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SUPPLEMENTARY RESULTS 

A detailed user’s guide and video tutorials with examples are available on a dedicated website 
(http://www.indiana.edu/~microbej/). 

Bacterial Cell detection/segmentation 

By default, MicrobeJ can detect particles with various morphologies such as spherical-shaped, oval-
shaped, rod-shaped, filament-shaped, branched-shaped, and irregularly-shaped bacterial cells. Cell 
detection can be achieved from either phase contrast or fluorescence images by one of the 21 
thresholding or local thresholding methods implemented in ImageJ1 (Huang, Intermodes, IsoData, Li, 
MaxEntropy, Mean, MinError, Minimum, Moments, Otsu, Percentile, RenyiEntropy, Shanbhag, Triangle, 
Yen, Local Default, Local MidGrey, Local Bernsen, Local Mean, Local Median, Local Niblack). The user can 
optionally display or hide the thresholded values on the active image to facilitate selecting the most 
appropriate method during the optimization process. When needed, the image can be pre-processed to 
aid the image binarization process using either pre-defined filters (subtract background, median, mean, 
minimum, maximum, Gaussian blur, or Laplacian of Gaussian) or any set of methods accessible through 
the ImageJ macro code. 

To convert binary segmented images into bacterial cells contours, MicrobeJ has four built-in shape 
conversion methods, referred to as ‘basic’, ‘smoothed’, ‘medial axis’ and ‘fit-shape’. Each method 
provides a different level of resolution that can accommodate a variety of specific experimental needs. In 
the ‘basic’ mode, object boundaries are defined by the pixel-based particle contours produced by the 
ImageJ edge-detection algorithm1. Although extremely effective with a processing time for cell 
identification down to 5 ms/particle (Windows 10 with Intel Core i5-4200U CPU, 1.6GHz, 8 Gb, 4 
threads), pixel-based contours offer limited information related to the particle’s morphology. In the 
‘smoothed’ mode, the pixel-based particle contours are refined into sub-pixel resolution contours using a 
set of subdivision/interpolation algorithms. Crude polygons are first subdivided using a variant of the 
Catmull–Clark algorithm2 and then simplified using a Reumann-Witkam algorithm3. The simplified 
polygons are then interpolated using a spline function and then smoothed using a linear smoother or a 
Butterworth filter using the specified cutoff frequency. The smoothed polygons are eventually enlarged 
or reduced using edge extrusion algorithms. While conventional thresholding techniques and edge-
detection algorithms are extremely effective, they might be limited for applications requiring extensive 
contour sophistication. To accommodate these specific situations, an edge correction algorithm based 
on a Sobel–Feldman edge detector was implemented. The Sobel–Feldman edge detector finds edges by 
highlighting sharp changes in intensity in the input image. The result of the Sobel-Feldman operator is a 
2-dimensional map of the gradient of the input image. The edge correction algorithm uses the smoothed 
version of the cell contours as initial guesses in an iterative edge optimization procedure. For each vertex 
of the cell contour, this method optimizes the lateral position of the edge by looking for local maxima of 
the normalized gradient magnitude from the input image.  

To validate the contour detection and the edge correction algorithms, we generated 2000 phase-
contrast images of virtual rod-shaped cells and determined the accuracy of their measurement by 
MicrobeJ. Virtual cells were simulated as rods of different lengths (4±2µm) and widths (0.75±0.2µm), 
with 1.2:1 ellipsoidal end-caps (major axis:minor axis), random orientations and random angularities 
(Supplementary Fig. 1a). 2D phase-contrast images were simulated with microlith4 as previously 
described5. Each resulting image was then pixilated by downsizing using bilinear interpolation. Gaussian 
noise with a mean of zero and standard deviation of 10 was added to simulate camera noise. The 
accuracy of detection by MicrobeJ was determined by measuring the distance from each simulated 
contour vertex to the detected cell contour (Supplementary Fig. 1b). We found that the average 
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localization error is about 16.34 nm (0.25 pixels) for the standard method and 10.30 nm (0.16 pixels) for 
the edge correction algorithm. These localization errors are consistent with those reported by other cell 
sub-pixel contour detection methods5,6. To test the accuracy of cell measurements, we compared the 
measurements of cell length and width with the theoretical lengths and widths (Supplementary Fig. 1c-f). 
We found that the difference between the theoretical and measured length or width had standard 
deviations of 8.77 nm (0.2%) and 6.17 nm (0.8%) respectively, which are consistent with those reported 
by other cell sub-pixel contour detection methods5,6. To test the reproducibility of the contour detection, 
we measured the variation of the cell area, length and width of 10 M. xanthus motile cells during cell 
movement (Supplementary Fig. 1g). Cells were imaged on an agar pad by light microscopy using a 100x 
1.4 NA phase oil objective, every 30 sec for 60 min and then analyzed with MicrobeJ (Supplementary Fig. 
1g). By using the default detection parameters, we found that the distributions of the variation between 
the average area, length or width, and the value measured at each time point show a standard deviation 
of 19 nm², 13 nm, and 6 nm respectively (Supplementary Fig. 1h-j). Finally, to test the precision of 
MicrobeJ measurements, we imaged beads (F8823; Fluospheres) by light microscopy using a 60x 1.4 NA 
phase oil objective with a 1.5x magnifier (Supplementary Fig. 1k). According to the manufacturer 
specifications, beads are about 1 µm in diameter with a coefficient of variation of about 20.8% (±0.0480 

µm) as determined by electron microscopy. When analyzed using MicrobeJ, beads were found to yield a 
distribution of diameters with mean 1.009 µm and standard deviation 0.036 µm (Supplementary Fig. 1l). 

Medial axes, also called topological skeletons, provide geometrical and topological properties of the 
particle shape, such as its length, width, sinuosity, curvature and angularity, and establish the spatial 
information relative to the sub-cellular coordinate system. In the ‘medial-axis’ mode, medial axes are 
produced from the medial axis transform (MAT) of the smoothed particle contours and converted into 
planar embedded graphs to manage branching phenotypes. Medial axes are then simplified using a 
Radial Distance algorithm at the specified resolution. In the ‘fit-shape’ mode, an interpolated contour is 
generated using the particle attributes according to the specified Shape Mode (Rod-Shaped, Crescent-
shaped, Circle and Ellipse). Although more complex, the ‘medial axis’ and ‘fit-shape’ modes have a 
processing time for cell identification close to 9 ms/particle (Windows 10 with Intel Core i5-4200U CPU, 
1.6GHz, 8 Gb, 4 threads) which is about 135 times faster than with MicrobeTracker7 and about 50 times 
faster than with Oufti5. 

MicrobeJ introduces a vetting system to remove inappropriate or unwanted particles from the final 
analysis. The user can easily define a set of specific attributes, including but not limited to area, length, 
width, circularity, curvature, sinuosity, angularity, solidity and signal intensity, designed to evaluate the 
particles in the active image. Since different types of cells can be present in the same image the user can 
define up to 10 different sets of attributes referred to as ‘Morphology’. Each particle is tested against all 
the active morphologies until the specific attributes are met. When a particle meets the attributes of a 
specific morphology, options associated with this morphology are used to generate the final bacterial 
cell object. If not, the particle is rejected. MicrobeJ permits direct user interaction with the active 
image(s) during the detection process to optimize the detection parameters. Users can systematically 
change and test the settings, which may vary from experiment to experiment, prior to applying them to 
a full set of images for final analysis. To help define the rejection criteria, the values of the specific 
attributes are displayed adjacent to every particle detected on the active image. 

When cells are in tight contact with each other and are detected as one single particle during the image 
binarization process, each individual cell can be segmented using a set of different methods. Each 
method consists of user-defined macros or a combination of specific filters including but not limited to 
Laplacian of Gaussian8, Shape Index Map9, Standard Watershed10 , and Irregular Features11. Each method 
is performed on the pixels located inside the boundary of the rejected particle and returns a binary 



image. For each method, the algorithm searches for the best method by selecting the one that 
maximizes the number of particles that meet the specified morphology attributes. As a consequence, the 
best-candidate segmentation algorithm is more effective when the attributes for each morphology are 
properly defined. 

Features detection 

Features are objects such as constrictions, septa, sections or patches that can be determined from the 
cell morphology, topology or fluorescence intensity. ‘Constrictions’ are detected using the width profile 
measured along the medial axis of the particle. Constrictions are located along the width profile using a 
local maxima algorithm. ‘Septa’ are detected using the intensity profile of pixels along the medial axis of 
the particle. Septa are located along the intensity profile using a local maxima algorithm. ‘Sections’ are 
detected using the width, the curvature or the intensity profile measured along the medial axis of the 
particle. ‘Sections’ delineates transversal sections of the cell when the width, the curvature or the 
intensity values measured along the medial axis of the cell are inside the user-defined range of values. 
‘Patches’ are detected using the local curvature of the boundary of the particle or intensity profile of 
pixels measured along the boundary of the particle. The sub-cellular localization and the localization type 
such as polar or mid-cell are automatically computed for each feature (see ‘Sub-cellular localization’ 
below). 

Fluorescent Foci/Filament detection 

Foci and Filament detection can be achieved from either phase contrast or fluorescence images using the 
local maxima detection algorithm implemented in ImageJ1. To help the local maxima detection process, 
the user can interactively adjust the tolerance value, also called the minimum prominence value, on the 
active image. When needed, the image can be pre-processed to facilitate the detection of local maxima 
using pre-defined filters (median, mean, median, minimum, maximum or Gaussian blur). 

To convert local maxima into particles, MicrobeJ has four built-in conversion methods, referred to as 
‘point’, ‘foci’, ‘bacteria’ and ‘filament’. Each method provides a different level of resolution that can 
accommodate specific experimental needs. In the ‘point’ mode, the particles are defined only by the 
position of local maxima in the image. Although extremely effective with a processing time for ‘point’ 
identification down to 0.02 ms/particle (Windows 10 with Intel Core i5-4200U CPU, 1.6GHz, 8 Gb, 4 
threads), this conversion method offers only a limited number of shape properties. In the ‘foci’ mode, 
particle centers are not only defined by the position of the local maxima but also by the contiguous area 
surrounding the local maxima. The contiguous area is defined with the condition that the unsigned sigma 

distance (𝑧 =  |
𝐼𝑝𝑖𝑥𝑒𝑙−µ𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝜎𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
| of all pixel values is higher than the user-specified z-score. The 

background signal is measured with the reciprocal binary mask used to detect the local maxima. In the 
‘bacteria’ mode, the contiguous area is converted into a bacterial cell object using one of the four built-in 
shape conversion methods described above (Bacterial Cell detection). In the ‘Filament’ mode, contiguous 
areas are converted into medial axes using the medial axis transform (MAT). 

When high-precision localization is required, the position of each local maxima can be determined at the 
sub-pixel resolution using a 2D Gaussian fitting algorithm. When fluorescent foci are associated with 
bacterial cells, the sub-cellular localization and the localization type such as polar or mid-cell are 
automatically computed for each child particle (see ‘Sub-cellular localization’). 

Sub-cellular localization 



Features, Foci, and Filament can be linked hierarchically with the specified Particles (Bacteria or other 
Foci). Associated Features or Foci are qualified as child particles and the specified particles as parent 
particles. The specific location, distances and localization of the child particles relative to their respective 
parents are measured and recorded in the Results table. The number of child particles is measured for 
each parent particle and recorded in the Results table. To accommodate diverse experimental needs, 
MicrobeJ provides two types of association referred to as ‘Inside’ or ‘Outside’. In the ‘Inside’ mode, 
Features or Foci that are spatially inside or within the boundaries of the specified particles can be 
associated. This mode can be used in situations where Fluorescent Foci, Filament or Features represent 
cellular components that are located inside or at the surface of the cell (protein clusters, plasmids, 
chromosomal loci, a patch of specific sugar, etc). In the ‘Outside’ mode, Feature or Foci that are spatially 
outside the boundaries of the specified Particles can be associated. This mode can be used in situations 
where Fluorescent Foci, Filament or Features represent cellular components that are located spatially 
outside or in close proximity to the cell (flagella, pili, or stalk).  

To accommodate diverse applications requiring sub-cellular localization, MicrobeJ provides four types of 
relative coordinate system: Cartesian, orthogonal, normalized, and cylindrical (Supplementary Fig. 3a).  

In the ‘Cartesian’ coordinate system, the relative coordinates of the child particle are defined by the 
distances from both the X and Y axes of the image, expressed as signed distances from the origin.  

In the ‘orthogonal’ coordinate system, the relative coordinates of the child particle are defined as the 
position of the perpendicular projection of the child particle center onto the medial axis of the parent 
particle (X-coordinate) and the perpendicular distance between the child particle and the perpendicular 
projection (Y-coordinate), expressed as signed distances form the origin. By convention, the X-axis is 
oriented toward the first pole and the Y-axis is oriented toward the first side. If the child particle is 
assumed to form close to the parent particle surface, the Z-coordinate is defined using the relation 𝑧 =

 |𝑦| ×  tan 𝜑 with 𝜑 =  cos−1(
|𝑦|

𝑟𝑐
) where 𝑦 is the Y-coordinate and 𝑟𝑐 is the radius of the parent particle. 

The ‘normalized’ coordinate system corresponds to the ‘orthogonal’ coordinate system with coordinates 
that are expressed as signed and normalized distances form the origin.  

In the ‘Cartesian’, ‘orthogonal’ and ‘Normalized’ relative coordinate system, the origin can be set at the 
center, the first pole or the second pole of the parent particle.  

In the ‘cylindrical’ coordinate system, the relative coordinates of the child particle are defined as the 
radial distance r, the angular position θ and the longitudinal position p. If the child particle is assumed to 
form close to the parent particle surface, the relative coordinates of the child particle are also defined by 
the elevation angle ϕ, the revolution angle β, and the arc length L. When the child particle is located in a 
polar region, the radial distance r is defined as the distance between the particle center and the closest 
end of the ‘short medial axis’ of the parent particle (cf. the segment of the medial axis between the 
origins of the two poles), the angular position θ is defined as the angle formed between the particle 
center and the axis of the closest pole, and the longitudinal position p is defined as the signed distance 
measured along the short medial axis of the parent particle from the parent particle center. The angular 
position θ is expressed in radians. The radial distance r is normalized by the radius of the cell. The 
longitudinal position p is normalized by the length of the short medial axis. The longitudinal position p is 
equal to 1 when the child particle is located in the pole 1 region and is equal to -1 when the child particle 
is located in the pole 2 region. The angular position θ is positive when the child particle is located on the 
side 1 region and negative when the child particle is located on the side 2. When the child particle is 
located in the ‘short medial axis’ region, the radial distance r is defined as the perpendicular distance 
between the child particle center and the ‘short medial axis’ of the parent particle, the angular position θ 



is defined as the angle formed between the particle center and the ‘short medial axis’, and the 
longitudinal position p is defined as the signed distance along the short medial axis of the parent particle 
from the parent particle center. The angular position θ is expressed in radians. The radial distance r is 
normalized by the radius of the cell. The longitudinal position p is normalized by the length of the short 

medial axis. Note that the angular position θ is equal to 
𝜋 

2
 when the child particle is located on the side 1 

region and is equal to 
−𝜋

2
 when the child particle is located on the side 2. The elevation angle ϕ is defined 

using the relation 𝜑 =  cos−1( 𝑟) where 𝑟 is the normalized radial distance. The elevation angle ϕ is 
expressed in radians. The elevation angle ϕ is positive when the child particle is located on the upper 
side of the parent particle and negative when the child particle is located on the lower side of the parent 
particle. The revolution angle β is defined as the angle formed between the particle center and the 
transversal axis of the parent particle. The revolution angle β is expressed in radians [0,2π]. The arc 
length L is defined using the relation 𝐿 =  𝛽 × 𝑟𝑐 where β is the revolution angle and 𝑟𝑐  is the radius of 
the parent particle. 

Tracking 

Bacterial cells, Features, Foci and Filaments can be tracked over time using an optimized nearest-
neighbor algorithm. For each particle at a specific frame, the algorithm searches for particles on the next 
frame matching the specified conditions (distance, angle, acceleration, area, intensity). For each retained 
pair of particles, the algorithm computes a correlation score using the root mean squared of the 
specified ratios (distance, angle, acceleration, area, intensity). The algorithm then determines the most 
probable pairs by selecting the ones maximizing the correlation score. When associated with Bacterial 
cells, Features, Foci, and Filaments can be tracked using their relative coordinates. 

MicrobeJ provides two tracking modes, referred to as ‘Basic’ or ‘Advanced’. In the ‘basic’ mode, only the 
distance between two frames, area and intensity are measured and used to compute the correlation 
score. In the ‘Advanced’ mode, the algorithm tracks the particles assuming they are actively moving: the 
distance, area, intensity, angle and acceleration are measured and used to compute the correlation 
score. 

Particle tracks can be optionally analyzed for specific information, including but not limited to motion 
descriptors, events, and phases detection that can be computed and recorded in the Results table. 
Motion descriptors include the distance, velocity, confinement ratio, distance from origin, type of 
displacement (moving, diffusing and not moving), and the mean squared displacement. A fit can be 
automatically performed on the Mean Squared Displacement to compute the extrapolated value of the 
velocity, the diffusion coefficient and the confinement factor. For the events or phase detection, particle 
tracks are analyzed for specific events or specific shift in the velocity, the type of displacement, the 
direction and any user-defined property that could occur along the different positions over time. Each 
event consists of specific criteria designed to evaluate the particle properties over the time course. 
When the particle meets the criteria of a specific event, the timing is recorded in the results table. 

Batch-processing 

To ensure high efficiency and better memory management, MicrobeJ supports multithreading and 
Virtual stack images. Virtual stack images are disk resident images, as opposed to Random-access 
memory (RAM) resident images, and allow analysis of image files exceeding the RAM capacity. To 
illustrate the high efficiency of MicrobeJ, we imaged 15 different strains of C. crescentus cells, by phase 
contrast and fluorescence microscopy every 5s for 3h in triplicate. Each experiment generated a 4.2 Gb 
stack of images with about 40,000 bacterial cells and 20,000 fluorescent foci that needed to be detected, 
analyzed, associated and tracked over time. Using a conventional PC (Windows 7 with Intel Xeon (R) 



processor, 3.3 GHz, 16 Gb, 4 threads), MicrobeJ was able to process a total of 189 Gb of images, about 
1.8 106 bacterial cells and 0.9 106 fluorescent foci, in about 10h, i.e., ~50 cells per second. 



 



 

Supplementary Figure 1: MicrobeJ measurements are accurate and precise. (a) Virtual cells contours 
were generated as rods of different lengths and widths, with ellipsoidal end-caps, random orientations 
and random angularities (n=2,000). The cell contours were then used to generate cell masks and 
simulate 2D phase-contrast images. Simulated images were pixilated by down-sizing (scaling factor of 
0.2) and Gaussian noise was added to simulate camera noise. The resulting images were then analyzed 
using MicrobeJ. The scale bar represents 1 μm. The accuracy was determined by measuring the distance 
from each simulated contour vertex to the detected cell contour using the standard method (green bars) 
or with the edge correction algorithm (yellow bars) (b). The accuracy of cell measurements was 
determined by comparing the theoretical length (c: blue bars) and width (d: blue bars) with the length 
and the width measured by MicrobeJ (green bars). The distributions of the difference between the 
theoretical length or width, and the length or the width measured by MicrobeJ are shown respectively in 
(e) and (f). The reproducibility of the contour determination was determined by measuring the variation 
of the cell area, length and width of 1,200 M. xanthus motile cells during cell movement (g). Scale bar = 1 
μm. The distributions of the variation between the average area, length or width, and the value 
measured at each time points are shown respectively in (h), (i) and (j). (k) The precision of MicrobeJ 
measurements was determined by measuring the diameter of 3,685 beads of known dimensions 
(1±0.0480). The distribution of bead diameters as measured by MicrobeJ is shown in (l). The diameters 
are measured in microns. Scale bar = 2 μm. 



 

Supplementary Figure 2: MicrobeJ can define cellular types based on morphological and signal 
properties. In this experiment, C. crescentus CB15 cells (red contours), C. crescentus cells expressing a 
cytoplasmic GFP (mini-Tn7(Gm)gfp) (cyan contours), B. subtilis vegetative cells (magenta contours), B. 
subtilis spores (yellow contours), Lactococcus lactis cells (orange contours) and E. coli MG1655 cells 
(green contours) were mixed together and imaged on an agar pad (Scale bar = 1 μm). Cellular types were 
defined using the morphological and signal properties based on the specified criteria. See Fig. 2c for 
criteria used to differentiate each type. 

 



 

 

Supplementary Figure 3: The different types of relative coordinate systems. When maxima, filaments 
or features are associated with bacteria, their sub-cellular localization is measured and recorded in the 
results using four relative coordinate systems: Cartesian, orthogonal, normalized, and cylindrical (a). 
Since maxima are associated with bacteria, the results table also provides sub-cellular representation 
tools such as localization charts (b) and heat-maps (c). 

  



 

Supplementary Figure 4: Presentation of the results interface of MicrobeJ. (a) The MicrobeJ Results 
GUI: This interface contains information about the experiment, the detected particles, and 
complementary data based on user-selected options. Each row is an individual particle detected in the 
image and is dynamically linked to the image. If the user clicks on one row (outlined in red), it will 
highlight the corresponding bacterium or fluorescent focus detected on the image (outlined in red) and, 
likewise, if the user selects a bacterium or fluorescent focus on the image (outlined in red), it will 
highlight the corresponding row of the list (outlined in red). Graphical outputs, such a XY plots or 
histograms are also dynamically linked to the result table and the image. This interaction permits editing 
of the dataset to temporarily exclude, include, or remove a particle from the list and ultimately from the 
final analysis. The results tables (Experiment, Bacteria, and Maxima1) are connected and arranged 
hierarchically. Because each maximum is associated with a specific bacterial cell, if the user hides or 
removes a bacterial cell in the results table, both the cell and the associated maxima will be hidden or 
removed in the image and from the final data analysis. While measurements can be copied into other 
programs for subsequent data analysis, the user can easily produce common statistical analyses (b), 
interactive charts (c), fluorescence profiles (d), and regression analysis (e) directly from the results 
interface. 

 



 

Supplementary Figure 5: The batch-processing interface of MicrobeJ. The batch mode GUI contains 
several tabs that allow the user to apply settings (Settings) to a set of experiments (Experiments) and 
track any errors that might arise during analysis (Log). Using this interface, the user can simply open a 
folder containing a set of Images or a set of folders containing images to be analyzed as individual 
experiment. Once the experiments are detected and selected, the user can load existing settings and 
start the analysis. Each experiment will be analyzed subsequently until the list of selected experiment is 
exhausted. Once the selected experiments are analyzed, the user can either load the results in a results 
interface or open automatically saved csv files. 

  



Supplementary Videos 

Supplementary Video 1: Presentation of the MicrobeJ workflow. An example of a simple image analysis 
with MicrobeJ in real-time is presented. In this example, C. crescentus cells expressing DivJ-GFP, which 
forms a single fluorescent focus located at one pole of the cell, are detected from a multidimensional 
stack (Hyperstack) of images. After detection parameters are optimized to segment touching cells and 
exclude small particles from the analysis, and the results are generated. From the results interface, a 
number of different outputs, such as an interactive histogram of the cell length, a demograph, a 
heatmap, and an interactive sub subcellular localization graph are produced and saved as a template. 
The template is saved and then re-used to automatically perform the same analysis on a different stack 
of images and generate the same outputs. Note that templates can be saved as a file or directly dragged 
and dropped from the results interface to the MicrobeJ main Interface. 

 

Supplementary Video 2: FtsZ-YFP localization in C. crescentus. Sequence of phase contrast and 
fluorescent overlay images showing several rounds of division from a single C. crescentus cell expressing 
FtsZ-YFP. Pictures were taken every 5 min. The bacterial cell contours (green) and their corresponding 
medial axes (orange) are shown. 

 

Supplementary Video 3: Example of an advanced image analysis with MicrobeJ in real-time. In this 
example, we analyzed C. crescentus cells expressing FtsZ-YFP by time-lapse microscopy (Video S2) and 
tracked the respective localization of FtsZ and the cell constriction during the cell cycle (see Figure 3 for 
more details). 

 

Supplementary Video 4: FtsZ-YFP localization in a filamentous C. crescentus cell. Sequence of phase 
contrast images showing several rounds of division from C. crescentus cells expressing FtsZ-YFP and 
harboring division defects. Pictures were taken every 5 min. The bacterial cell contours (green) and their 
corresponding medial axes (orange) are shown. 

 

Supplementary Video 5: Example of automated and manual segmentation with MicrobeJ in real-time. 
In this example, we analyzed a micro-colony of C. crescentus cells harboring defects in cell division by 
time-lapse microscopy. After we optimized attribute values and used the default set of segmentation 
methods, we manually separated unsegmented cells and then generated the final dataset. 



 

Supplementary Table 1: Comparison of MicrobeJ with ImageJ, ObjectJ, ColiInspector, BactImAS, 

MicrobeTracker, Oufti, PSICIC, Schnitzcells and CMEIS.  

 

  

MicrobeJ ImageJ/Fiji ObjectJ Coli-Inspector BactImAS MicrobeTracker Oufti PSICIC Schnitzcells CMEIS

Software
Platform ImageJ ImageJ ImageJ ImageJ/ObjectJ Standalone/Icy/ImageJ MATLAB Standalone MATLAB MATLAB Standalone

Documentation On-line On-line On-line On-line On-line On-line On-line On-line On-line On-line

Written  tutorials On-line On-line On-line On-line On-line On-line On-line None On-line On-line

Video tutorials On-line On-line On-line On-line On-line On-line On-line None On-line

User Interaction GUI GUI GUI GUI GUI
 GUI 

+ Command line

GUI 

+ Command line

GUI 

+ Command line

GUI 

+ Command line
GUI

Computer code Open Source Open Source Open Source Open Source Open Source Open Source Open Source Open Source Open Source Copyright MSU

Save settings to file Yes No Yes Yes No Limited Yes No No Yes

Images
Drag and Drop Yes Yes Yes Yes Yes No No No No No

File Type Extensive Extensive Extensive Extensive Limited Limited Limited Limited Limited Limited

Interactivity Full Full Full Full Full Limited Limited Limited Limited Limited

 Display Uni-Dimensionnal Uni-Dimensionnal Uni-Dimensionnal Uni-Dimensionnal Uni-Dimesionnal Uni-Dimesionnal Uni-Dimesionnal Uni-Dimesionnal Uni-Dimesionnal Uni-Dimesionnal

Detection/Analysis
SubPixel Resolution Outlines Fully-Automated Manual Manual Semi-automated Semi-automated Fully-Automated Fully-Automated Fully-Automated - -

Branched cell Detection Fully-Automated - - - - - - - - -

Cell segmentation Fully-Automated Manual Manual Manual Semi-automated Fully-Automated Fully-Automated Fully-Automated Fully-Automated -

SubPixel Foci Detection Fully-Automated Manual Manual Manual Semi-automated Fully-Automated Fully-Automated Fully-Automated - -

SubPixel Filament Detection Fully-Automated - Manual Manual - - - - - -

Sub-Cellular localization Fully-Automated - Semi-automated Semi-automated Semi-automated Fully-Automated Fully-Automated Fully-Automated - -

Tracking Fully-Automated - - - Fully-Automated Fully-Automated Fully-Automated Fully-Automated Fully-Automated -

Sub-Cellular Tracking Fully-Automated - - - - Not-Implemented* Not-Implemented* Not-Implemented* - -

Manual Editor Available Available Available Available - Limited Available Limited Limited -

Precision/ Accuracy
Contour Localization Error 10.30 - 16.34 nm 24.48 nm - - - - 15 - 26 nm - - -

Area Measurement Error 19 nm² - - - - - 6.6 - 82 nm² - - -

Length Measurement Error 13 nm - - - - - - 8 nm -

Width Measurement Error 6 nm - - - - - - - -

Features
Cell Morphology Parameters Extensive Limited Limited Limited Limited Extensive Extensive Limited Limited Extensive

Cellular type determination Fully-Automated Manual Manual Manual Manual Manual Manual Manual Manual Fully-Automated

Profile extraction Fully-Automated Manual Fully-Automated Fully-Automated - Fully-Automated Fully-Automated Fully-Automated - -

Septa/Constriction Detection Fully-Automated - Fully-Automated Fully-Automated - Fully-Automated Fully-Automated Fully-Automated - -

Cell Contact Detection Fully-Automated - - - - Not-Implemented* Not-Implemented* Not-Implemented* - -

Addition of new features Limited Limited Available Limited Limited Not-Implemented* Not-Implemented* Not-Implemented* Limited Limited

Results
Data Processing In-Program Limited Limited Limited Limited In-Program In-Program In-Program In-Program -

Interactivity Extensive Extensive Extensive Extensive Limited Limited Intermediate Intermediate Limited Limited

Graphical Representations In-Program Limited In-Program In-Program In-Program In-Program In-Program In-Program In-Program -

Addition of new Representations Limited Limited Limited Limited Limited In-Program In-Program In-Program In-Program Limited

Templates In-Program - - - - In-Program In-Program In-Program In-Program -

Storage .res/.xml/.csv/.pn .txt/.csv .ojj file format .ojj file format Relational MATLAB format MATLAB format MATLAB format MATLAB format .txt/.csv

High-Throughput
Batch Mode Fully-Automated Limited Limited Limited Limited Fully-Automated Fully-Automated - Limited -

Multi-threading Available Limited Limited Limited Limited Limited Available Not-Implemented Limited -

*Available with a significant knowledge of programing (requires command line)
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