where each sample was consistently
assigned to same pneumotype, regardless of the sequence approach used

(Supplemental Figure 3 Panel C).

To evaluate for differences between BAL samples classified as pneumotypespr
and upper airway samples, we performed LEfSe analysis (Supplemental Figure
4 Panel A). Data showed that BAL samples classified as pneumotypespr were
enriched with Prevotella, Selenomonas, Veillonella and Campylobacter while
upper airway samples were enriched with Acinetobacter, Variovorax and
Sphingomonas. We then utilized similar approach to examine for taxonomic
differences between BAL samples classified as pneumotypegpr and background
samples (Supplemental Figure 4 Panel B). Data showed that BAL samples
classified as pneumotypegpt Were enriched with Sphingomonas, Staphylococcus,
Acinetobacter and Janthinobacterium while background samples were enriched

with Ralstonia, Corynebacterium, and Shewanella.

Metagenomic differences between the pneumotypes

To assess the functional metabolic capability of distinct microbial communities

t.26

we inferred the metagenome using PICRUS We estimated the Nearest
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Sequenced Taxon Index (NSTI), a proxy for PICRUSt predictive accuracy.?” In

our cohort the NSTI was 0.10 £ 0.03, comparable to values previously reported
and indicating an overall accurate prediction.”® Figure 2 Panel A shows a
significant  difference (Adonis p<0.001) in coding potential between
pneumotypegpt and pneumotypesptr using a Jensen—-Shannon divergence
analysis. Since annotation of KEEG ortholog is not limited to functions of
bacterial origin, we have limited our analysis to metabolic pathways only in order
to remove potential artifacts. Figure 2 Panel B shows that when protein-coding
genes are assigned to specific metabolic function, pneumotypespr is enriched
with genes allocated to energy metabolism, enzyme families, glycan biosynthesis
and metabolism, and metabolism of cofactors and vitamins. In contrast,
pneumotypegpr is enriched for genes allocated to lipid metabolism, metabolism of
amino acids, metabolism of terpenoids and polyketides, xenobiotics
biodegradation and metabolism, and biosynthesis of other secondary
metabolites. STAMP was utilized to determine the significance of different
metabolic pathways between the pneumotypes. Of the 4,688 KEGG Ontology
(KO) assignments inferred in BAL samples, genes with an annotation related to
microbial metabolism were summarized into a total of 154 metabolic processes.
Among them, 114 metabolic pathways were found differentially represented
between pneumotypespr and pneumotypegpr (p <0.05, FDR corrected). Sixty-five
metabolic pathways were enriched in pneumotypespr while 94 were enriched in
pneumotypegpr (Supplemental Table 1). Figure 2 Panel C shows effect size

(eta-squared) and relative abundance of the most significant pathways. Among
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them, pneumotypespr was enriched in metabolism pathways for DNA synthesis
such as purines, pyrimidines, amino sugars, and nucleotide sugars and one
carbon metabolism. Pneumotypespr was also enriched for metabolism of
fructose, mannose, and galactose. Alternately, pneumotypegpr Was enriched in
metabolism  pathways for long and short chain fatty acids,

valine/leucine/isoleucine, and phenylalanine.
Metabolomic differences between two pneumotypes

To examine if the differences in the genomic composition of metabolic pathways
of these two pneumotypes support a different metabolic environment in the lower
airways, metabolites in BAL fluid were assayed for 29 subjects from the NYU
cohort by GC-TOF mass spectrometry, yielding 122 identified metabolites. Of
these, 83 metabolites had a KEGG annotation and were then correlated with the
taxonomic differences identified in pneumotypespt and pneumotypegpr. In BAL
samples with pneumotypegpr, the intensity of glyceric acid, glycerol alpha
phosphate, cellobiose, and isothreonic acid were significantly higher than in BAL
samples with pneumotypespr (Supplemental Table 2). Supplemental Table 3
shows that BAL UniFrac distance to upper airway correlated with bacterially-

synthesized carbohydrates fucose-rhamnose and a sugar acid derived from

threose and arachidonic acid.

To further evaluate the microbiome-metabolome interaction, we tested whether
the genomic potential (metagenome) correlates with levels of the end products
(metabolome) in the lung environment by fitting these two datasets using a

Procrustes approach. Because pneumotypegpr is similar to the saline
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background, we hypothesized that pneumotypegpr would correlate less well to
the metabolome than pneumotypespr. Monte Carlo analysis of goodness of fit
metagenome/metabolome demonstrated better correlation between metabolic
pathways and metabolites for pneumotypespr than for pneumotypegpr (M? 0.10
for pneumotypespr vs. 0.85 for pneumotypegpr p<0.01). Correlation matrices
were then constructed between metagenome and metabolome for both
pneumotypes. A comparison of correlation coefficients between the two data sets
shows that pneumotypesptr had significantly higher Spearman Rho than
pneumotypegpt (Supplemental Figure 6, p<0.001). The correlation between the
genomic potential of pneumotypesptr and the metabolome in the lower airway
samples supports the presence of active microbial metabolism in this
environment. For instance, fucose-rhamnose, a bacterially synthesized
carbohydrate, is directly correlated with BAL UniFrac distance to upper airway.
Rhamnose is a deoxyhexose sugar found widely in bacteria but not in humans.
Importantly, rhamnose is a constituent of the cell wall and a substrate for
lipopolysaccharides (LPS) of some gram-negative bacteria.”®**' The decrease in
levels of this metabolite in association with enrichment with oral taxa in the lower
airways (lower pairwise BAL UniFrac distance to upper airway) may therefore
represent its utilization for synthesis of LPS. Alternatively, bacteria present in
pneumotypegpr may be metabolically active and able to synthesize this cell wall
precursor. However, the poorer correlation between metagenome and

metabolome for pneumotypegpr suggests that metabolome found in these
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samples is predominantly representative of the endogenous lung mammalian cell

metabolism.

BAL cell differential and transcriptome of bronchial epithelial cells

BAL cell differentials were available for subjects from the NYU and LHMP
cohorts (n=45). Overall, these subjects had relatively normal BAL cell
differentials. However, compared to subjects with pneumotypegpr, subjects with
pneumotypespr had significantly higher percentages of lymphocyte (4.5 [3.2-6.7]
vs. 7.4 [4.6-11.9] percent of BAL cells, respectively) and a non-significant trend
towards lower percentage of macrophages (Supplemental Table 4). No
differences were noted in neutrophils or eosinophils in BAL. To better understand
the lymphocyte dynamics in the pulmonary compartment, we examined Th-
17/Treg balance in paired BAL and blood samples of 11 subjects (6 with
pneumotypespr and 5 with pneumotypegpr) in whom sufficient number of
lymphocytes (>10°) were obtained from BAL cells. Supplemental Figure 7
Panel A shows a representative pair of FACS analysis of blood and BAL
lymphocytes. Supplemental Figure 7 Panel B shows BAL has a higher

Th17/Treg ratio than blood.

Transcriptome of bronchial epithelial cells

To compare the host mucosal immune response to the two pneumotypes in a

subset of 12 subjects (5/12 with lower airway microbiome characterized as
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pneumotypespr and 7/12 with lower airway microbiome characterized as
pneumotypegpr), paired airway brushings were obtained and used to analyze the
transcriptome of bronchial epithelial cells by Affymetrix array. This platform
yielded a total of 54,675 mRNAs. However, despite the small number of paired
samples available, 2,834 mRNAs were statistically significantly different between
both pneumotypes (p<0.05). Top discriminant mRNAs (p<0.05, fold change [FC]
>2.0) were used for a hierarchical cluster analysis (total of 62 probes,
Supplemental Figure 8) of which 53 mRNAs were up-regulated in
pneumotypesptr compared with pneumotypegpr. 33/53 have immune phenotypes;
17/33 support the innate or adaptive immunity, (Zfand5, MMP10, SUCNRA1,
Phactr2, TSLP, CDH11, PTPRC [CD45], EVI2B [CD361], CYYB, PTPRO,
MS4A7, TLR8, TREM-1 [CD354], POST, NTS, LPL and ORI)***° while 16/33
have counter-regulatory phenotypes limiting the immune response (PPARG,
Tbrg1, LYZ, PTPRG, RUNX1T1, FST, EGFR, MARCH1, LEPR, Snai2, PIK3R1,
PLEKHA1, SULT1E1, TNKS/TNKS2, CD52, SVL).**®® Eight mMRNAs were down-
regulated pneumotypespr including mRNAs associated with mRNA translation
(EEF1D, RPL37A, RPL38, and MRPL43)**®" and APOBEC3B, which is
associated with mRNA editing and innate immune antiviral gene activity.®®
Ingenuity Pathway Analysis (IPA) also identified inflammatory response as the
top diseases/biological function (p<0.01E-04). Transcriptome analysis of airway
tissue showed that UniFrac distance to upper airway was associated with
increased expression of STAT-3 (Figure 4 Panel C of main document). Top

regulator effect networks were the ERK1/2 and PI3K/Akt signaling pathways
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(Consistency Score =15.501, Supplemental Figure 9), which have previously
been shown to be associated with inflammation, and, more specifically, with
Treg/Th17 balance®*®' by increasing Th17 differentiation.?>** Interestingly, many
of STAT3 downstream molecules (FST, LYZ, HP, SNAI2, and LEPR)**® were
significantly higher compared to pneumotypegpt (Supplemental Figure 8). The
up-regulated leptin receptor (LEPR) gene in epithelial cells associated with
pneumotypespr has been shown to be required for Th17 differentiation through
STATS3 interaction.'® TSLP, an IL-7-like cytokine also up-regulated in bronchial
epithelial cells in association with pneumotypespr, can induce the differentiation
of Th17 cells though dendritic cell activation.””’ IPA integrated mRNA-
metabolome analysis was also performed for subjects where paired airway
brushing samples and BAL metabolome was done. This analysis showed 21/83
metabolites (Score=47, #1 network) with KEGG annotations were associated
with the ERK 1/2 signaling pathway and 15/83 metabolites (Score =31, #3
network) were associated with PI3k/Akt signaling pathway. These findings raise
the hypothesis that with pneumotypespr, the airway mucosa has transcriptional

changes relevant to establishing a Th17 phenotype.

Pneumotype and in-vivo lung inflammation

To further characterize lower airway immune phenotype associated with each
pneumotype, BAL cytokine levels were measured using a Luminex multiplex
platform for the 29 subjects from whom sufficient BAL fluid was available

(Supplemental Table 5). Compared with pneumotypegpr, pneumotypespr had
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significantly higher levels of IL-1a, IL-1 receptor antagonist (IL-1ra), IL-7, IL-8,
epidermal growth factor (EGF), transforming growth factor-a (TGF-a), GRO and
Fractalkine. Compared to pneumotypespr, no BAL cytokines were significantly
elevated in pneumotypegpr. Thus, pneumotypespr and its marker taxa (e.g.
Veillonella, Prevotella) were associated with increased in vivo levels of several
cytokines relevant for Th17 differentiation (IL-1p, IL-6) or chemotaxis
(Fractalkine). Naive T cell differentiation into the Th17 subset is initiated by IL-6,
while IL-1 cytokines are more important at later stages inducing effector cytokine
production in a T cell receptor (TCR)-independent manner.'®? Other cytokines
important for Th17 differentiation, such as IL-23 and TGFB,'” were not
measured. |IL-7, important for maturation of both T and B cell lymphoid lineage,
was associated with pneumotypespr and its marker taxa. IL-7 has a substantial
role in shaping the pulmonary lymphocyte repertoire by enhancing maturation of
T cells, including Th1, Th17, CD8 and yd T cells. Fractalkine is involved in
homing of Th17 cells to mucosa in the gut and the lung.'® Th17 cells secrete IL-
17A, IL-17F and IL-22, which act on resident antigen presenting cells and
adjacent epithelial and endothelial cells to elicit inflammatory cytokine and

chemokine production, recruiting neutrophils and innate epithelial defenses.

Pneumotype and ex-vivo TLR response

To evaluate the balance of pro-inflammatory and counterregulatory innate

immune pathways, we performed ex-vivo TLR-4 stimulation with LPS on alveolar
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macrophages (since they are the predominant BAL leukocyte) obtained from 18
subjects of the NYU cohort. Of these 18 subjects, 8 were from pneumotypegpr
while 10 were from pneumotypespr, and we were thus able to compare cytokine
production in response to LPS stimulation in both groups. Compared with BAL
macrophages from pneumotypegpr, BAL macrophages from pneumotypespr
were less responsive to LPS as shown by a lower fold increase of IL-6, MDC,
TNF-a. and MIP-1a (Supplemental Table 6). Thus, our data indicate close
association between pneumotypespt and pro-inflammatory Th17 airway
phenotype, and with a blunted alveolar macrophage TLR4 response. These latter
phenomena could stem from counter-regulatory mechanisms triggered by
chronic subclinical inflammation or, alternatively, immune tolerance due to direct

interactions with particular microbes within the microbiota.

Multivariate analysis to examine the effects of smoking

To examine if smoking confounded the association between pneumotype and
any of the biomarkers found associated with pneumotypespr we used a
multivariate logistic regression model. In this model, metabolites, cells, and
cytokines were considered outcome (dichotomized as below or above the
median), while pneumotype and smoking status (never smoker vs. smoker) were
predictors (covariates). This analysis (shown in Supplemental Figure 10)
demonstrates that among the metabolites found to be decreased in
pneumotypespr, the intensity of glyceric acid and cellobiose were associated with

pneumotypespr independently of smoking status. Among the BAL cells found to
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be associated with pneumotypespr, lower percentage of macrophages were
associated with pneumotypespt independently of smoking status. After adjusting
for smoking, pneumotypespr predicted elevated levels of IL-1a, IL-7, EGF, TGF-a
and Fractalkine. Finally, among the cytokines in which TLR4 induced productions
were found to be blunted in pneumotypespr, IL-6 remained statistically significant
after adjusting by smoking status. The other biomarkers examined were no
longer significantly associated with pneumotype, indicating that in those
associations, smoking is likely to be either a confounder or a variable with

significant collinearity.
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Figure S1
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Supplemental Figure 1: Taxonomic differences in background and upper
airway samples. Panel A. Unsupervised hierarchical clustering of most
abundant taxa (relative abundance = 3% in any sample) for upper airway
samples obtained by oral wash or separate scope and background samples
obtained by flushing saline through bronchoscope prior to bronchoscopy.
Dendrogram shows deep cleft that separates most of upper airway samples from
most of background samples. Panel B. Machine learning approach based on
Random Forest to identify taxa most predictive for upper airway vs. background

samples.

30



Figure S2
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Supplemental Figure 2: Differences in o diversity between two
pneumotypes. Alpha rarefaction curve of observed species as different
sequence depth shows no significant differences in o diversity between

pneumotypegpt and pneumotypespr.
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Figure S3
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Supplemental Figure 3: Pneumotype assignment is consistent despite the
use of two sequencing techniques. Panel A. PCoA based on weighted
UniFrac Distance shows significant differences (Adonis p=0.001) in the
microbiome beta diversity of 28 BAL samples sequenced by two different
approaches: a 454 sequence targeting V1-V2 (data previously reported,
reference number 3 of manuscript) and a MiSeq sequence targeting V4. Panel B.
LEfSe analysis was performed to examine taxonomic differences between the
two sequencing approaches and showed multiple taxonomic differences
(LDA>2). Panel C. Procrustes analysis for  diversity distribution of these 28 BAL
samples in which the two sequencing approaches were used. Pairs are
connected and show similar 3 diversity distribution for the two clusters defined as
pneumotypes (in terms of pneumotypespr being distinct from pneumotypegpr)

with both sequencing approaches.
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Figure S4
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Supplemental Figure 4: Taxonomic differences between groups of samples.
Panel A. Linear discriminant analysis (LDA) Effect Size (LEfSe) comparing
taxonomic composition of BAL samples from pneumotypespr VvS. upper airway
samples. Cladogram shows multiple differences at various taxonomic levels
while histogram below represents LDA effect size and relative abundance for
most discriminant genus. Panel B. Similar analysis was performed comparing
taxonomic composition of BAL samples from pneumotypegpr vs. background

samples.
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Figure S5
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Supplemental Figure 5: Differences in phageome between pneumotypes.
Panel A. Cladogram represents results from calculated linear discriminant
analysis (LDA) Effect Size (LEfSe) comparing phage composition of BAL
samples from pneumotypespr vs. pneumotypegpr. Panel B. Multiple significant

phage differences (LDA>2) were observed between pneumotypes.
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Figure S6
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Supplemental Figure 6: Predicted metagenome correlates more tightly to
the metabolome in pneumotypespr than in pneumotypegpr. Comparison of
non-parametric correlation coefficients for matrix generated between the
PICRUSt inferred metagenome and the metabolome data (11,952 paired
metagenome/metabolome correlations, data represented as median[IQR], p-

value based on Mann-Whitney U).
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Figure S7
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Supplemental Figure 7: Greater Th17 cell in the bronchoalveolar
compartment. Panel A. Representative flow cytometry of CD4" cells
intracellularly stained for IL-17 or FoxP3. Panel B. CD4" cells in BAL fluid have
higher IL-17/FoxP3 ratio than CD4" cells in peripheral blood supporting a favored
Th17 phenotype in the lung mucosa (based on 11 BAL samples, 6 from
pneumotypespr and 5 from pneumotypegpr, data represented as median[IQR], p-

value based on Mann-Whitney U).
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Figure S8
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Supplemental Figure 8: Differences in transcriptome of bronchial epithelial
cells of pneumotypespr vs. pneumotypegpr. Unsupervised hierarchical
clustering analysis of mMRNA obtained from bronchial epithelial cells and found to

be significantly differently expressed between the two pneumotypes.
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Figure S9
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Supplemental Figure 9: Up-regulation of ERK1/2 and PIK3/AKT signaling
pathway in bronchial epithelial cells associated with pneumotypespr.
Ingenuity Pathway Analysis network generation algorithm identified ERK 1/2
signaling pathway as the top network (#1 IPA network, score=30, Focus
Molecules= 14) and PI3K/Akt signaling pathway (#4 IPA network, score=20) from
top discriminated mRNAs (p<0.05, FC>2) between pneumotypespt and
pneumotypegpr. Solid lines denote positively correlated proteins while dotted

lines denote negatively correlated proteins.

46



Figure S10
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Supplemental Figure 10: Multivariate logistic regression analysis to
evaluate the contribution of smoking to differences noted between the two
pneumotypes in BAL metabolites, cells, cytokines, and ex vivo cytokine
production to TLR4 stimulation. For this analysis, levels of metabolites, cells,
and cytokines (above or below the median) found to be significantly different
between pneumotypespt and pneumotypespt were used as outcome and
predictors in the model included pneumotypespr and smoking status. Age and
gender were also forced into the model. This analysis showed that the
association between pneumotypespr with lower levels of glyceric acid, cellobiose,
macrophages, and with higher levels of IL-1q, IL-7, EGF, TGF-a, and Fractalkine
was independent of smoking status. The association between pneumotypespr
with lower ex-vivo production of IL-6 was also independent of smoking status.
Smoking was associated with increased levels of GRO and Fractalkine
independently of pneumotype. The association of pneumotypespr and the other
biomarkers tested and represented in the figure were not statistically significant

when adjusted by these covariates. Data presented as odds ratio£95%ClI.

48



Supplemental Table 1: Metabolic pathways found to be differentially enriched between pneumotypespr vs. pneumotypegpr

Relative Abundance Effect size FDR

BPT SPT
Pathways enriched in pneumotypespr
Carbohydrate Metabolism; Amino sugar and nucleotide sugar metabolism 1+0.048 1.246+0.131 0.624 4.95E-09
Carbohydrate Metabolism; Fructose and mannose metabolism 0.585+0.037 0.71+0.06 0.621 5.81E-09
Carbohydrate Metabolism; Galactose metabolism 0.373+0.036 0.515+0.081 0.576 8.81E-08
Nucleotide Metabolism; Pyrimidine metabolism 1.413+0.113 1.845+0.248 0.570 1.19E-07
Metabolism of Cofactors and Vitamins; One carbon pool by folate 0.494+0.039 0.634+0.082 0.559 2.25E-07
Glycan Biosynthesis and Metabolism; Peptidoglycan biosynthesis 0.66+0.057 0.834+0.099 0.549 3.72E-07
Amino Acid Metabolism; Amino acid related enzymes 1.306+0.071 1.508+0.114 0.541 5.63E-07
Metabolism of Terpenoids and Polyketides; Zeatin biosynthesis 0.037+0.005 0.058+0.013 0.529 1.06E-06
Nucleotide metabolism; Nucleotide metabolism_Unclassified 0.028+0.006 0.047+0.012 0.526 1.23E-06
Metabolism of Cofactors and Vitamins; Thiamine metabolism 0.383+0.015 0.438+0.035 0.525 1.33E-06
Nucleotide Metabolism; Purine metabolism 2.031+0.136 2.39+0.207 0.521 1.58E-06
Metabolism of Other Amino Acids; D-Glutamine and D-glutamate metabolism 0.128+0.007 0.155+0.017 0.519 1.74E-06
Energy Metabolism; Carbon fixation in photosynthetic organisms 0.513+0.025 0.610.056 0.513 2.32E-06
Glycan Biosynthesis and Metabolism; Glycosyltransferases 0.357+0.019 0.422+0.043 0.505 3.42E-06
Xenobiotics Biodegradation and Metabolism; Drug metabolism - other enzymes 0.223+0.023 0.295+0.048 0.495 5.73E-06
Amino Acid Metabolism; Cysteine and methionine metabolism 0.823+0.028 0.909+0.057 0.494 5.92E-06
Amino Acid Metabolism; Lysine biosynthesis 0.606+0.019 0.663+0.037 0.490 7.05E-06
Metabolism of Other Amino Acids; D-Alanine metabolism 0.095+0.013 0.121+0.013 0.482 1.05E-05
Metabolism of Terpenoids and Polyketides; Biosynthesis of ansamycins 0.065+0.005 0.079+0.01 0.469 1.91E-05
Enzyme Families; Peptidases 1.559+0.061 1.767+0.153 0.461 2.74E-05
Metabolism of Terpenoids and Polyketides; Terpenoid backbone biosynthesis 0.527+0.049 0.62+0.058 0.431 9.83E-05
Carbohydrate Metabolism; Starch and sucrose metabolism 0.601+0.045 0.693+0.065 0.409 0.00025
Carbohydrate Metabolism; Pentose phosphate pathway 0.706+0.025 0.754+0.032 0.403 0.00031
Glycan Biosynthesis and Metabolism; Lipopolysaccharide biosynthesis proteins 0.425+0.047 0.55+0.102 0.396 0.00042
Glycan Biosynthesis and Metabolism; Lipopolysaccharide biosynthesis 0.335+0.041 0.447+0.093 0.395 0.00044
Amino Acid Metabolism; Phenylalanine, tyrosine and tryptophan biosynthesis 0.714+0.026 0.772+0.045 0.389 0.00055
Glycan Biosynthesis and Metabolism; Glycosaminoglycan degradation 0.038+0.011 0.069+0.027 0.384 0.00068
Glycan Biosynthesis and Metabolism; Other glycan degradation 0.107+0.028 0.168+0.049 0.376 0.00094
Glycan Biosynthesis and Metabolism; Glycosphingolipid biosynthesis - globo series 0.042+0.01 0.075+0.029 0.370 0.00116

Glycan Biosynthesis and Metabolism; Glycosphingolipid biosynthesis - ganglio series 0.024+0.007 0.046+0.021 0.357 0.00194



Lipid Metabolism; Sphingolipid metabolism 0.087+0.015 0.121+0.03 0.348 0.00271

Metabolism of Cofactors and Vitamins; Folate biosynthesis 0.451+0.023 0.493+0.037 0.326 0.00597
Metabolism of Other Amino Acids; Selenocompound metabolism 0.364+0.014 0.386+0.019 0.312 0.00985
Pathways enriched in pneumotypegpr
Metabolism of Terpenoids and Polyketides; Carotenoid biosynthesis 0.06%0.012 0.025+0.013 0.677 1.32E-10
Xenobiotics Biodegradation and Metabolism; Metabolism of xenobiotics by cytochrome P450 0.203+0.022 0.102+0.05 0.643 1.39E-09
Xenobiotics Biodegradation and Metabolism; Drug metabolism - cytochrome P450 0.212+0.023 0.107+0.053 0.640 1.76E-09
Xenobiotics Biodegradation and Metabolism; Chlorocyclohexane and chlorobenzene degradation 0.098+0.016 0.045+0.025 0.617 7.69E-09
Xenobiotics Biodegradation and Metabolism; Fluorobenzoate degradation 0.056+0.01 0.025+0.015 0.615 8.93E-09
Metabolism of Other Amino Acids; Glutathione metabolism 0.482+0.029 0.359+0.066 0.611 1.09E-08
Amino Acid Metabolism; Valine, leucine and isoleucine degradation 0.846+0.092 0.513+0.17 0.609 1.28E-08
Amino Acid Metabolism; Phenylalanine metabolism 0.35+0.032 0.237+0.058 0.606 1.54E-08
Lipid Metabolism; Synthesis and degradation of ketone bodies 0.16+0.024 0.086+0.035 0.600 2.13E-08
Amino Acid Metabolism; Tryptophan metabolism 0.579+0.066 0.339+0.126 0.598 2.45E-08
Xenobiotics Biodegradation and Metabolism; Styrene degradation 0.094+0.015 0.051+0.021 0.594 3.11E-08
Xenobiotics Biodegradation and Metabolism; Chloroalkane and chloroalkene degradation 0.282+0.022 0.18+0.058 0.589 4.16E-08
Lipid Metabolism; Fatty acid metabolism 0.683+0.087 0.412+0.141 0.581 6.40E-08
Xenobiotics Biodegradation and Metabolism; Ethylbenzene degradation 0.08+0.007 0.057+0.012 0.581 6.61E-08
Lipid Metabolism; Ether lipid metabolism 0.022+0.004 0.011+0.006 0.580 6.82E-08
Amino Acid Metabolism; Lysine degradation 0.462+0.056 0.28+0.097 0.579 7.41E-08
Carbohydrate Metabolism; Propanoate metabolism 0.906+0.078 0.668+0.126 0.571 1.12E-07
Carbohydrate Metabolism; Butanoate metabolism 1.015+0.066 0.771+0.139 0.570 1.20E-07
Lipid Metabolism; alpha-Linolenic acid metabolism 0.036+0.006 0.019+0.009 0.563 1.80E-07
Enzyme Families; Protein kinases 0.41+0.035 0.292+0.067 0.560 2.05E-07
Carbohydrate Metabolism; Inositol phosphate metabolism 0.209+0.018 0.143+0.039 0.557 2.52E-07
Metabolism of Cofactors and Vitamins; Retinol metabolism 0.084+0.007 0.058+0.016 0.552 3.17E-07
Metabolism of Other Amino Acids; beta-Alanine metabolism 0.438+0.042 0.306+0.075 0.552 3.23E-07
Carbohydrate Metabolism; Glyoxylate and dicarboxylate metabolism 0.753+0.054 0.574+0.105 0.549 3.70E-07
Xenobiotics Biodegradation and Metabolism; Benzoate degradation 0.526+0.071 0.34+0.098 0.549 3.77E-07
Lipid Metabolism; Biosynthesis of unsaturated fatty acids 0.261+0.021 0.178+0.052 0.541 5.69E-07
Metabolism of Terpenoids and Polyketides; Geraniol degradation 0.319+0.051 0.172+0.083 0.539 6.43E-07
Xenobiotics Biodegradation and Metabolism; Aminobenzoate degradation 0.414+0.053 0.265+0.084 0.538 6.80E-07
Metabolism of Terpenoids and Polyketides; Limonene and pinene degradation 0.348+0.049 0.204+0.083 0.534 8.05E-07
Biosynthesis of Other Secondary Metabolites; beta-Lactam resistance 0.045+0.005 0.031+0.008 0.531 9.40E-07

Amino Acid Metabolism; Tyrosine metabolism 0.468+0.023 0.39+0.048 0.531 9.47E-07



Xenobiotics Biodegradation and Metabolism; Caprolactam degradation 0.22+0.037 0.114+0.062 0.530 1.01E-06

Energy Metabolism; Oxidative phosphorylation 1.445+0.061 1.282+0.093 0.524 1.34E-06
Xenobiotics Biodegradation and Metabolism; Naphthalene degradation 0.242+0.021 0.177+0.04 0.516 2.02E-06
Biosynthesis of Other Secondary Metabolites; Penicillin and cephalosporin biosynthesis 0.064+0.008 0.043+0.012 0.493 6.17E-06
Lipid Metabolism; Lipid biosynthesis proteins 0.781+0.032 0.697+0.054 0.483 9.75E-06
Xenobiotics Biodegradation and Metabolism; Toluene degradation 0.19+0.016 0.159+0.016 0.477 1.31E-05
Amino Acid Metabolism; Arginine and proline metabolism 1.17+0.063 1.025+0.095 0.454 3.68E-05
Carbohydrate Metabolism; Pyruvate metabolism 1.113+0.026 1.018+0.073 0.449 4.49E-05
Xenobiotics Biodegradation and Metabolism; Nitrotoluene degradation 0.086+0.011 0.063+0.013 0.447 4.89E-05
Carbohydrate Metabolism; Ascorbate and aldarate metabolism 0.178+0.01 0.149+0.022 0.437 7.61E-05
Amino Acid Metabolism; Histidine metabolism 0.581+0.028 0.517+0.045 0.425 0.00013
Xenobiotics Biodegradation and Metabolism; Atrazine degradation 0.061+0.012 0.033+0.02 0.422 0.00015
Xenobiotics Biodegradation and Metabolism; Bisphenol degradation 0.123+0.015 0.085+0.031 0.404 0.00031
Metabolism of Cofactors and Vitamins; Lipoic acid metabolism 0.075+0.007 0.056+0.015 0.395 0.00044
Lipid Metabolism; Linoleic acid metabolism 0.074+0.01 0.053+0.016 0.387 0.00061
Others; Others_Unclassified 1.041+0.04 0.953+0.071 0.377 0.00090
Biosynthesis of Other Secondary Metabolites; Phenylpropanoid biosynthesis 0.1+0.015 0.078+0.013 0.377 0.00090
Amino acid metabolism; Amino acid metabolism_Unclassified 0.217+0.012 0.194+0.018 0.373 0.00105
Metabolism of Terpenoids and Polyketides; Tetracycline biosynthesis 0.146+0.012 0.118+0.026 0.344 0.00309
Lipid Metabolism; Fatty acid biosynthesis 0.551+0.016 0.516+0.032 0.340 0.00365
Lipid Metabolism; Steroid biosynthesis 0.022+0.005 0.012+0.009 0.340 0.00367
Metabolism of cofactors and vitamins; Metabolism of cofactors and vitamins_Unclassified 0.189+0.016 0.163+0.021 0.331 0.00493
Biosynthesis and biodegradation of secondary metabolites; Biosynthesis and biodegradation of secondary metabolites 0.075+0.009 0.057+0.017 0.322 0.00706
Biosynthesis of Other Secondary Metabolites; Indole alkaloid biosynthesis 0.002+0.001 0.001+0.001 0.314 0.00921
Energy Metabolism; Photosynthesis - antenna proteins 0.028+0.016 0.01%0.009 0.306 0.01230
Energy Metabolism; Sulfur metabolism 0.324+0.024 0.29+0.028 0.296 0.01737
Metabolism of Terpenoids and Polyketides; Biosynthesis of vancomycin group antibiotics 0.051+0.004 0.059+0.008 0.294 0.01866
Amino Acid Metabolism; Glycine, serine and threonine metabolism 0.935+0.026 0.899+0.033 0.274 0.03739

Data presented as Mean+SD Relative abundance (% of total reads annotated to metabolism based on PICRUSt); n=49
FDR = false discovery rate



Supplemental Table 2: Metabolites in BALF

Pneumotypegpr Pneumotypespr p-value
Glyceric Acid 212680[182960-451002] 150105[70339-175507] 0.007
Glycerol Alpha Phosphate 151720[62243-210562] 75165[32864-109428] 0.016
Cellobiose 111036[57497-163914] 52584[32471-102231] 0.026
Isothreonic Acid 22376[11126-40002] 13431[8516-18725] 0.037
Fucose Rhamnose 161467[130191-277157] 113822[67636-163330] 0.051
Erythritol 47258[17249-120023] 26961[12076-42609] 0.057
Threitol 16781[6138-42439] 8312[3641-14970] 0.086
Cysteine 51372[9524-155553] 14965[4575-56604] 0.095
Cholesterol 13742965[2205911-22856976] 6842542[2223233-12216410] 0.114
Oxalic Acid 672362[92496-2408361] 288001[3259-620238] 0.114
Erythronic Acid Lactone 148039[17929-271405] 67230[1347-105879] 0.114
Proline 132421[86471-406760] 190107[156948-278999] 0.126
Benzoic Acid 487173[134230-1132627] 311850[64597-522344] 0.137
Gluconic Acid 12747[8247-24994] 10364[7813-14400] 0.150
Tocopherol Alpha 97401[17840-224454] 50645[13034-101682] 0.164
Beta Alanine 10220[5892-17274] 5441[3910-14206] 0.194
Azelaic Acid 35073[4519-91690] 9490[4321-34581] 0.194
Fructose 35026[19597-51108] 26656[15364-39141] 0.210
Malic Acid 16280[11478-40053] 16267[9919-20798] 0.227
Threonic Acid 15864[6621-72716] 9879(7204-16256] 0.227
2-Hydroxybutanoic Acid 127018[70967-246284] 93151[66003-129266] 0.227
Ribose 12166[7916-69686] 23534[12015-42419] 0.246
Uridine 18238[9733-56162] 27388[19680-71487] 0.246
Ribitol 65569[14631-104406) 26263[11142-80501] 0.246
Pseudo Uridine 36712[16070-86369] 23760[13901-40510] 0.246
Hydroxylamine 444094[63043-1089163] 317357[11729-490341] 0.265
Pelargonic Acid 266077[97265-715234] 125932[87552-277154] 0.265
Indole-3-Lactate 31799[5498-83398] 12957[6431-35434] 0.265
Behenic Acid 25095[12941-54184] 19376[13028-25954] 0.265
Nicotinamide 104807[21909-200725] 61636[19791-112554] 0.286
Glutaric Acid 28546[6367-81993] 15216[5705-36561] 0.286
Capric Acid 121363[19036-275183] 51501[8926-163267] 0.286
1-Monostearin 36782[13927-72079] 26636[15006-41456] 0.286
Beta Sitosterol 17019[14617-41574] 17831[9841-25089] 0.307
Glycerol 637219[424517-1272975] 982170[580988-1691424] 0.330
Glycolic Acid 62701[46700-92040] 52102[35202-71640] 0.330
Succinic Acid 76907[24596-168372] 50545[30887-71237] 0.403
Oxoproline 465225[111364-802549] 200449[141322-546374] 0.430
1-Monopalmitin 58897[14215-121755] 45555[9998-66993] 0.458
Lauric Acid 399741[105863-1010952] 274397[79921-633459] 0.458
Aspartic Acid 61624[31442-98186] 41974[19268-67072] 0.486



Fumaric Acid
Glucose

Palmitic Acid
Stearic Acid
Dihydroabietic Acid
Serine

Thymine
1,5-Anhydroglucitol
Octadecanol
Threonine
Propane-1,3-Diol NIST
Phenylethylamine
Leucine
4-Hydroxybenzoate
Citric Acid

Urea

Sucrose

Maltose
Pentadecanoic Acid
Glycine

Alanine

Lactic Acid
Dodecanol
Glutamine
Arachidonic Acid
Inosine

Guanosine
Isoleucine
Glutamic Acid
Creatinine

Valine
Salicylaldehyde
Myristic Acid
2-Ketoisocaproic Acid
Methionine
Taurine

Linoleic Acid
Palmitoleic Acid
Oleic Acid
Mannose
Ethanolamine
Aconitic Acid Delta

44459[8538-77739]
4353984[1133389-21323749]
3297592[521203-8147453]
15312207[2544560-32484628]
125522[14194-445874]
45290[28366-90497]
14485[4498-35415]
381599[228945-1398827]
40500[13534-80378]
131247[51557-217972]
70644[31882-229295]
13052[6293-142769]
199672[121346-375419]
2797951[184084-20025680]
43252935[18383937-68717502]
9124327[7371423-22200543]
8922[4486-21715]
40794[28466-67371]
328709[89109-786462]
1143022[154321-2303517]
229697[145034-579922]
491789[217544-803442]
87778[12597-352366]
245804[18012-661134]
154377[16862-494916]
469025[101943-1443518]
29224[10260-107891]
105582[63084-161202]
117470[53561-191841]
130430[36048-368282]
246249[154347-450670]
43136[16583-162771]
308199[160572-574972]
26995[10804-41559]
18169[11601-35797]
74471[31203-376954]
45203[6696-109302]
126514[22753-279426]
113128[23518-302528]
81838[31145-188229]
1422425[643823-3822229]
339556[167099-862089]

32121[6966-55250]
3817115[870729-7731547]
3319768[265295-5071008]
13329871[1502088-17975676]
160779[9875-232057]
43646[26502-68958]
15014[2581-29882]
374671[229249-593452]
31824[7117-62647]
85735[40917-150272]
58737[34908-124804]
10998[5538-26479]
228400[161198-351023]
4229243[1024802-9623629]
37422499[18335754-56317964]
9728264[6651056-15557519]
7148[3977-15058]
48400[27987-85786]
367548[55421-495714]
964216[99069-1668517]
212302[195955-273800]
344632[214217-697484]
66973[12058-177847]
142515[13039-378225]
193590[28290-411165]
325835[141305-877117]
27134[18158-61130]
98659[79154-194451]
82905[61354-189085]
79835[47795-248165]
262706[219969-357951]
46311[16349-131921]
360195[181571-453475]
25987[16070-42757]
15382[12878-26057]
95937[39545-294675]
47990[11604-90814]
112400[15481-275263]
165242[16132-296372]
73709[55204-109288]
1397693[991858-2925678]
479463[125861-1000540]

0.486
0.486
0.486
0.486
0.486
0.516
0.516
0.516
0.516
0.546
0.546
0.546
0.577
0.577
0.577
0.610
0.610
0.610
0.610
0.642
0.642
0.642
0.676
0.710
0.745
0.745
0.745
0.745
0.781
0.781
0.816
0.816
0.853
0.889
0.926
0.926
0.926
0.926
0.963
1.000
1.000
1.000

Data presented as Median (IQR); n=28



Supplemental Table 3: Correlation of UniFrac distance to upper airway with levels of metabolites
in BAL

Spearman's Rho p-value
BAL Metabolytes

Cellobiose 0.500 0.007
Fucose Rhamnose 0.473 0.011
Isothreonic Acid 0.446 0.017
Glyceric Acid 0.423 0.025
Arachidonic Acid -0.472 0.011
Threonic Acid 0.381 0.045
Alanine 0.372 0.051
Oleic Acid -0.369 0.053
4-Hydroxybenzoate -0.330 0.086
Linoleic Acid -0.322 0.095
Myristic Acid -0.303 0.117
Palmitoleic Acid -0.288 0.137
Citric Acid 0.282 0.146
Lactic Acid 0.280 0.149
Uridine -0.275 0.156
Guanosine -0.263 0.177
Pentadecanoic Acid -0.263 0.177
Ethanolamine 0.242 0.214
Palmitic Acid -0.239 0.221
Dihydroabietic Acid -0.235 0.228
Dodecanol -0.231 0.237
Stearic Acid -0.230 0.239
Glycolic Acid 0.215 0.272
Gluconic Acid 0.211 0.282
Malic Acid 0.210 0.284
Sucrose -0.204 0.297
Octadecanol -0.201 0.304
Valine 0.200 0.307
Glutamine -0.192 0.327
Glutamic Acid 0.191 0.330
1-Monopalmitin -0.190 0.332
Cysteine 0.190 0.333
2-Hydroxybutanoic Acid 0.167 0.394
Erythritol 0.160 0.415
Fructose 0.151 0.445
Succinic Acid -0.142 0.470
Glycerol Alpha Phosphate 0.142 0.472
Glycerol -0.141 0.475
Threitol 0.135 0.495

1-Monostearin -0.134 0.498



Lauric Acid

Inosine

Fumaric Acid
Propane-1,3-Diol NIST
Behenic Acid
Hydroxylamine
Indole-3-Lactate
Isoleucine
Thymine

Leucine
Oxoproline

Proline

Glutaric Acid
Aconitic Acid Delta
Oxalic Acid
Creatinine

Beta Sitosterol
Salicylaldehyde
Aspartic Acid
Pelargonic Acid
Serine
Nicotinamide
Cholesterol

Beta Alanine
Maltose

Mannose
Methionine
Glycine

Taurine

Erythronic Acid Lactone
Benzoic Acid
2-Ketoisocaproic Acid
Azelaic Acid
Tocopherol Alpha
Ribose

Pseudo Uridine
Ribitol

Glucose
Phenylethylamine
Capric Acid
Threonine

Urea
1,5-Anhydroglucitol

-0.133
-0.126
-0.120
-0.118
-0.117
-0.116
-0.115
0.114
-0.113
0.111
0.106
-0.103
-0.099
0.088
0.088
-0.088
0.087
-0.083
0.078
0.077
0.076
0.074
-0.071
0.069
0.061
0.059
-0.056
-0.048
-0.047
0.046
0.043
0.042
-0.041
-0.039
-0.037
0.029
-0.017
-0.015
-0.014
-0.011
-0.009
-0.007
-0.005

0.500
0.521
0.543
0.549
0.555
0.557
0.558
0.562
0.568
0.575
0.591
0.600
0.616
0.656
0.656
0.658
0.660
0.676
0.692
0.696
0.700
0.707
0.721
0.727
0.757
0.765
0.778
0.808
0.812
0.816
0.827
0.834
0.836
0.844
0.853
0.883
0.932
0.941
0.945
0.956
0.965
0.971
0.978

N=28



Supplemental Table 4: BAL cells and cytokines

Pneumotypegpr Pneumotypespr p-value
BAL Cell Differential (%)*

Macrophages 92.8 [90.0-95.5] 90.6 [86.0-92.3] 0.07

Lymphocytes 4.5[3.2-6.7] 7.4 [4.6-11.9] 0.035
Neutrophils 1.3 [1.0-2.0] 1.8 [0.9-2.6] 0.365
Eosinophils 0.1 [0.0-0.4] 0.0 [0.0-0.4] 0.32

Cytokines (pg/mL)**

EGF 3.22[2.87-5.40] 16.04[10.60-56.64] 0.006
IL-10 29.44[16.72-36.24] 48.3[28.74-90.3] 0.007
Fractalkine 32.70[11.43-50.87] 63.46[41.03-99.1] 0.008
IL-8 317.74[176.06-577.84] 725.93[422.54-1395.93] 0.009
TGF-a 15.62[4.00-21.72] 30.07[19.86-39.65] 0.009
IL-1ra 17.18[6.92-49.28] 91.65[21.73-134.52] 0.023
GRO 3486.09[2671.76-5205.75] 13101.47[3369.98-38653.56] 0.027
IL-7 10.43[5.79-11.98] 13.20[9.86-18.96] 0.042
IFN-y 0.78[0.78-1.17] 0.78[0.78-0.78] 0.087
IL-1P 2.94[2.50-3.36] 3.42[2.63-4.98] 0.088
Eotaxin 13.8[10.35-19.88] 19.26[13.18-30.82] 0.092
IP-10 3113.67[1678.12-11942.6] 8849.09[4635.97-14606.33] 0.101
Fit-3 Ligand 29.48[13.91-66.25] 60.94[20.74-138.24] 0.111
IL-6 23.97[14.47-30.21] 30.24[23.72-48.84] 0.127
sCD40L 35.26[4.08-62.4] 57.92[28.33-122.3] 0.15

G-CSF 807.02[481.61-1338.22] 1074.08[676.43-2348.09] 0.17

FGF-2 7.10[6.51-9.72] 8.42[6.94-11.14] 0.199
IL-17 1.51[1.44-2.03] 1.59[1.48-2.54] 0.207
MIP-1a 16.82[12.62-42.69] 28.79[20.18-45.69] 0.215
GM-CSF 14.74[13.19-22.64] 14.07[10.43-16.48] 0.25

sIL-2Ra 7.56[5.23-11.01] 6.09[4.53-8.30] 0.425
VEGF 1033.33[205.65-1638.29] 885.63[500.64-3034.01] 0.425
IL-5 4.33[1.64-11.72] 2.19[1.36-7.44] 0.438
MCP-3 17.93[4.80-42.44] 15.03[8.36-22.66] 0.491
MIP-1 33.31[22.72-44.33] 38.06[27.57-91.87] 0.535
TNF-a 6.54[5.06-12.23] 9.93(5.06-18.12] 0.58

MDC 53.75[35.52-116.3] 45.01[29.26-105.98] 0.658
IL-12 p70 4.54[3.59-5.29] 4.38[3.66-6.11] 0.74

MCP-1 2531.3[1511.65-5130.14] 2500.64[1569.05-3936.27] 0.757
IL-15 62.91[44.54-79.33] 58.43[30.87-83.25] 0.79

IL-12 p40 5.40[3.86-8.10] 5.85[3.78-7.65] 0.877

Data presented as Median (IQR)
*Available for the NYU and LHMP cohorts (n=45)
**Available for the NYU cohort (n=31)



Supplemental Table 5: Correlation of UniFrac distance to upper airway with levels of cells and
cytokines in BAL

Spearman's Rho p-value
BAL Cells*
Macrophages 0.416 0.005
Lymphocytes -0.404 0.007
Neutrophils -0.232 0.130
Eosinophils 0.070 0.654
BAL Cytokines **

Fractalkine -0.552 0.002
IL-8 -0.550 0.002
GRO -0.536 0.003
EGF -0.513 0.004
IL-1ra -0.514 0.004
MIP-1a -0.457 0.013
IL-1a -0.451 0.014
TGF-a. -0.448 0.015
Eotaxin -0.431 0.020
IL-7 -0.390 0.036
G-CSF -0.383 0.040
IL-17 -0.373 0.047
FGF-2 -0.368 0.049
IL-18 -0.367 0.050
IL-6 -0.360 0.055
sCD40L -0.316 0.095
IP-10 -0.311 0.100
VEGF -0.297 0.118
MIP-1(3 -0.291 0.125
MDC 0.285 0.134
Fit-3 Ligand -0.260 0.173
GM-CSF 0.217 0.259
IL-12 p70 -0.203 0.291
IL-12 p40 -0.133 0.490
TNF-a -0.100 0.607
IL-5 -0.091 0.640
MCP-3 0.076 0.694
IL-15 0.050 0.796
IFN-y 0.046 0.813
sIL-2Ra 0.041 0.833
MCP-1 -0.031 0.875

*Available for the NYU and LHMP cohorts (n=45)
**Available for the NYU cohort (n=31)



Supplemental Table 6: Ex vivo cytokine production in response to TLR4 stimulation

Pneumotypegpr Pneumotypespr p-value
IL-6 36.88[25.36-181.59] 2.91[1.18-13.26] 0.0010
MDC 1.95[1.51-3.95] 1.22[0.99-1.69] 0.0160
TNF-o 16.24[5.6-19.95] 2.43[1.04-7.7] 0.0160
MIP-1a 2.24[0.91-10.60] 0.92[0.67-1.15] 0.0430
G-CSF 945.87[103.92-1929.23] 13.5[1.58-305.85] 0.0550
MIP-1( 6.81[2.77-20.42] 2.44[1.1-4.56] 0.0550
GM-CSF 153.51[53.73-533.57] 8.92[1.94-98.33] 0.0680
IL-10 173.14[39.62-321.38] 20.19[1.34-49.61] 0.0830
GRO 1.94[1.13-6.63] 1.2[0.97-3.15] 0.1010
Fractalkine  1.64[1.04-2.25] 1.15[1.01-1.36] 0.1730
Flt-3Ligand  1.49[0.92-1.73] 1.13[0.67-1.3] 0.2030
MCP-1 1.35[1-4.92] 1.09[0.59-2.2] 0.2740
MCP-3 0.67[0.57-1.03] 0.87[0.64-1.75] 0.2740
IL1-ra 1.32[0.95-2.09] 0.99[0.88-1.08] 0.3150
TGF-o. 1[1-5.06] 1.64[1-2.62] 0.3600
IL-1o 18.89[1.44-48.34] 3.4[1.09-26] 0.4080
IL-8 1.03[0.29-1.16] 0.62[0.27-1.22] 0.4080
FGF-2 1[1-1.18] 1[1-1.04] 0.4600
IL-12-p40 62[1-337.51] 7.36[1-172] 0.4600
IL-1p 296.22[1-706.91] 8.8[3.12-70.14] 0.4600
IL-9 1.01[1-1.04] 1.01[0.99-1.07] 0.5730
VEGF 1[1-1] 1[1-1.02] 0.6330
EGF 1[1-1.76] 1[1-1.01] 0.6960
Eotaxin 1.01[0.99-1.13] 1[0.99-1.01] 0.6960
IL-17 1[1-1.16] 1[1-1.04] 0.6960
IL-2 1.09[1.05-1.14] 1.07[0.99-1.7] 0.6960
IP-10 0.91[0.52-2.06] 1.31[0.51-2.29] 0.6960
sCD40L 1[1-1] 1[0.85-1.66] 0.6960
siL2-Ral 2.75[1.11-6.69] 1.24[1.06-2.66] 0.6960
IFNo 1[1-1.38] 1[1-1.02] 0.7620
IL-13 1.39[1.05-1.45] 1.15[0.99-5.05] 0.7620
IL-7 1[1-1.72] 1[1-1.01] 0.7620
IL-4 1[1-1] 1[1-1] 0.8290
IFNy 1.46[1.26-2.03] 1.3[1.14-5.31] 0.9650
IL-12-p70 1.16[1.01-1.74] 1.08[1.02-1.29] 0.9650
IL-15 1.03[1-1.51] 1.05[0.98-1.12] 1.0000
IL-3 1[1-1.13] 1[1-1.02] 1.0000
TNF-$ 1.25[0.97-5.13] 1.15[1.04-3.91] 1.0000

Data presented as Median (IQR) fold induction; (n=31)



Supplemental Table 7: Correlation of UniFrac distance to upper airway with ex-vivo cytokine
production during TLR4 stimulation of alveolar macrophages

Spearman's Rho p-value
Cytokine fold induction
MDC 0.566 0.014
IL-6 0.551 0.018
GM 0.470 0.049
MCP 0.425 0.079
IL-3 -0.414 0.088
IL-13 -0.346 0.160
Fit 0.338 0.170
IL-1P8 0.333 0.177
IL-9 -0.318 0.199
IFNy -0.315 0.203
IL-2 -0.313 0.206
IL-10 0.310 0.211
IL-17 -0.310 0.211
EGF 0.309 0.213
Eotaxin -0.307 0.215
IP -0.288 0.247
IL-4 -0.276 0.268
FGF -0.267 0.284
sCD40L -0.265 0.289
IFNo 0.264 0.290
TNF -0.260 0.297
Fractalkine 0.252 0.314
IL-7 0.225 0.369
IL-12-p70 -0.218 0.385
G -0.217 0.404
IL-12-p40 0.195 0.438
VEGF 0.193 0.442
IL-15 0.190 0.449
IL-8 -0.130 0.608
IL1-ra 0.116 0.647
siL2 -0.109 0.667
MIP-1la 0.091 0.721
IL-1o -0.085 0.739
MIP-1B 0.063 0.803
TGF 0.056 0.824
TNF -0.049 0.846
GRO 0.042 0.867
MCP 0.005 0.985

n=31





