SUPPLEMENTAL MATERIAL

Supplemental Methods

Supplemental Table 1

Supplemental Table 2

Supplemental Table 3

Supplemental Figures and Legends

Supplemental References

This supplemental material has been provided by the authors to give readers additional information about their work.

Supplemental Methods

Covariates

Measurements followed similar protocols in both the ARIC Study and the CHS. At baseline, study participants provided information on education, race, smoking status, and prevalence of CHD. In the ARIC Study, prevalent CHD was defined if self-reported based on a previous physician-diagnosis or by the presence of previous myocardial infarction on ECG. Incident CHD was adjudicated by the ARIC Morbidity and Mortality Classification Committee as previously described.¹ In the CHS, prevalent CHD was defined as a positive history for MI, coronary revascularization, or angina using information from self-report and hospitalization records. A physical examination collected information on height and weight, and blood pressure was measured with a random-zero sphygmomanometer. Fasting glucose and lipids were measured from blood samples obtained during the exam. Diabetes was defined as a fasting glucose level of \geq 126 mg/dl, use of an oral hypoglycemic agent or insulin, or in addition, in the ARIC Study, a non-fasting glucose of $\geq 200 \text{ mg/dl}$ or a self-reported medical diagnosis of diabetes. In the ARIC Study and the CHS, hypertension was defined as use of medication to treat high blood pressure, systolic blood pressure ≥140mm Hg, or diastolic blood pressure ≥90 mm Hg. In ARIC, heart failure at baseline was defined as the reported use of medications to treat heart failure in the previous 2 weeks or the presence of heart failure according to Gothenburg criteria; incident heart failure during follow-up was defined as the presence of ICD-9-CM code 428 in any hospitalization or death certificate.² In CHS, heart failure confirmation required, in addition to physician diagnosis, one of the following: 1) documented heart failure symptoms (e.g., shortness of breath, fatigue, orthopnea, paroxysmal nocturnal dyspnea) and physical signs (e.g., edema, pulmonary rales, gallop rhythm) consistent with heart failure; 2) supporting clinical findings such as pulmonary edema on chest x-ray; or 3) therapy for heart failure, including diuretics, digitalis, angiotensin-converting enzyme inhibitors, or beta-blockers.

In ARIC, serum creatinine was assessed in 99% of subjects at their initial visit, while in CHS it was assessed in 97% subjects.³ Kidney function was assessed by calculation of the estimated GFR (eGFR)

using the abbreviated Modification of Diet in Renal Disease (MDRD) Study equation: (eGFR (ml/min per 1.73 m^2) = 186.3*(serum creatinine in mg/dl^{-1.154})*(age^{-0.203})*(0.742 if female)*(1.21 if black). Details about medication use were previously described for the CHS⁴ and the ARIC Study.⁵ Framingham risk score variables were obtained in both cohorts and included age, sex, total cholesterol, HDL cholesterol, blood pressure, diabetes, and smoking.⁶

Reader Agreement for LV Ejection Fraction and Segmental Wall Motion Scoring

To assess interreader and intrareader agreement for LV ejection fraction and segmental wall motion measurements, κ statistics and the percentage of agreement were calculated. For LV ejection fraction, 339 paired studies were read for assessment of interreader agreement and 310 paired studies for intrareader agreement. In addition, 477 and 239 paired studies were read for assessment of interreader and intrareader agreement, respectively, in scoring LV segmental wall motion. There was agreement on 94% (κ =0.32) of the paired interreader studies for LV ejection fraction, and the agreement for LV segmental wall motion was 92% (κ =0.45). The agreement was better for the paired intrareader studies (98% for LV ejection fraction and 95% for segmental wall motion, with κ =0.82 and 0.59, respectively).⁷

Supplemental Table 1. Non-sudden CVD death rate and hazard ratio (95% confidence interval) by

echocardiographic correlates, ARIC, 1993-2002, and CHS 1989-2002

					Mitral Ann	ular Calc	rification			
		ARIC					CHS			
		No		Yes	P-value		No	Yes	P	-value
NSCD cases		63		6			272	325		
Person-vears		16094	791				29696	20089		
Model 3: HR (9:	5% CD	1 (REF)		.46	0.13		1 (REF)	1.81	<	<0.001
		- ()	(0.63	- 3.38)			- ()	(1.53 - 2.1)		
Model 4: HR (9:	5% CD	1 (REF)	(04	0.93		1 (REF)	1.47	/	<0.001
	0,001)	((tEF))		- 2.44)	0.90		((()))	(1.24 - 1.7)		0.001
			`	,	Aor	tic Scleros	sis	```	/	
			A	RIC				CHS		
	No Yes			P-value		No	Yes	P	-value	
NSCD cases		62		7			248	325		
Person-years		16011		879			27318	21277		
Model 3: HR (9:	5% CI)	1 (REF)		.48	0.33		1 (REF)	1.76		<0.001
			(0.68 - 3.25)					(1.49 - 2.0)	07)	
Model 4: HR (95% CI)		1 (REF)	1	.15	0.73		1 (REF)	1.46	<	0.001
			(0.52 - 2.58)					(1.22 - 1.73)		
					Reduced L	V ejection	fraction	arra		
	_	N-		RIC	Develope		N-	CHS	г	-value
NCOD		<u>No</u> 52		es	P-value		<u>No</u> 864	Yes 170	F	-value
NSCD cases			1							
Person-years	- A () ()	16599	341				58667	4143		0.001
Model 3: HR (9:	5% CI)	1 (REF)	8.9		< 0.0001		1 (REF)	2.14		<0.001
M 114 HD (0.	50/ CD		(4.76 - 16.88)		<0.0001		1 (DEE)	(1.80 - 2.54)		0.001
Model 4: HR (9:	5% CI)	1 (REF)	4.61 (2.40 - 8.85)		< 0.0001		1 (REF)	1.62 < 0.00 (1.33 - 1.97)		<0.001
			(2.40-	- 8.85)	Left atrium	diameter	•	(1.55 - 1.5	(1)	
		А	RIC tertiles (c	m)	Lett att full	ulametei		HS tertiles (cr	n)	
	<3.62	3.62 - 4.05	>4.05	Continuous	P-value ⁺	<3.60	3.60 - 4.13	>4.13	Continuous	P-value
NSCD cases	13	7	33	per 1 SD		281	286	435	per 1 SD	
Person-years	4578	4566	4628			20881	20997	19031		
Model 3: HR	4378 1 (REF)	0.48	1.94	1.65	< 0.0001	20881 1 (REF)	0.94	1.37	1.25	< 0.01
(95% CI)	I (KEF)	(0.19 - 1.21)	(1.01 - 3.74)		<0.0001	I (KEF)	(0.79 - 1.10)		(1.17 - 1.34)	<0.01
Model 4: HR				(1.31 - 2.09)			(0.79 - 1.10)	(1.17 - 1.59)		
(0.50 (CD)	1 (REF)	0.47	1.67	1.51	0.0008	1 (REF)	0.90	1.08	1.06	0.08
(95% CI)	1 (REF)	0.47 (0.19 – 1.18)					0.90 (0.76 – 1.06)	· /	. ,	0.08
(95% CI)	1 (REF)	(0.19 – 1.18)	1.67 (0.86 - 3.25)	1.51 (1.18 – 1.92)	0.0008 Aortic root		0.90 (0.76 – 1.06)	1.08 (0.92 – 1.27)	1.06 (0.99 – 1.14)	0.08
(95% Cl)	1 (REF)	(0.19 – 1.18)	1.67	1.51 (1.18 – 1.92)	Aortic root		0.90 (0.76 – 1.06)	1.08	1.06 (0.99 – 1.14)	
\$	<2.92	(0.19 – 1.18) A 2.92 – 3.29	$\frac{1.67}{(0.86 - 3.25)}$ <u>RIC tertiles (c</u> >3.29	1.51 (1.18 – 1.92) m)		diameter <2.96	0.90 (0.76 - 1.06) C 2.96 - 3.35	1.08 (0.92 - 1.27) HS tertiles (cr >3.35	1.06 (0.99 – 1.14)	
NSCD cases	<2.92	(0.19 – 1.18) A 2.92 – 3.29 24	$\frac{1.67}{(0.86 - 3.25)}$ RIC tertiles (c) >3.29 21	1.51 (1.18 – 1.92) m) Continuous	Aortic root	diameter <2.96 285	0.90 (0.76 - 1.06) C 2.96 - 3.35 346	$\frac{1.08}{(0.92 - 1.27)}$ <u>HS tertiles (cr</u> >3.35 374	1.06 (0.99 – 1.14) n) Continuous	
NSCD cases Person-years	<2.92 16 5190	(0.19 – 1.18) A 2.92 – 3.29 24 4977		1.51 (1.18 – 1.92) m) Continuous per 1 SD	Aortic root	diameter <2.96 285 21487	0.90 (0.76 - 1.06) 2.96 - 3.35 346 20747	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791	1.06 (0.99 – 1.14) n) Continuous per 1 SD	P-value
NSCD cases Person-years Model 3: HR	<2.92	(0.19 - 1.18) A 2.92 - 3.29 24 4977 1.35	$ \begin{array}{r} 1.67 \\ (0.86 - 3.25) \\ \overline{\text{RIC tertiles (c}} \\ > 3.29 \\ \hline 21 \\ 5146 \\ 1.12 \\ \end{array} $	1.51 (1.18 – 1.92) m) Continuous per 1 SD	Aortic root	diameter <2.96 285	0.90 (0.76 - 1.06) 2.96 - 3.35 346 20747 1.13	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791 1.14	1.06 (0.99 – 1.14) n) Continuous per 1 SD	
NSCD cases Person-years Model 3: HR (95% CI)	<2.92 16 5190 1 (REF)	(0.19 - 1.18) A 2.92 - 3.29 24 4977 1.35 (0.72 - 2.55)		1.51 (1.18 - 1.92) m) Continuous per 1 SD 1.06 (0.82 - 1.36)	Aortic root P-value ⁺ 0.66	diameter <2.96 285 21487 1 (REF)	0.90 (0.76 - 1.06) 2.96 - 3.35 346 20747 1.13 (0.96 - 1.32)	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791	$\frac{1.06}{(0.99 - 1.14)}$ m) Continuous per 1 SD 1.06 (1.00 - 1.13)	P-value 0.07
NSCD cases Person-years Model 3: HR	<2.92 16 5190	(0.19 - 1.18) A 2.92 - 3.29 24 4977 1.35	$ \begin{array}{r} 1.67 \\ (0.86 - 3.25) \\ \overline{\text{RIC tertiles (c}} \\ >3.29 \\ \hline 21 \\ 5146 \\ 1.12 \\ (0.58 - 2.15) \\ \end{array} $	1.51 (1.18 – 1.92) m) Continuous per 1 SD	Aortic root	diameter <2.96 285 21487	0.90 (0.76 - 1.06) 2.96 - 3.35 346 20747 1.13	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791 1.14 (0.97 - 1.34)	1.06 (0.99 – 1.14) n) Continuous per 1 SD	P-value
NSCD cases Person-years Model 3: HR (95% CI) Model 4: HR	<2.92 16 5190 1 (REF)	(0.19 - 1.18) A $2.92 - 3.29$ 24 4977 1.35 $(0.72 - 2.55)$ $(0.66 - 2.36)$	$ \begin{array}{r} 1.67 \\ (0.86 - 3.25) \\ \hline \overline{\text{RIC tertiles (c}} \\ >3.29 \\ \hline 21 \\ 5146 \\ 1.12 \\ (0.58 - 2.15) \\ 0.75 \\ (0.38 - 1.49) \\ \hline \end{array} $	1.51 (1.18 - 1.92) m) Continuous per 1 SD 1.06 (0.82 - 1.36) 0.93 (0.71 - 1.20)	Aortic root P-value ⁺ 0.66	diameter <2.96 285 21487 1 (REF) 1 (REF)	$\begin{array}{c} 0.90\\ (0.76-1.06)\end{array}$	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791 1.14 (0.97 - 1.34) 1.13 (0.96 - 1.34)	1.06 (0.99 - 1.14) n) Continuous per 1 SD 1.06 (1.00 - 1.13) 1.05 (0.98 - 1.12)	P-value 0.07
NSCD cases Person-years Model 3: HR (95% CI) Model 4: HR	<2.92 16 5190 1 (REF) 1 (REF)	(0.19 - 1.18) A 2.92 - 3.29 24 4977 1.35 (0.72 - 2.55) 1.25 (0.66 - 2.36) ARI	$ \begin{array}{r} $	1.51 (1.18 - 1.92) m) Continuous per 1 SD 1.06 (0.82 - 1.36) 0.93 (0.71 - 1.20) (0.71 - 1.20)	Aortic root P-value ⁺ 0.66 0.57 LV mass	diameter <2.96 285 21487 1 (REF) 1 (REF) 1 (REF) 5 index	0.90 (0.76 - 1.06) 2.96 - 3.35 346 20747 1.13 (0.96 - 1.32) 1.08 (0.92 - 1.28) CHS	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791 1.14 (0.97 - 1.34) 1.13 (0.96 - 1.34) S tertiles (g/m ²)	1.06 (0.99 - 1.14) n) Continuous per 1 SD (1.00 - 1.13) 1.05 (0.98 - 1.12) Y2.7)	P-value 0.07 0.18
NSCD cases Person-years Model 3: HR (95% CI) Model 4: HR	<2.92 16 5190 1 (REF)	(0.19 - 1.18) A $2.92 - 3.29$ 24 4977 1.35 $(0.72 - 2.55)$ $(0.66 - 2.36)$	$ \begin{array}{r} 1.67 \\ (0.86 - 3.25) \\ \hline \overline{\text{RIC tertiles (c}} \\ >3.29 \\ \hline 21 \\ 5146 \\ 1.12 \\ (0.58 - 2.15) \\ 0.75 \\ (0.38 - 1.49) \\ \hline \end{array} $	1.51 (1.18 - 1.92) m) Continuous per 1 SD 1.06 (0.82 - 1.36) 0.93 (0.71 - 1.20)	Aortic root P-value ⁺ 0.66 0.57	diameter <2.96 285 21487 1 (REF) 1 (REF)	$\begin{array}{c} 0.90\\ (0.76-1.06)\end{array}$	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791 1.14 (0.97 - 1.34) 1.13 (0.96 - 1.34)	1.06 (0.99 - 1.14) n) Continuous per 1 SD 1.06 (1.00 - 1.13) 1.05 (0.98 - 1.12)	P-value 0.07 0.18
NSCD cases Person-years Model 3: HR (95% CI) Model 4: HR	<2.92 16 5190 1 (REF) 1 (REF)	(0.19 - 1.18) A 2.92 - 3.29 24 4977 1.35 (0.72 - 2.55) 1.25 (0.66 - 2.36) ARI	$ \begin{array}{r} $	$\begin{array}{c} 1.51\\ (1.18-1.92) \end{array}$ m) Continuous per 1 SD $\begin{array}{c} 1.06\\ (0.82-1.36)\\ 0.93\\ (0.71-1.20) \end{array}$ Continuous	Aortic root P-value ⁺ 0.66 0.57 LV mass	diameter <2.96 285 21487 1 (REF) 1 (REF) 1 (REF) 5 index	0.90 (0.76 - 1.06) 2.96 - 3.35 346 20747 1.13 (0.96 - 1.32) 1.08 (0.92 - 1.28) CHS	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791 1.14 (0.97 - 1.34) 1.13 (0.96 - 1.34) S tertiles (g/m ²)	1.06 (0.99 - 1.14) n) Continuous per 1 SD 1.06 (1.00 - 1.13) 1.05 (0.98 - 1.12) 2.7) Continuous	P-value 0.07 0.18
NSCD cases Person-years Model 3: HR (95% CI) Model 4: HR (95% CI)	<2.92 16 5190 1 (REF) 1 (REF) <41.4	(0.19 - 1.18) A $2.92 - 3.29$ 24 4977 1.35 $(0.72 - 2.55)$ 1.25 $(0.66 - 2.36)$ ARI $41.4 - 53.1$ 6 4305	$ \begin{array}{r} $	1.51 (1.18 - 1.92) m) Continuous per 1 SD (0.82 - 1.36) 0.93 (0.71 - 1.20) (0.71 - 1.20) (0.71 - 1.20) (0.71 - 1.20)	Aortic root P-value ⁺ 0.66 0.57 LV mass	diameter <2.96 285 21487 1 (REF) 1 (REF) 1 (REF) s index <33.07	0.90 (0.76 - 1.06) 2.96 - 3.35 346 20747 1.13 (0.96 - 1.32) 1.08 (0.92 - 1.28) CHS 33.07 - 42.20 188 15002	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791 1.14 (0.97 - 1.34) 1.13 (0.96 - 1.34) 5 tertiles (g/m' >42.20 297 13197	1.06 (0.99 - 1.14) n) Continuous per 1 SD 1.06 (1.00 - 1.13) 1.05 (0.98 - 1.12) 22.7) Continuous per 1 SD	P-value 0.07 0.18
NSCD cases Person-years Model 3: HR (95% CI) Model 4: HR (95% CI) NSCD cases Person-years Model 3: HR	<2.92 16 5190 1 (REF) 1 (REF) 	(0.19 - 1.18) A $2.92 - 3.29$ 24 4977 1.35 $(0.72 - 2.55)$ 1.25 $(0.66 - 2.36)$ ARI $41.4 - 53.1$ 6 4305 0.63	$\begin{array}{r} 1.67 \\ (0.86 - 3.25) \end{array}$ RIC tertiles (c >3.29 21 5146 1.12 (0.58 - 2.15) 0.75 (0.38 - 1.49) C tertiles (g/m) >53.1 30 4327 2.22	1.51 (1.18 - 1.92) m) Continuous per 1 SD (0.82 - 1.36) 0.93 (0.71 - 1.20) (0.71 - 1.20) (0.71 - 1.20) (0.71 - 1.20) (0.71 - 1.20) (0.71 - 1.20)	Aortic root P-value ⁺ 0.66 0.57 LV mass	diameter <2.96 285 21487 1 (REF) 1 (REF) 3 index <33.07 148	$\begin{array}{c} 0.90\\ (0.76-1.06)\end{array}\\\hline\\ \hline\\ 2.96-3.35\\\hline\\ 346\\ 20747\\ 1.13\\ (0.96-1.32)\\ 1.08\\ (0.92-1.28)\\\hline\\ \hline\\ 0.92-1.28)\\\hline\\ \hline\\ CHS\\\hline\\ 33.07-42.20\\\hline\\ 188\\ 15002\\ 1.30\\\hline\end{array}$	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791 1.14 (0.97 - 1.34) 1.13 (0.96 - 1.34) S tertiles (g/m ² >42.20 297 13197 2.05	1.06 (0.99 - 1.14) n) Continuous per 1 SD (1.06 (1.00 - 1.13) 1.05 (0.98 - 1.12) Continuous per 1 SD 2.7) Continuous per 1 SD	P-value 0.07 0.18
NSCD cases Person-years Model 3: HR (95% CI) Model 4: HR (95% CI) NSCD cases Person-years	<2.92 16 5190 1 (REF) 1 (REF) <41.4	(0.19 - 1.18) A $2.92 - 3.29$ 24 4977 1.35 $(0.72 - 2.55)$ 1.25 $(0.66 - 2.36)$ ARI $41.4 - 53.1$ 6 4305	$ \begin{array}{r} $	1.51 (1.18 - 1.92) m) Continuous per 1 SD (0.82 - 1.36) 0.93 (0.71 - 1.20) (0.71 - 1.20) (0.71 - 1.20) (0.71 - 1.20)	Aortic root P-value ⁺ 0.66 0.57 LV mass P-value ⁺	diameter <2.96 285 21487 1 (REF) 1 (REF) 1 (REF) s index <33.07 148 15391	0.90 (0.76 - 1.06) 2.96 - 3.35 346 20747 1.13 (0.96 - 1.32) 1.08 (0.92 - 1.28) CHS 33.07 - 42.20 188 15002	$\frac{1.08}{(0.92 - 1.27)}$ HS tertiles (cr >3.35 374 18791 1.14 (0.97 - 1.34) 1.13 (0.96 - 1.34) 5 tertiles (g/m' >42.20 297 13197	1.06 (0.99 - 1.14) n) Continuous per 1 SD 1.06 (1.00 - 1.13) 1.05 (0.98 - 1.12) 22.7) Continuous per 1 SD	P-value 0.07 0.18 P-value

			Mitral	E to A			
		ARIC (m/s)		CHS (m/s)			
	< 0.70	0.70 - 1.5	>1.5	< 0.70	0.70 - 1.5	>1.5	
NSCD cases	9	35	9	281	619	85	
Person-years	1270	13294	1030	10106	47699	3170	
Model 3: HR	1.29	1 (REF)	4.18	2.18	1 (REF)	1.87	
(95% CI)	(0.60 - 2.81)		(1.98 - 8.82)	(1.89 - 2.52)		(1.48 - 2.35)	
Model 4: HR	0.96	1 (REF)	3.37	1.73	1 (REF)	1.40	
(95% CI)	(0.42 - 2.18)		(1.57 - 7.25)	(1.49 - 2.01)		(1.08 - 1.82)	
			Mitral	Peak E			
	ARIC (m/s)			CHS (m/s)			
	Continuous pe	r 1 SD	P-value ⁺	Continuous per	r 1 SD	P-value ⁺	
Model 3: HR	1.30		0.03	1.04	1.04		
(95% CI)	(1.02 - 1.6)	55)		(0.92 - 1.1)	8)		
Model 4: HR	1.28		0.03	1.04		0.514	
(95% CI)	(1.02 - 1.6)	51)		(0.92 - 1.1)	8)		
(95% CI)	(1.02 - 1.6	/		`	8)	~ 11	

ARIC=Atherosclerosis Risk in Communities Study; CHD=coronary heart disease; CHS=Cardiovascular Health Study; CVD=cardiovascular disease; eGFR=estimated glomerular filtration rate; HDLc=high density lipoprotein cholesterol; LV=left ventricular; NSCD=non-sudden CVD death

+P-value is for continuous variable, per 1 SD

Model 3: Cox proportional hazards model adjusting for Framingham risk score as one variable: (sex, age,

total cholesterol, HDLc, blood pressure, diabetes and smoking), and also prevalent CHD + eGFR

Model 4: Model 3 + time-dependent heart failure, time-dependent CHD

Supplemental Table 2. SCD hazard ratios (95% confidence interval) by continuous variable using select

		Left atrium di	ameter		
	ARIC	(CHS (cm)		
_	Continuous, per 1 SD	p-value ⁺	Continuous, per 1 SD	p-value ⁺	
Model 1: HR (95% CI)	1.48 (1.10 – 1.99)	0.01	1.24 (1.09 – 1.40)	0.001	
Model 2: HR (95% CI)	1.38(1.02 - 1.88)	0.04	1.19(1.05 - 1.35)	0.007	
Model 3: HR (95% CI)	1.34(0.99 - 1.83)	0.06	1.18(1.04 - 1.34)	0.009	
Model 4: HR (95% CI)	1.24 (0.92 - 1.66)	0.16	1.13 (0.99 – 1.29)	0.07	
		Aortic root di	ameter		
	ARIC	(cm)	CHS (cm)		
_	Continuous, per 1 SD	p-value ⁺	Continuous, per 1 SD	p-value ⁺	
Model 1: HR (95% CI)	1.38 (1.00 – 1.90)	0.05	1.02 (0.89 – 1.17)	0.77	
Model 2: HR (95% CI)	1.40 (1.07 – 1.85)	0.02	1.12 (0.99 – 1.27)	0.07	
Model 3: HR (95% CI)	1.37 (1.03 – 1.81)	0.03	1.12 (0.99 – 1.27)	0.08	
Model 4: HR (95% CI)	1.28 (0.95 – 1.73)	0.10	1.07 (0.94 – 1.22)	0.32	
		LV mass ir	ıdex		
	ARIC (g/m^2.7)		CHS (g/m^2.7)		
	Continuous, per 1 SD	p-value ⁺	Continuous, per 1 SD	p-value ⁺	
Model 1: HR (95% CI)	1.50 (1.20 – 1.88)	0.0004	1.51 (1.33 – 1.70)	< 0.001	
Model 2: HR (95% CI)	1.31 (1.04 – 1.64)	0.02	1.38 (1.22 – 1.57)	< 0.001	
Model 3: HR (95% CI)	1.28 (1.01 – 1.63)	0.04	1.38 (1.22 – 1.57)	< 0.001	
Model 4: HR (95% CI)	1.29 (1.01 – 1.66)	0.04	1.31 (1.13 – 1.53)	0.001	

echocardiographic variables from Table 3.

ARIC=Atherosclerosis Risk in Communities Study; CHD=coronary heart disease; CHS=Cardiovascular Health

Study; eGFR=estimated glomerular filtration rate; HDLc=high density lipoprotein cholesterol; SCD=sudden cardiac

death

+P-value is for continuous variable, per 1 SD

Model 1: Cox proportional hazards model adjusted for age, sex, **race (in CHS only)

Model 2: Cox proportional hazards model adjusting for Framingham risk score as one variable: (sex, age,

total cholesterol, HDLc, blood pressure, diabetes and smoking), and also prevalent CHD

Model 3: Model 2 + eGFR

Model 4: Model 3 + time-dependent heart failure, time-dependent CHD

Supplemental Table 3. C-statistic of sudden cardiac death with echocardiographic variables

	ARIC C-statistic (95% CI)	CHS C-statistic (95% CI)
Framingham risk score	0.608 (0.526-0.690)	0.669 (0.638-0.700)
FRS + Univariate: (each variable added to		
the score separately)		
Mitral annular calcification	0.648 (0.567-0.729)	0.677 (0.633-0.721)
LV fractional shortening, continuous	0.663 (0.555-0.770)	0.654 (0.610-0.699)
Aortic sclerosis	0.620 (0.535-0.705)	0.671 (0.628-0.714)
Left atrium diameter, continuous	0.608 (0.522-0.694)	0.669 (0.637-0.702)
Left atrium diameter, tertiles	0.619 (0.537-0.702)	0.669 (0.637-0.701)
Aortic root diameter, continuous	0.682 (0.609-0.756)	0.666 (0.635-0.697)
Aortic root diameter, tertiles	0.637 (0.564-0.710)	0.666 (0.635-0.697)
LV mass index, continuous	0.648 (0.542-0.755)	0.687 (0.645-0.728)
LV mass index, tertiles	0.623 (0.538-0.707)	0.670 (0.628-0.712)
Mitral E/A, continuous	0.629 (0.542-0.715)	0.666 (0.634-0.698)
Mitral E/A, categories	0.633 (0.553-0.713)	0.671 (0.639-0.703)
Mitral Peak E, continuous	0.644 (0.552-0.735)	0.668 (0.635-0.700)
FRS + Multivariate: (with fractional	0.778 (0.669-0.887)	0.733 (0.679-0.787)
shortening replacing reduced EF)		

added to the Framingham risk score (fractional shortening replacing reduced ejection fraction).

Supplemental Figures and Legends

Supplemental Figure 1

Image demonstrating mitral annular calcification.

Supplemental Figure 2

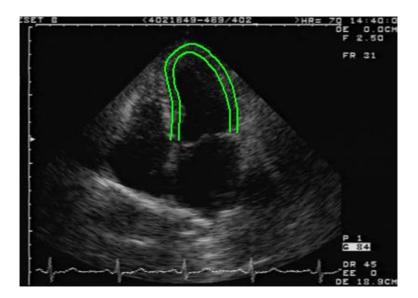


Image demonstrating increased left ventricular mass.

Supplemental Figure 3

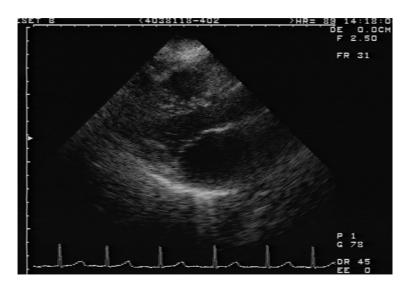


Image demonstrating increased left atrial diameter.

Supplemental Figure 4

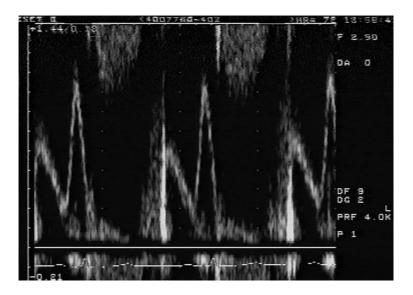


Image demonstrating mitral inflow E/A velocity ratio <0.7.

Non-Sudden CVD Death

	Hazard Ratio (95% CI)
Mitral Annular Calcification ARIC CHS Total (I-squared = 0.0%, p = 0.44)	1.04 (0.44, 2.44) 1.47 (1.24, 1.73) 1.45 (1.23, 1.71)
Aortic Sclerosis ARIC CHS Total (I-squared = 0.0%, p = 0.57)	1.15 (0.52, 2.58) 1.46 (1.22, 1.73) 1.44 (1.22, 1.71)
Reduced LV ejection fraction ARIC CHS Total (I-squared = 88.9%, p < 0.01)	◆ 4.61 (2.40, 8.85) 1.62 (1.33, 1.97) 1.77 (1.46, 2.13)
_eft atrium diameter, per 1 SD ARIC CHS Total (I-squared = 86.6%, p < 0.01)	 1.51 (1.18, 1.92) 1.06 (0.99, 1.14) 1.09 (1.02, 1.17)
Aortic root diameter, per 1 SD ARIC CHS Total (I-squared = 0.0%, p = 0.38)	0.93 (0.71, 1.20) + 1.05 (0.98, 1.12) 1.04 (0.98, 1.11)
_V mass index, per 1 SD ARIC CHS Total (I-squared = 0.0%, p = 0.90)	1.16 (0.91, 1.49) + 1.18 (1.09, 1.28) 1.18 (1.09, 1.27)
Vitral Peak E, per 1 SD ARIC CHS Total (I-squared = 59.2%, p = 0.12)	1.28 (1.02, 1.61) 1.04 (0.92, 1.18) 1.09 (0.98, 1.22)
Mitral E to A <0.70 ARIC CHS Total (I-squared = 47.4%, p = 0.17)	0.96 (0.42, 2.18) 1.73 (1.49, 2.01) 1.70 (1.47, 1.97)
Mitral E to A >1.5 ARIC CHS Total (I-squared = 78.0%, p = 0.03)	3.37 (1.57, 7.25) 1.40 (1.08, 1.82) 1.53 (1.20, 1.96)

Forest plot of the meta-analyzed and risk-adjusted hazard ratios for non-sudden cardiovascular disease deaths in ARIC and CHS, using CHD and heart failure as time-dependent variables (Model 4)

Supplemental References

- White AD, Folsom AR, Chambless LE, Sharret AR, Yang K, Conwill D, Higgins M, Williams OD, Tyroler HA. Community surveillance of coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) Study: methods and initial two years' experience. *J Clin Epidemiol*. 1996;49:223–33.
- 2. Loehr LR, Rosamond WD, Chang PP, Folsom AR, Chambless LE. Heart failure incidence and survival (from the Atherosclerosis Risk in Communities study). *Am J Cardiol*. 2008;101:1016–22.
- Weiner DE, Krassilnikova M, Tighiouart H, Salem DN, Levey AS, Sarnak MJ. CKD classification based on estimated GFR over three years and subsequent cardiac and mortality outcomes: a cohort study. *BMC Nephrol.* 2009;10:26.
- PSATY B. Assessing the use of medications in the elderly: Methods and initial experience in the cardiovascular health study. *J Clin Epidemiol*. 1992;45:683–692.
- The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. *Am J Epidemiol*. 1989;129:687–702.
- Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the Framingham Study. *Am J Cardiol.* 1976;38:46–51.
- Gardin JM, Siscovick D, Anton-Culver H, Lynch JC, Smith VE, Klopfenstein HS, Bommer WJ, Fried L, O'Leary D, Manolio TA. Sex, age, and disease affect echocardiographic left ventricular mass and systolic function in the free-living elderly. The Cardiovascular Health Study. *Circulation*. 1995;91:1739–1748.