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Supplementary Figure 1

Tissue scores matrix for 236 robustly identified components.

(Top) Each column shows the tissue scores for a component, scaled so that the largest
score equals 1. Columns have been arranged to group components with similar tissue
patterns. (Bottom) Binary representation of scaled tissue scores (obtained by thresholding
scores at 0.5) to highlight the tissue specificity of the components.
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Supplementary Figure 2

Robust component describing a cis effect.

(Top left) GWAS with the component’s individual scores vector as a phenotype. (Top
right) Boxplot of individual scores stratified by genotype at the lead GWAS SNP. Boxplots
show the median, upper and lower quartiles, with whiskers extending to either 1.5 times
the inter quartile range (IQR), or to the most extreme data point if this lies within 1.5
times IQR. (Bottom left) Gene loadings for the component. Only gene loadings with a
PIP>0.5 are shown. (Bottom right) Tissue scores vector for the component shown as a
barplot.
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Supplementary Figure 3

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 4

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 5

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 6

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 7

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 8

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 9

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 10

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 11

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 12

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 13

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 14

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 15

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 16

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.

18



Supplementary Figure 17

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 18

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.

20



Supplementary Figure 19

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 20

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 21

Robust component describing a cis effect.

See Supplementary Figure 2 for explanation of the figure.
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Supplementary Figure 22

Association plot for the MHC class II regulation components.

(Top) − log10(p-value) for association between individual scores and SNPs around region of
the significant GWAS signal. (Bottom) Gene loadings in the same region. Results for the
component identified in Adipose and Skin are shown in blue and results for the component
identified in LCLs are shown in gray.
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Supplementary Figure 23

Association plot for the MHC class I regulation component.

(Top) − log10(p-value) for association between individual scores and SNPs around region of
the significant GWAS signal. (Bottom) Gene loadings in the same region.
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Supplementary Figure 24

Association plot for the Histone RNA processing component.

(Top) − log10(p-value) for association between individual scores and SNPs around region of
the significant GWAS signal. (Bottom) Gene loadings in the same region.

26



●

●
●●
●
●●
●●

●

●

●●●

●●●
●
●●●●●

●
● ●

●
●
●●●●

●

●●
●

●●●●●●
●●●●●●

●

●●●●●●●
●●
●●
●

●

●
●
●●●
●●●

●

●●●
●●●●

●

●

●●
●●

●

●

●●

●●●●

●●●

●●●

●
●

●●

●●

●●●●●●

●

●●●●●●●

●

●

●
●
●

●●

●

●●

●

●●

●●
●

●●

●●
●

●

●●●

●

●●●●●●
●
●

●●●●●●●

●
●●●

●●

●

●●●●

●

●●●●

●

●

●

●●●●●

●

●●●

●

●

●

●●●●●●

●●●

●●●●

●

●

●

●●

●

●●●●

●

●●●●
●
●●●●●

●

●●●

●

●

●

●

●●●

●●●●

●●

●

●

●

●●●
●

●●

●

●

●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●
●●

●●●
●●●●●
●
●●●●

●

●●
●●●●●●

●

●●

●

●

●
●

●●●●
●●
●
●
●

●
●●
●
●

●

●

●●
●●●

●●●●●●●●●

●
●●
●

●●

●

●

●●

●●●

●
●●

●

●

●●

●●●
●●●

●
●

●●●

●

●

●

●

●●●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●●●
●●
●

●●●
●
●●●
●
●●●●●

●

●

●●
●
●
●●●●

●●

●●●●●●●●●

●

●●●●●●
●

●

●●

●●●

●●●
●●

●

●

●

●

●

●●●●●●●●●

●
●
●●

●●●
●
●●
●
●●●●●●●●●●●

●
●●●●●

●●●
●
●●● ●●●●●●●

●●●
● ●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●●
●

●●

●●

●
●

●

●●

●●
●
●

●
●●
●●

●

●
●
●

●
●
●

●

●●
●

●
●●

●

●●●
●●●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●●●●

●

●●●●●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●●

●●●
●●

●
●

●

●●

●

●

●●●
●

●

●

●
●
●

●

●

●

●●

●
●

●

●

0
5

10
15

−
lo

g 1
0(

p)

●

rs2401506

PEX26+

TUBA8+

USP18+

● ●

●

18500000 18600000 18700000 18800000

0
5

10

Genomic position on chr 22

G
en

e 
lo

ad
in

gs

PEX26 TUBA8

USP18

Supplementary Figure 25

Association plot for the Type I interferon response component.

(Top) − log10(p-value) for association between individual scores and SNPs around region of
the significant GWAS signal. (Bottom) Gene loadings in the same region.
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Supplementary Figure 26

Gene loadings for Type I Interferon response component.

Genes highlighted in red are annotated for the ‘response to interferon’ gene ontology term
(GO:0034340).
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Supplementary Figure 27

Association plots for the zinc finger gene network component.

(Top) − log10(p-value) for association between individual scores and SNPs around region of
the significant GWAS signal on chromosome 16 (figure a), and chromosome 3 (figure b).
(Bottom) Gene loadings in the same region.
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Supplementary Figure 28

Chromosome 19 gene loadings for zinc finger gene network component.

ZNF274, ZNF154 and ZNF814 are highlighted in green, red and blue respectively. Position
of miR-1270 on chromosome 19 shown as dash.
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Supplementary Figure 29

Association of 236 robust components with batch variables.

Each plot shows p-values for association between individual scores vectors and 4 sequencing
variables in Adipose (A), LCLs (L) or Skin (S). The x-axis shows the log10 component size
defined as the number of genes with a PIP>0.5; − log10(p-value) is plotted on the y-axis.
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Supplementary Figure 30

Association of 236 robust components with batch variables.

Scatter plots of most significant association of sequencing variables (GC mean and inset
size mode) with robust component scores in all three tissues (A: Adipose, L: LCLs, S:
Skin). A regression line is shown in red.
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Supplementary Figure 31

Association of 236 robust components with batch variables.

Barplot showing the number of robust components with a significant association with four
batch variables measuring properties of RNA sequencing across three tissues (A:Adipose,
L: LCLs, S:Skin). The plot shows the numbers of associations with p-values between
1× 10−6 and 1× 10−10 in blue and less than 1× 10−10 in red.
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Supplementary Figure 32

Summary of associations between 236 robust components and 11 measured
phenotypes.

p-values less than 1× 10−6 are shown in blue and those less than 1× 10−10 shown in red.
Only component with a significant association (< 1× 10−6) (32 in total) have been plotted
and components with similar patterns of association have been placed nearby. Association
for age has been performed with one member of each twin pair removed.
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Supplementary Figure 33

Robust component associated with age.

(Top) Gene loadings for the component. (Bottom left) Tissue scores vector for the
component shown as a barplot. (Bottom middle) Scatter plot with the component’s
individual scores on the x-axis and age on the y-axis. (Bottom right) Most enriched gene
ontology term and corresponding p-value for each ontology category.
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Supplementary Figure 34

Robust component associated with age.

(Top) Gene loadings for the component. (Bottom left) Tissue scores vector for the
component shown as a barplot. (Bottom middle) Scatter plot with the component’s
individual scores on the x-axis and age on the y-axis. (Bottom right) Most enriched gene
ontology term and corresponding p-value for each ontology category.
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Supplementary Figure 35

Component identifying KLF14 as a trans-regulator from the run with the
highest value of the model’s negative free energy.

(Top left) Results for a GWAS with the individual scores vector as a phenotype. (Top
right) Boxplot of individual scores stratified by genotypes at the lead GWAS SNP
rs4731702. (Bottom left) Gene loadings for the component with KLF14 highlighted in red.
(Bottom right) Tissue scores vector for the component shown as a barplot.

36



�
Genes

Tissue(scores(matrix

Individual(scores(matrix

In
di
vi
du
al
s

Components

Sparse(gene(loadings(matrix

Co
m
po
ne
nt
s

Components
Components

Time(scores(matrix

Gene(expression(data

Genes

In
di
vi
du
al
s

=

Time

Supplementary Figure 36

Graphical representation of a four-dimensional decomposition.

The left of the figure shows a 4D data set consisting of gene expression in multiple tissues
at multiple time points. As in Figure 1from the main paper, the data is decomposed into a
sparse gene loadings matrix, an individual scores matrix and a tissue scores matrix. We
additionally estimate a time scores matrix to deal with the added dimension, which
describes the activity of each component at different time points.
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Supplementary Figure 37

Graphical representation of a linked decomposition for gene expression data in
multiple tissues.

A matrix decomposition is applied to gene expression data for each tissue. The matrix
decompositions identify a tissue specific gene loadings matrix with a shared individual
scores matrix common to all decompositions.
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Supplementary Figure 38

Graphical representation of a linked decomposition for several genomic assays
that have a 3D array of data available.

A tensor decomposition is applied to each data type. The decompositions identify different
loadings matrices for each data type and a shared individual scores matrix.
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Supplementary Figure 39

Distribution of cluster size obtained when clustering components across 10
runs.

Robust components are defined as those with a cluster of size of 5 or more.
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Supplementary Tables

Component SNP (chr)
No. genes in
component
(PIP>0.5)

No. genes in component
and associated with SNP
(p-value < 0.05) (A, L, S)

MHC class II*
rs7194862 (16) 18 15, 13, 12

rs9924520 (16) 31 19, 18, 15

MHC class I rs289749 (16) 20 1, 0, 17

Histone RNA
processing

rs6882516 (5) 31 1, 27, 3

Type I interferon rs2401506 (22) 160 12, 122, 13

ZNF gene network**
rs12630796 (3)

57
15, 24, 37

rs17611866 (16) 23, 20, 24

Supplementary Table 1: Summary of components shown in Figures 2-6 in main paper.
The table gives the number of genes identified within each of the components we identify,
and the number of these genes associated with the component’s lead SNP via marginal
associations. For each component, column 3 contains the number of genes in the
component with a PIP>0.5. Column 4 gives the number of these genes that are marginally
associated with the component’s lead SNP using a p-value threshold of 0.05 (A:Adipose,
L:LCLs, S:Skin). *Results for two components describing a regulation pathway involving
the MHC class II genes are given. **For the ZNF gene network component, results for the
most significant SNPs from clusters on chromosome 3 and chromosome 16 are presented.
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rs7194862 rs9924520
Adipose LCLs Skin Adipose LCLs Skin

PI4KB 6.93e-03 5.49e-01 3.79e-02 5.21e-03 8.78e-02 1.72e-01
RFX5 2.33e-03 1.25e-03 5.02e-03 1.08e-03 1.50e-02 2.93e-03
LY9 6.49e-01 4.01e-02 1.45e-01 8.68e-01 2.37e-02 7.80e-01
ZNF672 9.23e-01 1.51e-02 5.03e-01 7.95e-01 2.82e-03 9.82e-01
GRK7 1.37e-02 1.58e-01 2.08e-01 4.34e-02 4.93e-01 3.28e-01
CD74 6.80e-09 8.18e-06 1.23e-05 1.75e-08 1.98e-04 6.23e-05
BTN2A2 6.59e-01 1.43e-02 7.61e-02 5.39e-01 5.27e-03 1.14e-01
HLA-E 8.14e-01 7.55e-01 7.28e-01 8.60e-01 8.88e-01 6.33e-01
HLA-DRA 4.02e-09 4.35e-09 1.96e-08 1.37e-08 2.39e-08 1.94e-07
HLA-DRB5 5.37e-02 3.15e-02 7.57e-02 6.29e-03 3.75e-03 3.55e-02
HLA-DRB1 1.75e-02 1.31e-02 1.15e-02 1.21e-02 2.62e-02 1.93e-02
HLA-DQA1 4.27e-04 1.90e-01 5.59e-03 5.39e-04 2.33e-01 1.80e-02
HLA-DQB1 1.20e-01 8.48e-02 7.94e-01 4.38e-02 1.12e-01 3.88e-01
HLA-DQA2 2.88e-02 3.53e-01 1.34e-01 2.13e-02 1.80e-01 2.19e-02
HLA-DQB2 2.74e-04 2.45e-03 4.68e-01 6.69e-04 8.19e-03 2.24e-01
HLA-DOB 7.12e-03 1.04e-01 6.81e-02 6.40e-04 1.49e-01 6.39e-02
HLA-DMB 7.34e-08 2.32e-05 3.95e-07 1.23e-08 1.17e-04 3.77e-07
XXbac-BPG181M17.5 8.37e-06 3.61e-05 1.61e-06 4.55e-06 1.35e-04 9.96e-06
HLA-DMA 1.51e-08 2.46e-04 2.22e-14 2.89e-08 6.39e-04 3.23e-13
HLA-DOA 5.66e-15 8.18e-07 9.27e-19 3.48e-16 7.41e-07 5.56e-19
HLA-DPA1 3.74e-11 3.21e-07 1.66e-05 4.63e-10 1.43e-05 1.71e-04
HLA-DPB1 2.64e-08 1.77e-04 7.66e-06 3.89e-08 4.68e-04 2.16e-05
TPP1 2.23e-01 1.81e-01 2.15e-01 1.71e-01 3.55e-01 4.75e-01
GOLGA8B 4.84e-01 2.07e-01 1.16e-01 1.18e-01 4.91e-02 9.01e-02
NUBP1 5.58e-01 9.60e-03 5.11e-01 1.62e-01 2.53e-02 6.86e-01
FAM18A 3.58e-01 5.93e-03 8.40e-01 7.27e-01 5.84e-02 7.31e-01
CIITA 1.44e-12 2.33e-09 2.26e-06 2.08e-11 2.84e-07 8.93e-07
HAUS5 4.21e-01 2.74e-02 7.23e-01 6.54e-01 3.23e-01 2.71e-01
MIA 3.61e-01 8.94e-02 6.53e-02 6.84e-01 3.51e-01 3.85e-02
AC008537.2 8.98e-01 5.27e-01 8.79e-01 9.88e-01 7.13e-01 7.77e-01
PARVG 6.68e-01 7.38e-02 7.90e-02 8.77e-01 6.58e-02 1.97e-01
FATE1 4.63e-01 7.94e-01 2.32e-01 2.26e-01 7.91e-01 1.85e-01

Supplementary Table 2: Direct associations between rs9924520 and rs7194862 on
chromosome 16 and genes with a PIP>0.5 in the MHC Class II regulation components.
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rs289749
Adipose LCLs Skin

BTN3A2 3.81e-01 5.70e-01 3.92e-04
BTN2A2 3.18e-01 6.14e-01 3.97e-04
BTN3A1 2.13e-01 3.03e-01 3.48e-05
BTN3A3 6.78e-01 4.79e-01 1.55e-03
BTN2A1 7.65e-01 7.42e-02 6.78e-05
HLA-F 9.93e-01 1.45e-01 3.02e-12
HLA-A 2.95e-01 6.80e-01 1.22e-09
HLA-E 2.19e-01 7.60e-02 8.85e-05
HLA-C 5.92e-01 1.19e-01 1.46e-07
HLA-B 8.35e-01 9.59e-01 1.35e-10
TAP2 6.38e-01 3.66e-01 1.56e-01
XXbac-BPG246D15.9 8.29e-01 8.82e-01 1.62e-01
PSMB8 8.17e-01 4.12e-01 2.56e-06
PSMB9 5.59e-01 5.74e-01 2.09e-05
TAP1 4.17e-01 3.92e-01 4.30e-07
PATL2 3.44e-01 9.33e-01 2.92e-02
B2M 9.04e-01 4.87e-01 4.72e-08
TRIM69 2.77e-01 7.97e-01 4.18e-01
SPG21 2.70e-02 9.69e-01 2.11e-02
NLRC5 7.40e-02 1.63e-01 1.37e-28

Supplementary Table 3: Direct associations between rs289749 on chromosome 16 and
genes with a PIP>0.5 in the MHC Class I regulation component.
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rs6882516
Adipose LCLs Skin

HIST2H2BE 4.23e-01 5.40e-09 8.79e-01
HIST3H2A 6.48e-01 4.02e-03 8.56e-01
LSM11 9.77e-01 5.57e-33 2.64e-01
HIST1H1C 3.01e-02 1.17e-12 8.07e-01
HIST1H2BC 5.37e-01 4.66e-06 4.63e-01
HIST1H2AC 5.88e-01 2.87e-09 2.47e-01
HIST1H1E 4.41e-01 6.08e-01 4.95e-01
HIST1H2BD 9.39e-01 9.65e-09 9.27e-01
HIST1H3D 1.62e-01 2.70e-07 2.04e-01
HIST1H2AD 5.22e-01 3.15e-06 9.91e-01
HIST1H2BF 7.65e-01 4.87e-02 6.90e-01
HIST1H4E 1.84e-01 6.20e-03 4.83e-02
HIST1H2BG 4.65e-01 6.48e-05 4.05e-01
HIST1H2AE 1.24e-01 1.12e-05 5.04e-01
HIST1H3E 6.05e-01 1.37e-03 6.38e-01
HIST1H2BH 2.14e-01 1.45e-02 3.14e-01
HIST1H3G 6.58e-01 1.28e-02 3.04e-02
HIST1H4H 5.40e-01 9.65e-09 3.37e-01
HIST1H2BJ 8.38e-01 1.81e-12 5.11e-01
HIST1H2AG 6.28e-01 2.02e-03 2.34e-01
HIST1H2BK 6.04e-01 2.65e-12 7.33e-01
HIST1H4I 9.37e-01 6.58e-07 6.88e-01
HIST1H3H 9.11e-01 2.73e-05 1.71e-01
HIST1H2BN 5.73e-01 3.90e-02 6.99e-01
HIST1H1B 2.41e-01 3.40e-01 7.09e-01
HIST1H2BO 6.12e-01 1.37e-08 1.70e-01
OR2B6 1.97e-01 1.47e-05 3.39e-01
H2AFX 1.97e-01 2.48e-02 2.73e-01
LRRC23 4.43e-01 6.72e-01 4.31e-01
HIST4H4 9.90e-01 2.53e-06 7.52e-01
EYA2 1.48e-01 1.85e-01 1.67e-02

Supplementary Table 4: Direct associations between rs6882516 on chromosome 5 and
genes with a PIP>0.5 in the histone RNA processing component.
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rs2401506
Adipose LCLs Skin

HES4 4.33e-01 1.77e-02 6.06e-01
ISG15 1.46e-01 1.14e-08 1.31e-01
AGRN 9.51e-02 1.07e-01 6.88e-01
FBXO6 3.82e-01 7.12e-01 2.40e-01
ANO7L1 9.55e-01 1.81e-01 7.72e-01

IFI6 3.16e-01 6.67e-05 6.12e-02
IFI44L 4.19e-02 3.93e-05 1.10e-01
IFI44 4.41e-02 2.42e-07 1.81e-01
GBP1 2.28e-01 3.37e-02 9.55e-01
MOV10 2.59e-01 3.68e-05 2.63e-01
SPRR2D 4.53e-01 3.90e-01 4.61e-01
ADAR 7.74e-01 4.10e-06 3.31e-02
IFI16 9.30e-01 5.46e-04 6.94e-01

KIAA0040 4.37e-01 4.36e-01 8.16e-01
SMG7 2.58e-01 5.17e-02 5.28e-02

LINC00487 9.60e-02 9.54e-04 7.07e-03
CMPK2 2.29e-01 1.43e-10 1.28e-01
RSAD2 8.46e-02 1.41e-11 1.39e-01
EIF2AK2 5.07e-01 2.83e-09 3.87e-01
PNPT1 5.26e-01 8.01e-05 9.95e-01

ARHGAP25 8.03e-02 1.28e-02 6.00e-02
ARID5A 6.40e-01 9.94e-01 8.88e-01
NMI 2.85e-01 1.97e-05 8.34e-01
IFIH1 1.97e-01 2.41e-06 9.91e-01

AC009948.5 1.25e-01 3.39e-01 5.61e-01
STAT1 6.57e-01 9.88e-09 8.93e-01
RUFY4 4.70e-01 3.05e-02 2.72e-01
WDFY1 4.09e-03 3.08e-03 6.90e-02
MRPL44 4.78e-01 1.99e-02 3.32e-01
SP110 7.14e-01 4.88e-02 8.76e-01
SP100 7.76e-01 3.89e-01 7.92e-01

TRANK1 1.39e-01 3.83e-02 7.60e-02
MYD88 5.86e-01 4.85e-06 1.70e-01
CCR8 1.37e-01 8.40e-01 6.41e-01
ZNF620 9.73e-01 7.63e-04 9.10e-01
TREX1 6.50e-01 7.25e-03 1.21e-01
SHISA5 1.34e-01 8.58e-03 4.54e-01
UBA7 5.02e-02 4.93e-03 8.95e-01
PARP9 8.11e-01 1.10e-02 2.38e-01
DTX3L 7.98e-01 5.21e-03 6.57e-01
PARP14 2.70e-01 6.83e-02 4.07e-01
XRN1 2.24e-01 1.55e-03 4.82e-01

PLSCR1 3.33e-01 4.53e-09 6.96e-01
PFN2 2.79e-01 3.47e-02 2.47e-01

TNFSF10 3.90e-01 2.93e-03 6.86e-01
LAMP3 4.08e-01 6.80e-02 5.93e-01
RTP4 1.61e-01 2.52e-04 1.46e-01
TNK2 5.35e-01 4.16e-03 1.43e-01
CD38 8.46e-01 7.33e-01 2.25e-01
LAP3 8.12e-01 1.17e-02 8.71e-01

PI4K2B 3.13e-02 1.16e-02 2.86e-01
STAP1 8.68e-01 2.38e-01 1.92e-02
PPM1K 4.97e-01 4.79e-04 6.34e-01
HERC6 1.95e-01 3.54e-04 1.25e-01
HERC5 8.33e-01 3.31e-07 6.23e-01
EXOSC9 9.77e-02 4.30e-01 1.07e-01
DDX60 2.19e-01 1.27e-06 3.77e-01
DDX60L 9.80e-01 2.12e-06 8.15e-01
SLC35A4 3.38e-01 2.71e-02 8.52e-01
TRIM26 2.13e-01 2.36e-01 8.43e-01
TAP2 9.40e-01 2.79e-01 7.53e-01

FTSJD2 6.01e-01 3.07e-05 4.84e-01
DOPEY1 1.27e-01 1.50e-02 1.90e-01
SOBP 3.26e-01 2.21e-04 8.00e-01
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CD164 2.58e-01 4.94e-03 8.79e-01
NT5C3 5.93e-01 1.61e-05 4.68e-01
ANKIB1 5.77e-02 4.51e-07 6.65e-01
SAMD9 9.44e-01 7.04e-04 5.23e-01
SAMD9L 7.69e-01 1.81e-05 7.24e-01
TRIM56 3.65e-01 7.82e-02 1.69e-01
PARP12 8.06e-01 3.32e-07 9.93e-01
PRKAG2 2.28e-01 4.66e-03 1.50e-01
PDGFRL 6.62e-01 2.42e-03 4.53e-01
PPP2R2A 7.53e-01 7.80e-03 4.43e-01
TEX15 6.75e-01 5.89e-01 1.61e-01

ATP6V1H 9.92e-03 4.33e-01 7.53e-01
RP11-273G15.2 5.63e-01 4.60e-02 7.40e-01

LY6E 4.08e-01 8.99e-07 3.17e-02
PARP10 6.83e-01 2.83e-04 4.59e-01
DDX58 7.04e-01 1.14e-04 7.73e-01
DNAJA1 6.20e-01 2.79e-02 4.65e-01
CHMP5 8.30e-01 1.82e-07 3.64e-01
TDRD7 1.30e-01 1.74e-04 4.32e-01
TRIM14 8.89e-01 2.29e-01 2.58e-01
SPAG6 4.34e-01 4.96e-01 6.87e-01
IFIT2 1.08e-02 1.52e-05 1.34e-01
IFIT3 9.48e-02 1.84e-03 3.71e-01
IFIT1 3.45e-01 8.56e-10 2.05e-01
IFIT5 4.01e-01 3.53e-05 9.97e-01

SLC25A28 8.65e-01 1.45e-01 7.51e-01
IFITM2 2.33e-01 4.36e-04 1.04e-01
IFITM1 1.31e-01 3.92e-07 4.63e-01
IRF7 5.27e-01 1.27e-06 6.59e-02

TRIM21 8.96e-01 3.42e-05 4.51e-02
TRIM34 2.91e-01 1.22e-04 1.63e-01

TRIM6-TRIM34 2.55e-01 1.19e-04 1.52e-01
TRIM5 8.84e-01 1.45e-02 8.85e-01
TRIM22 2.54e-01 6.94e-08 3.40e-01
QSER1 2.86e-04 3.74e-01 5.07e-01
SMTNL1 1.65e-01 8.08e-03 6.97e-01
UBE2L6 2.04e-01 2.57e-07 1.05e-01
DRAP1 5.79e-01 5.50e-04 4.95e-01

UNC93B1 9.64e-01 5.49e-03 8.22e-01
FCHSD2 1.24e-01 3.08e-01 6.53e-01
ENDOD1 3.34e-01 2.89e-02 1.55e-01
CLEC2D 3.82e-01 6.93e-01 9.79e-01
STAT2 5.33e-01 1.06e-07 8.03e-01
USP15 8.83e-01 2.34e-01 7.49e-01

TRAFD1 9.21e-01 2.92e-01 6.86e-03
OAS1 5.86e-01 6.26e-04 5.25e-01
OAS3 7.69e-02 1.75e-07 5.90e-02
OAS2 4.13e-01 1.59e-08 6.84e-02
OASL 6.58e-03 5.66e-07 7.89e-02
EPSTI1 5.76e-02 9.44e-03 1.75e-01
PHF11 9.81e-01 3.20e-03 3.58e-02
GPR180 9.52e-01 1.02e-01 3.75e-01

TNFSF13B 1.06e-01 1.18e-01 6.20e-01
RNF31 1.67e-01 7.08e-02 8.11e-01
IRF9 4.58e-01 3.86e-02 7.13e-01
SNX6 7.72e-01 6.45e-03 2.78e-01
EHD4 3.67e-01 8.54e-02 4.19e-02

TRIM69 1.52e-01 2.24e-02 7.37e-01
PML 3.16e-01 4.01e-05 1.51e-01

COX5A 3.34e-01 6.43e-01 1.41e-01
ISG20 4.15e-01 7.56e-05 5.28e-01
N4BP1 4.90e-01 4.82e-04 7.11e-02

ANKFY1 2.57e-01 2.98e-03 4.10e-01
XAF1 8.87e-01 2.33e-04 6.60e-01

LGALS9 8.17e-01 4.49e-02 7.03e-01
SLFN12L 9.99e-01 1.15e-02 8.40e-01

CNP 7.20e-01 2.55e-01 6.26e-01
DHX58 4.64e-01 1.53e-02 3.81e-01
KAT2A 2.08e-01 4.20e-01 9.84e-01
IFI35 6.15e-01 7.12e-07 6.83e-01

TRIM25 3.43e-01 3.60e-04 7.30e-01
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RNF213 5.24e-01 1.59e-03 8.64e-01
CXXC1 1.23e-01 1.39e-02 5.89e-01
ZCCHC2 8.83e-01 3.56e-04 5.19e-01
C19orf66 4.43e-01 2.82e-02 8.82e-01
HSH2D 1.58e-01 8.50e-02 7.54e-01
BST2 2.46e-01 6.98e-07 1.07e-02

FAM125A 8.94e-01 3.95e-02 8.61e-01
ATP13A1 4.47e-01 4.17e-03 9.44e-03
AKT2 3.30e-01 9.26e-01 3.20e-01
NAPA 1.10e-01 2.14e-02 8.17e-01

VSIG10L 7.25e-01 1.54e-02 6.46e-01
RBCK1 6.57e-01 1.76e-03 3.51e-01

C20orf118 7.06e-01 1.20e-01 3.32e-02
SAMHD1 6.67e-02 1.51e-04 2.52e-03
ZNFX1 2.69e-01 3.98e-04 2.97e-01
ZBP1 2.92e-02 2.35e-03 5.70e-01

RP4-697K14.7 7.17e-01 2.49e-07 1.16e-01
USP25 3.54e-02 1.51e-03 6.24e-01
MX2 3.19e-01 6.67e-03 2.31e-01
MX1 3.25e-02 8.88e-07 1.41e-01
USP18 1.83e-01 3.44e-03 5.22e-01
SSTR3 1.14e-01 6.94e-03 4.87e-01

GTPBP1 8.24e-01 6.14e-03 6.75e-01
ODF3B 6.06e-01 5.90e-01 2.23e-01
TLR7 9.56e-03 1.62e-05 1.87e-03

Supplementary Table 5: Direct associations between rs2401506 on chromosome 22 and
genes with a PIP>0.5 in the type I interferon response component.
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rs12630796 rs17611866
Adipose LCLs Skin Adipose LCLs Skin

SENP7 3.17e-06 4.02e-21 7.88e-02 7.74e-01 7.06e-01 1.57e-01
PCDHB14 9.13e-02 8.77e-01 1.25e-02 1.27e-01 6.82e-01 4.35e-01
MICA 4.48e-01 2.53e-01 7.39e-02 4.42e-01 5.11e-01 6.92e-01
ZNF250 3.84e-01 5.34e-01 1.76e-01 6.22e-01 6.00e-02 3.94e-01
CACNB2 2.91e-01 7.08e-01 2.96e-03 2.03e-01 3.89e-01 5.53e-02
ZNF263 7.09e-01 5.53e-03 1.32e-02 6.51e-18 5.45e-27 1.59e-16
TIGD7 1.86e-01 7.67e-01 2.50e-01 2.18e-36 2.39e-07 2.94e-07
ZNF559 3.60e-01 7.79e-01 6.25e-02 3.46e-01 2.33e-01 4.31e-01
ZNF562 3.41e-02 1.03e-01 2.13e-02 5.21e-01 6.65e-01 1.71e-03
ZNF491 9.50e-01 8.84e-01 6.27e-01 5.31e-01 5.00e-02 6.17e-02
ZNF440 9.84e-01 1.85e-01 2.96e-02 4.13e-01 4.74e-02 3.08e-04
ZNF439 7.64e-01 1.44e-03 5.35e-04 3.18e-02 1.46e-02 5.68e-07
ZNF788 6.83e-01 1.09e-01 3.54e-03 6.82e-04 2.19e-04 1.37e-06
AC022415.1 7.67e-01 8.92e-02 2.46e-03 1.16e-03 1.79e-04 7.24e-07
ZNF626 9.35e-01 1.17e-04 8.63e-02 3.16e-01 3.08e-01 2.65e-01
ZNF208 6.50e-01 5.35e-02 2.64e-02 2.12e-01 6.48e-01 3.94e-01
ZNF676 3.20e-01 1.16e-01 1.68e-01 9.34e-01 9.74e-01 8.85e-01
ZNF404 5.63e-01 9.10e-01 9.95e-01 2.26e-02 5.94e-01 2.46e-04
ZNF233 7.66e-01 1.14e-01 2.91e-01 1.69e-03 4.31e-01 1.61e-01
ZNF285 5.37e-01 1.40e-02 7.12e-01 8.48e-01 1.44e-02 4.85e-01
ZNF229 6.57e-01 1.59e-02 1.57e-03 8.65e-01 4.53e-02 3.25e-01
ZNF578 4.53e-01 1.44e-01 8.75e-03 3.69e-01 4.18e-02 1.92e-01
ZNF415 1.90e-01 8.80e-03 1.88e-04 5.84e-02 9.97e-01 1.05e-01
ZNF667 5.59e-01 2.36e-01 2.41e-05 9.37e-02 4.27e-08 6.46e-01
AC004696.1 6.87e-01 2.11e-02 2.55e-03 1.68e-01 1.76e-06 7.69e-01
ZIM2 3.62e-01 1.74e-03 7.61e-03 2.46e-01 9.24e-01 8.47e-01
ZNF264 1.08e-01 6.36e-01 1.28e-01 9.65e-01 7.78e-01 6.79e-01
ZNF543 2.00e-02 3.30e-01 2.03e-04 4.21e-01 1.62e-01 3.04e-01
ZNF304 7.09e-01 5.53e-02 7.69e-02 4.44e-03 1.53e-01 3.50e-01
ZNF547 2.47e-02 6.74e-04 6.70e-02 9.55e-01 1.36e-01 7.23e-02
VN1R1 1.33e-01 1.25e-01 1.90e-02 4.57e-02 3.69e-01 2.01e-02
ZNF772 2.62e-02 1.16e-02 2.45e-03 9.70e-02 3.90e-02 4.52e-02
ZNF549 1.00e-01 1.30e-01 3.26e-06 5.41e-02 1.92e-01 2.16e-03
AC003682.1 2.81e-01 1.32e-02 1.55e-01 3.97e-03 7.72e-01 1.26e-01
ZNF416 7.76e-01 7.29e-01 1.22e-01 1.59e-01 3.38e-01 2.08e-03
ZIK1 1.48e-02 1.31e-05 1.36e-04 2.63e-02 2.65e-01 6.58e-03
ZNF530 4.80e-01 8.52e-01 7.16e-02 3.42e-01 4.73e-04 6.29e-01
ZNF134 3.08e-01 1.73e-02 1.47e-05 1.04e-04 5.27e-01 6.60e-08
ZNF211 3.94e-01 7.94e-01 1.67e-08 5.99e-03 5.66e-01 3.93e-04
ZSCAN4 8.21e-01 9.76e-01 8.77e-08 3.44e-05 6.98e-01 2.06e-03
ZNF551 5.19e-03 7.71e-04 5.93e-03 5.14e-04 3.80e-01 3.86e-05
AC004017.1 3.50e-04 6.76e-05 4.20e-03 2.65e-04 1.49e-01 1.06e-05
ZNF154 5.94e-04 4.13e-08 1.71e-06 3.38e-14 9.68e-04 6.57e-07
ZNF671 6.09e-05 1.07e-04 2.09e-15 3.97e-10 5.22e-01 2.21e-10
ZNF776 2.34e-03 2.48e-04 2.88e-04 1.26e-03 1.38e-01 5.75e-04
ZNF814 2.64e-04 1.54e-06 4.30e-06 4.52e-02 1.54e-02 4.37e-04
ZNF417 2.06e-02 5.21e-02 4.92e-03 3.36e-02 4.30e-01 9.12e-02
ZNF418 3.44e-04 2.05e-10 3.29e-04 1.46e-05 7.78e-02 1.27e-02
ZNF256 3.09e-01 4.21e-02 8.43e-07 2.66e-03 5.64e-01 1.48e-01
ZNF606 6.43e-01 4.15e-01 2.25e-01 7.12e-01 8.14e-01 2.85e-01
CTD-2368P22.1 9.84e-01 4.13e-01 1.33e-01 1.60e-01 9.87e-01 2.25e-02
ZSCAN1 5.76e-01 8.82e-01 2.79e-02 5.94e-01 5.95e-01 8.95e-01
ZNF135 3.55e-01 7.82e-03 1.12e-04 4.28e-01 2.47e-02 6.65e-01
ZSCAN18 8.77e-01 2.60e-02 8.47e-05 8.10e-01 1.28e-02 8.67e-01
ZNF329 9.54e-01 8.57e-01 6.19e-02 1.63e-01 2.08e-03 1.12e-01
ZNF274 4.49e-02 1.77e-01 2.96e-08 6.88e-01 4.62e-03 1.82e-01
ZNF544 1.21e-01 4.08e-01 1.39e-02 3.72e-01 1.84e-04 4.60e-01

Supplementary Table 6: Direct associations between rs12630796 on chromosome 3 and
rs17611866 on chromosome 16 and genes with a PIP>0.5 in the zinc finger network
component. SENP7 is also included in this table despite it having a near zero gene loading
in the component.
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Tissue activation pattern
Row totals

A L S AL AS LS ALS

Number of components 57 74 70 0 14 1 20 236

SNP (1× 10−10)
cis 1 1 0 0 0 0 18 20

trans 0 3 0 0 1 0 2 6

Phenotype (1× 10−6) 21 0 8 0 3 0 0 32

Sequencing (1× 10−6) 37 53 39 0 2 0 0 131

GO term (1× 10−6) 49 68 63 0 14 1 5 200

Supplementary Table 7: Summary of 236 robust components obtained when clustering
components across 10 runs of the method. Components are categorized according to which
set of tissues they are active in (A : Adipose L : LCLs, S : Skin) using a threshold of 0.5 on
the tissue scores matrix. The first row of data gives the number of components with each
activation pattern; subsequent rows summarize the number of component associated with
SNPs, phenotypes, batch variables and enriched for GO terms (with significance levels
given in brackets).
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Supplementary Note

1 Bayesian Sparse Tensor Decomposition Model

1.1 Notation

Capital letters denote matrices; suppose Y is a matrix with dimensions I × J . We reference

the (i, j)th element of the matrix Y by yij . The ith row of Y is a row vector of length J

denoted by yi· and the jth column of Y is a column vector of length I denoted by y·j or yj .

Tensors (by which we mean a 3-dimensional array) are represented by curly letters;

for example, Y ∈ RI×J×K is a tensor with dimensions I by J by K. An element of the

tensor can be referenced using three indices, e.g. yijk for i ∈ {1, . . . , I}, j ∈ {1, . . . , J} and

k ∈ {1, . . . ,K}. We would also like to represent various subsets of the data in the tensor.

Let us consider an example; suppose that Y ∈ RN×L×T contains gene expression data for

N individuals, L genes and T tissues. A 2-dimensional slice of the tensor can be obtained

by specifying one index, for example, the data for tissue t is a matrix given by Y··t ∈ RN×L;

similarly, all the data for an individual n is given by the matrix Yn·· ∈ RL×T . The tensor

analog of a matrix row or column is the vector obtained when two indices are specified, for

example, y·lt ∈ RN represents the data (for all individuals) for gene l in tissue t.

In the following sections, we use c and k as an index over components, n as an index

over individuals, l as an index over genes and t as an index over tissues.

1.2 Model description

Let Y ∈ RN×L×T be a tensor containing expression data for N individuals at L genes in T

tissues. For now we will assume that there is no missing data. (In section 1.10 we describe

extensions to the model to deal with missing tissue samples and randomly missing elements

in the tensor.) We also assume that the data for each gene (in each tissue) has been mean

centred and variance normalised (i.e. y·lt has zero mean and unit variance).

We aim to find an alternative representation of the data in terms of C latent components.

Specifically, the data is modelled as a linear combination of C components and additive noise,

ynlt =

C∑
c=1

ancbtcxcl + εnlt, (1)

where X ∈ RC×L is a gene loadings (or scores) matrix; each row of X defines the relative

contribution of each measured gene in the component. A is an N by C matrix of individual

scores which describes the individual specific mixing weights for each component. Similarly,

the tissue scores matrix B ∈ RT×C contains tissue specific mixing weights. Finally, E is

an N by L by T tensor of noise. This model is known in the literature as the PARAFAC

(parallel factors) decomposition or CANDECOMP (canonical decomposition) (Carroll and

Chang, 1970; Harshman and Lundy, 1994).

We fit the model in a Bayesian framework; the next section defines priors for the model,

including a shrinkage prior on X.
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1.3 Priors

Sparsity prior on the gene loadings matrix

We expect biological processes to only involve a relatively small subset of the total number

of genes in the genome and therefore want to identify components with sparse loadings

vectors. In order to encourage sparsity in the model, we use a spike and slab prior on the

gene loadings matrix (Lucas et al., 2006; Mitchell and Beauchamp, 1988). The spike and

slab distribution consists of a mixture of a point mass at zero (the “spike”) and a Gaussian

(the “slab”). Genes involved in the component will have gene loadings modelled by the

Gaussian distribution, while genes with zero effect should be captured by the delta function.

The prior on xcl is given by

P (xcl|pcl, βc) = pclN (xcl|0, β−1
c ) + (1− pcl)δ0(xcl), (2)

where pcl is a mixing weight and βc is the precision of the Gaussian (Lucas et al., 2006). This

prior is a more general alternative to the original spike and slab distribution from Mitchell

and Beauchamp (1988) where a single mixing parameter is specified for each component i.e.

pcl = pc. As in Lucas et al. (2006) we found that this more general spike and slab allowed

us to model sparser signals in the data and resulted in lower false positive rates.

Following convention, a gamma prior is placed on the precision parameters βc ∼ G(βc|e, f)

where e and f are hyper-parameters. The prior on pcl is given by

pcl ∼ ρcB(pcl|g, h) + (1− ρc)δ0(pcl) (3)

where ρc is component-level mixing parameter. pcl encodes sparsity of the (c, l)th element

in the loadings matrix. A spike and slab prior on pcl, with a Beta distribution for the slab,

reflects our belief that some elements in the loadings matrix should be zero, and others

should have an non-zero value. If ρc takes a value close to 0, then the expression for pcl

will be dominated by the delta function at zero and the majority of the loadings vector

will take values close to, or equal to, zero, resulting in a sparse component. We learn ρc

alongside the other parameters. To complete the prior on xcl we place a beta distribution

on ρc ∼ B(ρc|r, z) with hyperparameters r and z.

In order to make inference easier, we follow the approach used in Titsias and Lázaro-

Gredilla (2011) and factorise the spike and slab distribution as xcl = wclscl where

wcl ∼ N (wcl|0, β−1
c ), (4)

scl ∼ Bernoulli(scl|pcl). (5)

The random variable scl reflects the model’s evidence that the (c, l)th element of X is non-

zero. The magnitude of wcl can be thought of as an effect size for the (c, l)th element.

We use the same trick to make inference on pcl tractable; let pcl = ψclφcl where

ψcl ∼ B(ψcl|g, h), (6)

φcl ∼ Bernoulli(φcl|ρc). (7)
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Prior on the individual and tissue scores matrices

We put a standard multivariate normal prior on the component vectors in both scores

matrices.

P (a·c) = NN (a·c|0, IN ),

P (b·c) = NT (b·c|0, IT ).

(8)

This corresponds to a prior belief that individuals and tissues are independent. Without

loss of generality, we can fix the variance of these distributions to 1, because of the scaling

indeterminacy of factor analysis models. A scaling can be incorporated into the precision

parameters (βc) in the gene loadings matrix.

Prior on noise precision

To complete the model specification, we use a Gaussian error term. The noise levels for each

gene are modelled independently, where λlt is the noise precision for each gene and tissue

combination,

ε·lt ∼ NN (ε·lt|0, λ−1
lt IN ). (9)

The precision parameters are given a Gamma distribution with hyper-parameters u and v,

λlt ∼ G(λlt|u, v). (10)

1.4 Full model

The full model can be written as

P (Y|θ) =
∏
lt

NN
(
y·lt|

∑
c

a·cbtcwclscl, λ
−1
lt IN

)
P (a·c) = NN (a·c|0, IN )

P (b·c) = NN (b·c|0, IT )

P (wcl|βc) = N
(
wcl|0, β−1

c

)
P (scl|ψcl, φcl) = Bernoulli

(
scl|ψcl, φcl

)
P (βc) = G(βc|e, f)

P (ψcl) = Beta(ψcl|g, h)

P (φcl|ρc) = Bernoulli(φcl|ρc)

P (ρc) = Beta(ρc|r, z)

P (λlt) = G(λlt|u, v) (11)

where θ denotes the set of all parameters.
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1.5 Hyperparameters

We place uninformative priors on the noise precision, λlt, and the ‘slab’ precision βc by

setting u = 10−6, v = 106, e = 10−6 and f = 106. We put a flat (uniform) prior on the

component sparsity parameters (ρc) by setting r = z = 1. To encourage sparsity in the gene

loadings we use a prior on ψcl with g = h = 0.

1.6 Inference via variational Bayes

Inference is performed using an Bayesian technique called variational Bayes (VB) which

allows us to evaluate an approximation to the posterior distribution. Suppose the approx-

imate posterior distribution is given by Q(θ). VB aims to minimise the Kullbeck-Lieber

(KL) divergence between Q(θ) and the true posterior P (θ|Y) given by

KL(Q|P ) =

∫
Q(θ) log

Q(θ)

P (θ|Y)
dθ. (12)

The KL divergence takes positive values, or a value of 0 if and only if Q(θ) is identical to

P (θ|Y). We can write the marginal log-likelihood in terms of the KL divergence and a term

called the negative free energy denoted by F (Q),

logP (Y) =

∫
Q(θ) log

P (Y, θ)
Q(θ)

dθ︸ ︷︷ ︸
:=F (Q)

+KL(Q|P ). (13)

Minimising the KL divergence is equivalent to maximising F (Q). Also note that because

the KL divergence can not take a negative value, F (Q) is a lower bound to the log-marginal

likelihood.

A common approach to optimising F (Q) is the mean field VB algorithm where the

approximate posterior is assumed to fully factorise. If the model priors are chosen to be

conjugate, then (conditional) analytic solutions can be obtained for the variational parame-

ters that increase F (Q) and the algorithm consists of iteratively updating parameters until

convergence. An alternative approach can be used if the priors are not conjugate; in this

scenario, a fixed form for the posterior distribution is used and the parameters of this ap-

proximate distribution are estimated in order to maximise the negative free energy.

The majority of the parameters in our model have conjugate priors. However, in some

cases, fully factorising over parameters may be too strong an assumption and also an unneces-

sary assumption. We retain dependence between wcl and scl, rather than assuming they are

independent (Titsias and Lázaro-Gredilla, 2011). Titsias and Lázaro-Gredilla (2011) show

that this approach results in more robust and accurate estimates. All other parameters with

conjugate priors are assumed to fully factorise in the approximate posterior distribution.

Unfortunately the parameters ψcl, φcl and ρc do not have conjugate priors and we are

not able to use the results from mean field VB. Instead, we specify that their posterior

distributions are point masses and optimise the free energy to find these point estimates.
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The approximate posterior distribution Q(θ) for the model takes the following form

Q(θ) =
∏
c

Q(a·c)
∏
t,c

Q(btc)
∏
c,l

Q(wcl|scl)Q(scl)
∏
c

Q(βc)∏
c,l

δψ∗cl(ψcl)
∏
c,l

δφ∗cl(φcl)
∏
c

δρ∗c (ρc)
∏
l,t

Q(λlt) (14)

Our VB algorithm consists of iteratively updating each parameter given current estimates

of the other parameters. All updates are guaranteed to increase (or at least not decrease) the

negative free energy. All parameters are initialised randomly from their prior distribution

other than parameters scl, ψcl and φcl, which are initialised to 0.5.

1.6.1 Variational Bayes updates

Parameters of the approximate posterior distributions are denoted using an asterix (∗).

Loadings matrix

Q(wcl|scl) = N
(
wcl

∣∣∣sclm∗cl, (sclσ∗cl + (1− scl)〈βc〉
)−1
)

σ∗cl = 〈βc〉+
∑
nt

〈λlt〉〈a2
nc〉〈b2tc〉

m∗cl = σ∗−1
cl

(∑
n,t

〈λlt〉ynlt〈anc〉〈btc〉 −
∑
n,t

〈λlt〉〈anc〉〈btc〉
∑
k 6=c

〈wklskl〉〈ank〉〈btk〉
)

(15)

Q(scl) = Bernoulli(scl|γ∗cl)

γ∗cl =
1

1 + e−u
∗
cl

u∗cl = log(ψ∗clφ
∗
cl)−

1

2
log σ∗cl +

σ∗cl
2
m∗cl

2 − log(1− ψ∗clφ∗cl) +
1

2
log〈βc〉 (16)

Sparsity parameters

We derive point estimates for the parameters ψcl, φcl and ρc by directly optimising the

negative free energy. The relevant terms of the negative free energy are given by F̃ .

F̃ :=
∑
c,l

logP (scl|ψcl, φcl) +
∑
c,l

logP (ψcl) +
∑
c,l

logP (φcl|ρc) +
∑
c

logP (ρc)

=
∑
c,l

(
〈scl〉 log(ψclφcl) + 〈1− scl〉 log(1− ψclφcl)

)
+
∑
c,l

(
(g − 1) logψcl + (h− 1) log(1− ψcl)

)
+
∑
c,l

(
φcl log ρc + (1− φcl) log(1− ρc)

)
+
∑
c

(
(r − 1) log ρc + (z − 1) log(1− ρc)

)
(17)

The equation δF
δρc

= 0 has a closed form solution so we can find ρ∗c as follows,

ρ∗c =

∑
l φ
∗
cl + r − 1

L+ r + z − 2
(18)
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Since we expect ψcl and φcl to be highly coupled, we use Newton’s method to simulta-

neously find (ψ∗cl, φ
∗
cl) to optimise F̃ . The optimisation problem we need to solve is

(ψ∗cl, φ
∗
cl) = argmax(ψcl,φcl)

F̃ (19)

The gradient and Hessian matrix of F̃ are given by

g =

(
〈scl〉
ψcl
− 〈1−scl〉φcl

1−ψclφcl
+ g−1

ψcl
− h−1

1−ψcl
〈scl〉
φcl
− 〈1−scl〉ψcl

1−ψclφcl
+ log ρc − log(1− ρc)

)
(20)

H =

− 〈scl〉ψ2
cl
− 〈1−scl〉φ2

cl

(1−ψclφcl)2
− qr−1

ψ2
cl
− q(1−r)−1

(1−ψcl)2
− 〈1−scl〉

(1−ψclφcl)2

− 〈1−scl〉
(1−ψclφcl)2

− 〈scl〉
φ2
cl
− 〈1−scl〉ψ2

cl

(1−ψclφcl)2

 (21)

We update (ψcl, φcl) as follows,

(
ψi+1
cl

φi+1
cl

)
=

(
ψicl
φicl

)
− αHi−1gi (22)

where α is a step-size determined using a backtracking line search, i.e. we start with α = 1

then reduce α until we satisfy F̃ i+1 > F̃ i

Update for ac

Q(a·c) = NN (a·c|µ∗c ,Ω∗c
−1)

Ω∗c = (1 +
∑
l,t

〈λlt〉〈b2tc〉〈w2
cls

2
cl〉)IN

µ∗c = Ω∗c
−1
(∑

l,t

〈λlt〉y·lt〈btc〉〈wclscl〉 −
∑
l,t

〈λlt〉〈btc〉〈wclscl〉
∑
k 6=c

〈a·k〉〈btk〉〈wklskl〉
)

(23)

Update for btc

Q(btc) = N (btc|ν∗tc, τ∗−1
tc )

τ∗tc = 1 +
∑
n,l

〈λlt〉〈a2
nc〉〈w2

cls
2
cl〉

ν∗tc = τ∗tc
−1
(∑
n,l

〈λlt〉ynlt〈anc〉〈xcl〉 −
∑
n,l

〈λlt〉〈anc〉〈wclscl〉
∑
k 6=c

〈ank〉〈btk〉〈wklskl〉
)

(24)

Update for βc

Q(βc) = G(e∗c , f
∗
c )

e∗c = e+
L

2

f∗c =
( 1

f
+

1

2

∑
l

〈w2
cl〉
)−1

(25)
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Update for λlt

Q(λlt) = G(λlt|u∗lt, v∗lt) (26)

u∗lt = u+
NT

2

v∗lt =

(
1

v
+

1

2

∑
n

〈(
ynlt −

∑
c

ancbtcwclscl
)2〉)−1

(27)

1.6.2 Negative free energy

The negative free energy is a lower bound of the model evidence (marginal likelihood). The

updates given above are guaranteed to increase the free energy.

F (Q) = −NLT
2

log 2π +
N

2

∑
l,t

〈log λlt〉 −
1

2

∑
n,l,t

〈λlt〉
〈
(ynlt − Σcancbtcwclscl)

2
〉

− 1

2

∑
c

〈a>·ca·c〉 −
1

2

∑
c

log |Ω∗c |+
NC

2

− 1

2

∑
t,c

〈b2tc〉 −
1

2

∑
t,c

log |νtc|+
TC

2

+
L

2

∑
c

〈
log βc

〉
+
CL

2
− 1

2

∑
c,l

〈βc〉
〈
w2
cl

〉
− 1

2

∑
c,l

γ∗cl log σ∗cl +
1

2

∑
c,l

(1− γ∗cl) log〈βc〉

∑
c

(
− log Γ(e)− e log f + (e− 1)(ψ(e∗c) + log f̂c)−

e∗cf
∗
c

f

+ e∗c + log f∗c + log Γ(e∗c)− (e∗c − 1)ψ(e∗c)

)
+
∑
c,l

(
〈scl〉〈logψclφcl〉+ (1− 〈scl〉)〈log

(
1− ψclφcl

)
〉

− 〈scl〉 log〈scl〉 − (1− 〈scl〉) log(1− 〈scl〉)
)

+
∑
c,l

(
(g − 1) logψ∗cl + (h− 1) log(1− ψ∗cl)

)

+
∑
cl

(
φ∗cl log ρ∗c + (1− φ∗cl) log(1− ρ∗c)

)
+
∑
cl

(
(r − 1) log φ∗cl + (z − 1) log(1− φ∗cl)

)
+
∑
lt

(
− log Γ(u)− u log v + (u− 1)(ψ(u∗lt) + log v∗lt)−

u∗ltv
∗
lt

v

+ u∗lt + log v∗lt + log Γ(u∗lt)− (u∗lt − 1)ψ(u∗lt)

)
(28)

1.7 Identifiability

The components estimated by our model are not completely identifiable. The sign of the gene

loadings, individual scores and tissue scores is not fully determined by the model, so that

swapping the sign of any two of these parts of the model will produce an equivalent model
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fit. Scaling of the components is constrained to some extent by the fixed unit variances used

in the priors on the individual and tissue scores. The use of sparsity in the gene loadings

goes some way to ensure that components are not rotationally invariant, but dense factors

will clearly suffer from this problem, especially if they are active in only one tissue.

1.8 Implementation and complexity

We implement the model in C++ using a matrix library called Eigen (http://eigen.tuxfamily.org).

The complexity of the algorithm is O(NLTC2) but parallelisation of matrix multiplications

(via Eigen) and parallel updates of elements in the gene loadings matrix (via openmp) speed

up the code considerably.

1.9 Convergence

Based on experience of running this method on simulated and real data, we run the method

for 3,000 iterations. We check for convergence by tracking the change in 〈S〉. After 3,000

iterations, the average number of elements in 〈S〉 that cross the threshold 0.5 drops to less

than 1 per iteration.

1.10 Handling missing data

In this section we describe two extensions to the model which allow for missing data. We con-

sider two scenarios in which missing data might arise, missing tissue samples and randomly

missing data points.

1.10.1 Missing tissue samples

Missing tissue samples arise when only a subset of the tissues are collected for a particular

individual, or if data for a whole tissue sample is removed due to experimental errors.

Missing samples correspond to missing vectors within the data tensor; for example, if data

for individual n in tissue t is missing, then yn·t will be missing. We can reformulate our

model to ignoring these missing samples.

Let J be a binary indicator matrix of dimensions N by T , where Jnt = 1 if data for

individual n in tissue t exists and Jnt = 0 otherwise. Based on the data that does exist, the

likelihood is given by,

P (Y|θ) =
∏
n,l,t

N
(
ynlt|Σcancbtcwclscl, λ−1

lt

)Jnt

(29)

Using this likelihood and the priors defined in section 1.3, we can derive updates for

the model parameters in a similar way as above. The resulting updates are identical to

those given in section 1.6.1 except that the indicator matrix J needs to be added into any

expression with a sum over n or t.

1.10.2 Missing data points

We will now briefly describe how to deal with randomly missing elements in the data tensor

that may have arisen due to experimental errors. In this scenario, we treat the missing data

points as parameters in the model and learn their posterior distribution.
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We create a partition of the data such that Y = Yo ∪ Ym where Yo denotes the set of

observed data and Ym denotes the set of missing data. Let Sm be the set of triplets {n, l, t}
for which data is missing.

The prior for the missing data is,

P (Ym|θ) =
∏

{n,l,t}∈Sm

N
(
ymnlt|Σcancbtcwclscl, λ−1

lt

)
, (30)

and assuming that the posterior factorises fully, the posterior is given by

Q(Ym) =
∏

{n,l,t}∈Sm

N (ymnlt|Σc〈anc〉〈btc〉〈wclscl〉, 〈λ−1
lt 〉). (31)

With this extension, the updates for the other model parameter are similar to those given in

section 1.6.1, altered to reflect the uncertainty in the estimates of the missing data points,

if {n, l, t} ∈ Sm, we need to replace ynlt by 〈ynlt〉 and y2
nlt by 〈y2

nlt〉 = 〈ynlt〉2 + 〈λ−1
lt 〉.

1.11 Allowing for related individuals

As it stands, our model ignores any relatedness between samples. However genetic studies

often contain closely related individuals by design, or distantly related individuals by chance

when recruitment occurs within a small geographical area. A kinship matrix K ∈ RN×N

can be used to summarise this genetic relatedness between individuals where an element of

K, kij , is a measure of the relatedness between individual i and individual j. Data from

related individuals are likely to be correlated due to shared genetic material and explicitly

modelling these correlations may lead to better results.

Our model identifies both genetic structure (e.g. a trans network or the genetic basis of

ageing) and non-genetic structure (e.g. environment signals or batch effects) in the data.

We can accommodate these different types of components by using the following prior on

the individual scores matrix A, using the kinship matrix to inform the model about the

relatedness between individuals,

A ∼
∏
c

NN (a·c|0, αcK + (1− αc)IN ), (32)

where the covariance of each scores vector is a mixture of the kinship matrix and the identity

matrix with a different mixing parameter αc for each component. If αc is close to 1 then

the covariance matrix in the prior is approximately the kinship matrix K, which imposes

a structure so that related individuals have more similar scores, resulting in a ‘genetic’

component. On the other hand, if αc is close to 0 then the prior has no genetic basis and we

recover the i.i.d Gaussian prior already described for A. The mixing parameter αc is given

an uninformative Beta prior,

αc ∼ Beta(αc|1, 1). (33)

Implementing this model involves a change to the update for A and the addition of an

update for αc but the remaining parameter updates remain the same. We assume that a·c

and αc are independent in the approximate posterior distribution and that the posterior

distribution of αc is a delta function at α∗c .
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The update for A becomes,

Q(a·c) = NN (a·c|µ∗c ,Ω∗c
−1)

Ω∗c =
(
α∗cK + (1− α∗c)IN

)−1

+
(∑
l,t

〈λlt〉〈b2tc〉〈w2
cls

2
cl〉
)
IN

µ∗c = Ω∗c
−1
(∑

l,t

〈λlt〉y·lt〈btc〉〈wclscl〉 −
∑
l,t

〈λlt〉〈btc〉〈wclscl〉
∑
k 6=c

〈a·k〉〈btk〉〈wklskl〉
)

(34)

An efficient implementation of this can be obtained by using the eigendecomposition

of K to avoid inverting an N by N matrix in the calculation for Ω∗c . In fact, we can

avoid calculating Ω∗c altogether as the expression for µc only requires Ω∗−1
c . Using the

eigendecomposition of K = QDQt where Q is an orthonormal matrix of eigenvectors and D

is a diagonal matrix with eigenvalues on the diagonal. We can now write,

(Ω∗−1
c )nm = Q

(
((1− α∗c)IN + α∗cD)−1 +

∑
l,t

〈λlt〉〈b2tc〉〈w2
cls

2
cl〉IN

)−1

Qt. (35)

Using the above expression, the complexity in N scales quadratically. We note that this

expression will no longer apply when there are missing samples in the data. The combination

of the genetic prior and missing samples makes the complexity cubic in N which is why we

do not use this approach when analysing the TwinsUK data set.

We evaluate the point estimates α∗c using gradient ascent,

α∗c ← α∗c + ∆
∑
n

(−1 +Dnn)

(
− 1

1− α∗c + α∗cDnn
+

(
Q(µ∗cµ

∗t
c + Ω∗−1

c )
)
nn

(1− α∗c + α∗cDnn)2

)
, (36)

where ∆ = 0.0001 is the step size.

1.12 Linked matrix/tensor decomposition

The 3D tensor decomposition method that we have described above is actually a special

case of a more general model we have implemented for linked tensor decomposition (see

Supplementary Figure 38). Consider a study consisting of D types of omics data for a set

of N individuals. Let each data set d be represented by the tensor, Y(d) ∈ RN×Ld×Td where

Ld is the number of variables measured for data type d and Td is the number of contexts

(or conditions) in which these variables were measured. If data for type d is collected in

only a single context then Td = 1. Importantly, all tensors are linked by their shared first

dimension (N).

The data is modelled as follows (Groves et al., 2011),

y
(d)
nlt =

∑
c

ancb
(d)
tc x

(d)
cl + ε

(d)
nlt for d ∈ {1, · · · , D} (37)

where A ∈ RN×C is the individual scores matrix (shared across all data types), B(d) ∈ RTd×C

is a context specific scores matrix for data type d and X(d) ∈ RC×Ld is a loadings matrix

for data type d. A noise tensor for each data type is given by E(d) ∈ RN×Ld×Td . Each data

tensor is decomposed using equation (1), with the constraint that a single individual scores

matrix is common across all data types. In practice, if Td = 1 for a data type d, then B(d)

has dimensions 1 by C and is fixed to a vector of ones during inference.
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Again, spike and slab priors are used for the loadings matrices to encourage sparsity.

Updates for the loadings and context scores matrices for a data type d are effectively identical

to the (single) tensor decomposition already considered. Importantly, updates for X(d) and

B(d) do not depend on X(d′) and B(d′) for any d′ 6= d. The update for A is dependent

on all other current parameter estimates. One way to think about this update is that it

averages over the estimates for A that one would get if performing separate decompositions

for each data type. (In reality this is not quite the case because the prior also needs to be

considered.)

It is important to note that equation (37) can model a variety of different types of

underlying structure in the data. Components can be shrunk to zero for a particular data

type allowing for the model to capture signals that exist in an arbitrary subset of the data.

For example, in Supplementary Figure 38, the yellow component is active in only data types

2 and 3.

This linked tensor decomposition is a generalisation of several models. In particular,

the single 3D tensor decomposition we focus on in this paper is recovered if D = 1. If

T1 = D = 1, then the model collapses to sparse factor analysis. Group factor analysis is

recovered if Td = 1 for all d.
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2 Additional results

2.1 Marginal association for SNPs and gene identified in compo-

nents

In order to better visualize the marginal associations for the lead SNPs from our components

and the genes in our network (given in Supplementary Tables 2-6) we produced plots of the

p-values. These plots are shown in Figures 1-5. On each plot we detail 3 different significance

thresholds:

1. 3.3× 10−12 = 5× 10−8/(3× 5000) - derived by taking an anti-conservative view, that

due to correlation between genes there are only effectively only 5,000 genes.

2. 4.9× 10−11 = 0.05/(3× 18409× 18409) - derived by assuming that the best cis SNP

for each gene was tested against all other genes

3. 9.05× 10−13 = 5× 10−8/(3× 18409) - the Bonferroni correction of all SNPs versus all

genes in all 3 tissues.

Table 1 shows the p-values for association between our components and lead SNPs, and also

the best marginal association (in trans) between the SNP and set of genes identified in the

component. In 5 out of 7 cases, our approach results in smaller p-values than the marginal

associations.

In addition to performing marginal associations between the lead SNPs from our com-

ponents and the genes identified in the network, we tested for associations between the lead

SNP and all genes in the analysis (Figures 6 - 12). Genes identified in our components are

shown in red. These plots suggest that our components are recovering the majority (if not

all) of the genes involved in the trans effect. The genes with significant or near significant

marginal associations are those identified in the components; an exception is SENP7 which

is significantly associated with rs12630796 in skin, but does not appear in our ZNF gene

network component.

2.2 Discussion of direct associations for Zinc finger component

Supplementary Table 6 details the direct associations of SNPs rs12630796 and rs17611866

with SENP7 on chromosome 3 and genes with non-zero gene loadings in the component in

all three tissues. This analysis partially recovers the signal that we find using our method.

rs12630796 on chromosome 3 is significantly associated with ZNF671 on chromosome 19 in

Skin (p-value = 2.0910-15) and there is some evidence of association in Adipose and LCLs

(6.0910-5 and 1.0710-4 respectively) and associated with ZNF418 (also on chromosome 19)

in LCLs (p-value = 2.0510-10). However, the SNP varies considerably in its association with

SENP7 across tissues (LCLs p-value = 4.02×10−21, Adipose p-value = 3.17×10−6, Skin p-

value = 7.88×10−2). SNP rs17611866 on chromosome 16 shows a clear pattern of significant

association with nearby gene ZNF263 in all 3 tissues (p-values between 1.59 × 10−16 and

5.45 × 10−27) and T1GD7 (p-values between 2.94 × 10−7 and 2.18 × 10−36) and a strong

pattern of association with ZNF671 on chromosome 19 in Skin (p-value = 2.21×10−10) and

Adipose tissue (p-value = 3.97×10−10). Additionally, rs17611866 is associated with ZNF154

(chromosome 19) in Adipose (p-value = 3.38 × 10−14). This marginal analysis uncovers

evidence of links between SNPs on chromosomes 3 and 16 with genes on chromosomes 3,

16 and 19, although not all of these associations reach a genome wide significance level
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Figure 1: Marginal associations for MHC class II component.
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Figure 2: Marginal associations for MHC class I component.

62



0
5

10
20

30
−

lo
g 1

0(p
)

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

●● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

H
IS

T
2H

2B
E

H
IS

T
3H

2A
LS

M
11

H
IS

T
1H

1C
H

IS
T

1H
2B

C
H

IS
T

1H
2A

C
H

IS
T

1H
1E

H
IS

T
1H

2B
D

H
IS

T
1H

3D
H

IS
T

1H
2A

D
H

IS
T

1H
2B

F
H

IS
T

1H
4E

H
IS

T
1H

2B
G

H
IS

T
1H

2A
E

H
IS

T
1H

3E
H

IS
T

1H
2B

H
H

IS
T

1H
3G

H
IS

T
1H

4H
H

IS
T

1H
2B

J
H

IS
T

1H
2A

G
H

IS
T

1H
2B

K
H

IS
T

1H
4I

H
IS

T
1H

3H
H

IS
T

1H
2B

N
H

IS
T

1H
1B

H
IS

T
1H

2B
O

O
R

2B
6

H
2A

F
X

LR
R

C
23

H
IS

T
4H

4
E

YA
2

Associations with rs6882516

Significance threshold

9.05e−13
3.33e−12
4.92e−11

●

●

●

Adipose
LCLs
Skin

Figure 3: Marginal associations for RNA histone processing component.
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Figure 4: Marginal associations for Type I Inteferon component
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Component SNP (chr)

p-value for association
between component’s

individual scores
vector and SNP

Most associated gene
in trans via marginal

associations

MHC class II*
rs7194862 (16) 1.74e-14 9.30e-19

rs9924520 (16) 1.33e-23 5.56e-19

MHC class I rs289749 (16) 1.34e-11 3.02e-12

Histone RNA
processing

rs6882516 (5) 2.39e-15 1.17e-12

Type I interferon rs2401506 (22) 9.82e-16 1.41e-11

ZNF gene network**
rs12630796 (3) 5.10e-17 2.09e-15

rs17611866 (16) 5.40e-21 3.38e-14

Table 1: Comparison of the p-values obtained using our approach and marginal
associations. For each of the components identifying potential trans signals (column 1), the
SNPs most associated with the component’s individual scores are given in column 2.
Column 3 contains the p-values for these associations. Marginal scans for trans associations
between the SNP and genes in the component (PIP > 0. 5) were performed and the
smallest p-value across all three tissues given in column 4. The smallest p-value in each
row is highlighted in red. *Results for two components describing a regulation pathway
involving the MHC class II genes are given. **For the ZNF gene network component,
results for most significant SNPs from clusters on chr 3 and chr 16 are presented.

of 9.05 × 10−13. The SNPs rs17611866 and rs12630796 are uncorrelated (r2=0.01). The

model fit with both SNPs as predictors of the component scores is highly significant (p-

value=1.8× 10−34).
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Figure 5: Marginal associations for Zinc finger component.
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Figure 6: Marginal associations between lead SNP from MHC class II component active
in LCLs, and all genes. Genes identified in the component are shown in red.
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Figure 7: Marginal associations between lead SNP from MHC class II component active
in adipose and skin, and all genes. Genes identified in the component are shown in red.
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Figure 8: Marginal associations between lead SNP from MHC class I component and all
genes. Genes identified in the component are shown in red.
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Figure 9: Marginal associations of histone RNA processing component lead SNP and all
genes. Genes identified in the component are shown in red.
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Figure 10: Marginal associations of Type I Inteferon component lead SNP with genes in
that component. Genes identified in the component are shown in red.
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Figure 11: Marginal associations of Zinc finger component lead SNP on chromosome 3
with genes in that component. Genes identified in the component are shown in red.
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Figure 12: Marginal associations of Zinc finger component lead SNP on chromosome 16
with genes in that component. Genes identified in the component are shown in red.
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2.3 Gene ontology analysis

We performed a gene ontology (GO) analysis for genes identified in the components (Figure

13). Many components contained genes that were enriched for GO terms, although we

caution against over interpretation of these results. For example, some dense components

may show evidence of enrichment for a GO term, but this does not mean that every gene in

that component is involved in the same network or biological process. Figure 13 summarizes

the number of components associated with batch variables, phenotypes and enriched for a

GO term.
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Figure 13: Gene ontology p-values for 236 robustly clustered components. x-axis shows
the component size (number of PIPs>0.5) and the y-axis shows the – log10(p-value) for the
most strongly associated GO term. The red line indicates a 1% significance threshold.
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2.4 Investigation of PEER factors

When searching for cis eQTLs is has become common for researchers to use PEER Stegle

et al. (2010) to estimate and remove confounding variables. SDA does not use PEER as a

pre-processing step. However, we do use PEER when examining the marginal associations

between the SNPs identified by SDA and the genes in the associated components. A reviewer

raised a concern that using PEER may result in loss of power to detect trans eQTLs. In

fact, we found that by using PEER we recovered more significant associations (data not

shown) compared to an approach which did not use PEER.

We further examined the PEER factors for each tissue we estimated and found them all

to be dense in terms of their gene weights (or loadings) (data not shown). (The trans eQTL

networks that we report in this paper (see Figures 2-6 of the main paper) are sparse.) We

also carried out GWAS for the individual score vectors for each PEER component (data not

shown). Using a strict threshold of 5× 10−8/15 = 9.33× 10−9, we only find one significant

SNP. A peer factor (from a decomposition of data from Skin tissue) was associated with

rs146412791 (chromosome 9, p-value =9.43 × 10−10, maf=0.017). rs146412791 lies within

the SLC35D2 gene and was the only SNP in the region that had a small p-value. Our

conclusion is that the PEER components do not remove trans effects.

2.5 Application of ICA and PCA to the TwinsUK dataset

Based on a comment by a reviewer, we applied Independent Component Analysis (ICA)

Hyvärinen, 1999 to the TwinsUK dataset in addition to SDA. This method decomposes a

matrix of data into components such the gene loadings are uncorrelated and show departures

from Gaussianity.

We used the R package fastICA to run ICA on a single matrix of data consisting of the

concatenated normalized expression data from all 3 tissues. Only 618 out of 845 individuals

had expression data on all 3 tissues, so this matrix had 618 rows and 3×18409 columns. We

fit the maximum number of components possible (618). We selected the 200 components for

which the gene loadings had a kurtosis of greater than 3.5. For each of these components we

ran a GWAS against all SNPs using the component individual scores vectors as a phenotype.

We found 26 had a SNP with a significant association (p < 1× 10−10). We applied the

method suggested in Rotival et al. (2011) (that uses the R package fdrtool to identify which

genes from the gene loadings are significant at an FDR of 1 × 10−3. The majority of the

components contained a significant peak of association at genes near the associated SNP

(suggesting a cis eQTL) but the fdrtool method identified genes throughout the genome

(in our opinion spuriously). To further examine this we produced plots of the marginal

association of the lead SNP with all 18,409 genes for a subset of the components that

looked most like plausible trans effects. In almost all cases there was no significant evidence

that the genes identified were associated marginally with the SNP. The exception was a

component which identified the SNP underlying the KLF14 trans eQTL network. None of

the components identified using this ICA approach overlapped with the components we find

and show in Figure 2-6 of the main paper.

We repeated the analysis with data in a single tissue (LCLs) with qualitatively similar

results. Due to the considerable amount of material already reported in the Supplementary

material we have not included these results.

In addition, we found several papers that advise against simple concatenation of datasets

like this (Groves et al., 2011; Lian et al., 2015; Shen et al., 2013; Virtanen et al., 2012).
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We also applied PCA to the concatenated data and the LCLs data only (also at the

suggestion of a reviewer). The gene loadings of all the components we looked at were not

sparse and none of the components were associated with any SNPs at p < 1× 10−10 (data

not shown).

2.6 Run with the highest negeative free energy run

In addition to clustering results of SDA from across 10 runs, we also investigated the run that

produced the highest value for the negative free energy. This run produced 944 components

(after removing components that shrink to zero) (Supplementary Data Set), of which 51

showed significant genetic associations (p-value< 1 × 10−10); 39 of these showed clear cis

effects (see Table 2 for a summary of these components). Although we identify components

in many of the 10 runs associated with a SNP in the KLF14 gene, these components do not

cluster well and this signal is not represented in our set of 236 robust components. Dense

factors such as these can suffer from non-identifiability due to rotational invariance (Fokoue

(2004)) this may also explain why the signal is split across several components within one

run; however this does not matter if our aim is to identify possible trans SNPs for further

investigation.

Tissue activation pattern
Row totals

A L S AL AS LS ALS

# Components 188 273 203 24 140 15 101 944

SNP (1× 10−10)
cis 0 1 0 1 1 0 36 39

trans 3 2 0 0 0 1 6 12

Phenotype (1× 10−6) 52 0 21 0 17 0 1 91

Sequencing (1× 10−6) 88 121 103 6 45 5 16 384

GO term (1× 10−6) 145 219 144 11 91 9 36 655

Table 2: Summary of 944 components from the model run with the largest negative free
energy. Components are categorized according to which set of tissues they are active in (A
: Adipose L : LCLs, S : Skin) using a threshold of 0.02 on the tissue scores matrix. The
first row of data gives the number of components with each activation pattern; subsequent
rows summarize the number of component associated with SNPs, phenotypes, batch
variables and enriched for GO terms (with significance levels given in brackets).
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3 Trans eQTL simulations

This section describes details of a simulation study that evaluates whether our method

has the power to find trans effects in gene expression data. The simulated data consisted of

genotypes and gene expression data in several tissues, containing a variety of signals including

trans effects, cis effects and confounding factors. The tensor decomposition version of SDA

was compared to individual matrix decompositions which analysed data for each tissue

independently. In addition, to test robustness to missing data, the tensor decomposition

was run with a subset of the samples hidden.

3.1 Data simulation

Simulated data consisted of genotype and gene expression data for N = 700 related indi-

viduals (150 monozygotic twin pairs, 150 dizygotic twin pairs and 100 singletons). Gene

expression data was simulated at L = 2, 500 genes in T = 3 tissues and contained both non-

genetic signals (noise and confounding factors) and genetic signals (cis and trans effects).

It was assumed that each gene contained only one SNP; this simplified case is equivalent to

assuming that there is at most one cis eQTL for each gene.

3.1.1 Genotypes

Of the L = 2, 500 SNPs simulated, Ccis = 500 (20%) were randomly selected to be cis

eQTLs. A cis eQTL partially determined the expression of its nearby gene. A subset of

the cis eQTLs were additionally assumed to be trans eQTLs. Trans eQTLs were not only

associated with a nearby gene (via a cis effect) but also multiple other genes, creating a

trans network.

Let G ∈ RN×L be the matrix of simulated genotype data. Genotypes were simulated

under the Hardy-Weinberg equilibrium with a minor allele frequency (MAF) drawn uni-

formly from [0.05, 0.5] (unless the SNP was also a trans eQTL in which case MAF = 0.3).

Monozygotic twins shared all their genetic material and dizygotic twins shared half of their

genetic material. All SNPs were sampled independently.

3.1.2 Gene expression

The simulated gene expression data (YN×L×T ) consisted of noise, confounding factors, cis

and trans effects. The vector of expression levels for gene l in tissue t is denoted ylt. The data

was simulated in stages, noise, confounding factors and cis effects were generated initially.

These three signals were then combined, and trans effects incorporated.

Noise: A heteroscedastic model was used to simulate noise,

ynoise
lt ∼ N (0, λ−1

lt ),
√
λ−1
lt ∼ G(100, 0.01). (38)

The standard deviation of the noise
√
λ−1
lt was drawn from a Gamma distribution with mean

1 and low variance (note that λlt is the noise precision for gene l in tissue t).
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Confounding factors: Ccf = 10 independent confounding factors were simulated as fol-

lows,

ycf
lt =

Ccf=10∑
c=1

acbtcxcl for l ∈ {1, . . . , L}, t ∈ {1, 2, 3}

ac ∼ NN (ac|0, IN ), |btc| ∼ G(100, 0.01), xcl ∼ 0.5N (xcl|0, 0.1) + 0.5δ0(xcl) (39)

where the sign of btc was randomly selected. Note that the confounding factors were simu-

lated under the PARAFAC model with a sparsity level of 50%.

Cis effects: Let gl ∈ RN be the vector of simulated genotypes for SNP l. Supposing that

SNP l was a cis eQTL, then its contribution to the expression of gene l was given by

ycis
lt = α̂lα̃tgl, (40)

where |α̂l| = φcisl

α̃t = 1
if SNP l also acted as a trans eQTL

|α̂l| ∼ G(4, 0.1)

α̃t ∼ Bernoulli(0.5)
otherwise.

(41)

α̂l can be thought of as an effect size (the effect direction is random) and α̃t as a binary

value indicating whether the cis effect was active in tissue t. A different effect size was used

depending on whether the eQTL was also a trans eQTL or not; this is discussed more later.

A cis effect was active in a particular tissue with probability 0.5, (unless the eQTL was also

a trans eQTL, in which case it was active in every tissue, although it did not necessarily

target downstream genes in every tissue). ycis
lt was set to zero if SNP l was not a cis eQTL.

Combining noise, confounding factors and cis effects: Simulated noise, confounding

factors and cis effects were combined additively to get a temporary set of expression levels

for a gene l in tissue t,

ytmp
lt = ynoise

lt + ycf
lt + ycis

lt . (42)

Trans effects: Finally, trans effects were simulated. Trans associations between SNPs

and distant genes were created as follows; the trans SNP regulated a nearby gene (via a cis

effect). It was further assumed that this gene was a transcription factor (abbreviated as

TF) and regulated multiple downstream genes (called target genes). Importantly, the trans

eQTL was only indirectly associated with the target genes.

Data sets were simulated to contain 20 trans effects. The number of target genes in the

trans networks (Mtrans) varied, and target genes were selected at random. (For simplicity,

a gene acting as a TF in a trans effect could not additionally be involved in another trans

effect, however any of the other genes – including those regulated by a regular cis eQTL –

could be regulated by any number of TFs.) Trans effects were active in one, two or three

tissues. If the trans effect was active in several tissues, the same network of genes was

regulated in each tissue.
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Let l be a gene, and Sl be the set of TFs that regulate it. Trans effects were simulated

as follows,

ytranslt =
∑
j∈Sl

β̂lj β̃tjy
tmp
jt

|β̂lj | ∼ G(ψtrans, 0.02) (43)

where β̂l was the relative effect of TF j on gene l (with a random effect direction). β̂tj was

equal to 1 if the TF j was active in tissue t and 0 otherwise. In order to investigate a variety

of scenarios, of the 20 trans effects simulated, 12 were active in just one tissue, 4 were active

in 2 tissues and the remaining 4 were active in all tissues. If l was not a target gene for any

of the 20 TFs (i.e. Sl was the empty set) then ytrans
lt = 0.

Selecting parameters for the trans effects: Three parameters determine the strength

of a simulated trans effect: the effect of the cis eQTL on the TF (φcis); the effect of the

TF on the target genes (determined by ψtrans) and the number of target genes (Mtrans).

In order to make the data as realistic as possible, these parameters were selected so that

signal strengths were similar to those seen in real data sets. The real trans signal used as a

reference was the KLF14 trans signal (Small et al., 2011).

KLF14 is a gene on chromosome 7 that encodes for a transcription factor. There is a

group of highly correlated SNPs just upstream of the KLF14 gene that are associated with

its expression levels. Small et al., 2011 regressed gene expression levels across the whole

genome against one of these SNPs (rs4737102) and found an enrichment of low p-values

suggesting that KLF14 regulates multiple genes across the genome.

For half of the trans effects, φtrans and ψtrans were selected to match the effect sizes seen

in the KLF14 trans signal. The remaining 10 trans effects were weaker, for these signals,

values of the parameters were halved. Trans effects had either 150 or 75 target genes (6% or

3% of all genes). Supplementary Table ?? gives a summary of the trans effects simulated.

Index φcis φtrans Mtrans

1-5* 0.6 20 150

6-10** 0.3 10 150

11-15* 0.6 20 75

16-20** 0.3 10 75

Table 3: Summary of the parameters used to simulate trans effects. Trans effects were
grouped into sets of 5 according to their signal strength. ∗ indicates signal strength match
the KLF14 trans signal and ∗∗ indicate weaker signals. Within the groups they were
further split according to their activity in different tissues; 3 were active in just one tissue,
1 was active in 2 tissues and 1 was active in all three tissues.

Combining all of the data: Finally, the contribution from the trans effects was incorpo-

rated to create a final set of simulated expression levels,

yfinal
nl = ytmp

nl + ytrans
nl . (44)

A summary of the simulation parameters are given in Supplementary Table 4. A total of 50

data sets were simulated.
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Parameter Value Description

T 3 Number of tissues

N 700 Number of individuals

L 2,500 Number of genes

Ccf 10 Number of confounding factors

Ccis 500 Number of cis effects

Ctrans 20 Number of trans effects

Table 4: Simulation parameters.

3.2 Details of methods compared

Several different versions of SDA were run, see summary in Supplementary Table 5. The

tensor decomposition was run with a Gaussian prior on the individual scores matrix (denoted

TG) and also kinship-informed prior on the individual scores matrix (TK) (see details in

section 1.11). In addition, individual matrix decompositions of each tissues were performed,

using SDA with T = 1.

Performance in the presence of missing samples was also tested. Up to 2 samples were

removed for each individual at random such that only 75% of the data remained. Two

versions of SDA were run in this scenario (i) the extension to deal with missing samples

given in section 1.10, which essentially ignores the missing data, and (ii) a naive approach

that removes any individual with missing samples, then runs a tensor decomposition on the

remaining data. On average, only 350 individuals had complete data. For both of these

methods, a Gaussian prior was used for the individual scores matrix. These two approaches,

(i) and (ii), are denoted T iG and T rG respectively.

All methods were run with the initial number of components set to 100; this was a

sufficient number for all the models to recover the trans effects and confounding factors.

It was not expected that the methods pick up all the cis eQTLs. Hyperparameters (see

section 1.5) were chosen to be uninformative. All methods were run 10 times with different

initialisations and for 1,000 iterations.

3.3 Post-processing and metrics

In these simulations, the aim was to investigate recovery of the underlying signals in the

data. Several metrics were utilised to evaluate recovery of the confounding factors and trans

effects. For the trans effects, both the recovery of the causal SNP and also the set of target

genes were evaluated.

Although variational Bayes is a deterministic algorithm, there is no guarantee that dif-

ferent initialisations will result in the same set of component estimates. The negative free

energy can be used to select the ‘best’ run. An alternative approach detailed in the online

methods combines component estimates from across multiple runs. The idea is to average

similar components from across multiple runs of the method to get a set of ‘robust’ com-

ponents. For these simulations, a correlation threshold of 0.5 was used to terminate the

clustering algorithm. Only clusters containing 5 or more components were used in further

analysis.

The following performance metrics were applied to the component estimates from the
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Method Description

Complete
data

TG
Tensor decomposition with a Gaussian prior on the

individual scores matrix.

TK
Tensor decomposition with a mixture of the Kinship

matrix and identity as the prior on the individual scores
matrix (see section 1.11).

MG

Matrix decompositions on data for each tissue
separately. Gaussian prior on the individual scores

matrices.

Missing
data

T iG
Missing samples are ignored in the model likelihood (see

section 1.10.1).

T rG
Individuals with any missing data were removed to get a

set of individuals with complete data.

Table 5: Different versions of SDA run on simulated data.

‘best’ run based on negative free energy values and the averaged component estimates from

the clustering approach.

3.3.1 Confounding factors

To assess whether the models recovered the confounding factors, a search was performed to

find the set of estimated components that best explain the true confounding. This was per-

formed by maximising the absolute correlation between the truth and estimated individual

component scores (via a greedy algorithm), resulting in a set of 10 estimated components

that looked most like the true confounding factors. Recovery was then evaluated by calcu-

lating the average absolute correlation between estimated individual scores vectors and the

truth.

3.3.2 GWAS

As with the real data, each individual scores vector was treated as a phenotype and a genome-

wide scan for association was performed. If a SNP simulated was significant;y associated

with a component trans (using a p-value threshold of 2 × 10−7), then the trans signal was

said to be ‘recovered’.

The fraction of each type of trans effect recovered for each type (across 50 simulated

data sets). Results for the matrix model are averaged across the three tissues, taking into

account the fact that the signal may not exist in all three data types.

3.3.3 Power to detect regulated genes

Once a component has been identified as describing a trans effect (based on a GWAS signal

at a trans eQTL), the component was further investigated to evaluate whether the correct

set of target genes had been recovered. Power and false positive rates (FPR) were used to

compare the genes in the component, those with PIPs>0.5, with the true set of target genes.
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Supplementary Figure 40: Average correlation between components describing
confounding factors and the truth. Boxplots summarise results across 50 simulated data
sets for each method.

For a trans effect with vector of PIPs given by ŝ, power and FPR are defined as

Power =

∑
l I(s̃l = 1, ŝl > 0.5)∑

l I(s̃l = 1)
(45)

FPR =

∑
l I(s̃l = 0, ŝl > 0.5)∑

l I(s̃l = 0)
(46)

where s̃ is a binary vector of length L such that s̃l = 1 if gene l is a target gene and 0

otherwise. I is an indicator function. Results for the matrix decompositions were averaged,

taking into account the number of tissues each trans effect was active in.

3.3.4 Combining factors

In some situations, a single trans effect, active in multiple tissues, was modelled by several

components. This occurs because – although the simulated trans effects act on the same set

of target genes in each tissue – the contribution to the expression of the target genes varies.

It is easy to see why this happens by considering the expression of the TF in each tissue.

Expression of the TF depends on the genotype (an effect which is shared across tissues),

and two tissue independent effects; confounding factors and noise. When these latter two

effects are large, the expression of the TF is largely uncorrelated across tissues and its effect

on the target genes across tissues will differ. If this is the case, the model treats trans effect

as a different signal in each tissue resulting in them being picked up by several components.

When this happens, these components were combined by averaging the scores and loadings.

3.3.5 Results

Supplementary Figure 40 shows the average correlation between the true and estimates

component scores recovering confounding factors. The boxplots summarise results from
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Mtrans #tiss
Best free energy Clustering

TG TK MG TG TK MG

150

1 0.40 0.39 0.37 0.39 0.39 0.37

2 0.82 0.82 0.36 0.82 0.84 0.39

3 0.92 0.94 0.35 0.96 0.96 0.34

75

1 0.34 0.31 0.41 0.43 0.44 0.42

2 0.70 0.78 0.39 0.80 0.76 0.39

3 0.90 0.94 0.41 0.98 0.94 0.43

Table 6: Fraction of trans effects recovered. Only results for trans signals of strength half
that of the KLF14 trans signal shown. TG performs a tensor decomposition with a
Gaussian prior on the scores matrix, TK performs a tensor decomposition with
kinship-informed prior on the scores matrix and MG performs matrix decompositions on
data from each tissue with Gaussian priors on the scores matrices. The best result in each
row is highlighted in red. Results averaged across 50 data sets with no missing samples.

across 50 data sets. As expected, the joint analysis via a tensor decomposition (TG and TK)

outperforms an analysis of each tissue separately (MG). Even when data is missing (T iG and

T rG), confounding factor recovery is good.

Supplementary Table 6 summarises results of trans effect recovery for trans signals with

signal strength half that of the KLF14 signal. The recovery of trans effects with signal

strengths similar to the KLF14 signal is almost perfect (data not shown). Supplementary

Table 6 gives the fraction of each type of trans effect recovered (over 50 data sets). Trans

effects in single tissues were harder to recover than trans effects in multiple tissues, and for

these signals, performance of the tensor and matrix approaches were comparable. For the

trans effects active in two or three tissues, the tensor approaches performed considerably

better than the matrix decomposition. The is likely a result of the tensor decomposition

pooling information from across multiple tissues, and also better explaining confounding.

A comparison of the tensor decomposition with different priors on the individual scores

matrix (TG and TK) show no obvious difference. With high levels of noise and confounding

in the data, in is unclear how heritable the trans signal actually are. In these simulations,

the mixture prior recovers the underlying signals in the data only slightly better than the

Gaussian prior, showing the Gaussian prior is surprisingly flexible.

The clustering approach to combine results across multiple runs slightly outperformed

the results for the highest free energy run.

Conditional on trans effects being recovered by the models, the power to find the target

genes involved is given in Supplementary Table 7. Again, only results for signals with half

the signal strength of the KLF14 trans signal are presented. Power to recover target genes is

consistently high, and appears fairly independent of the number of target genes (Mtrans) and

activity of the trans effect across tissues. The tensor decomposition results in a higher power

to find trans effects compared to the matrix decompositions. Clustering does not appear to

have any benefits over the highest free energy run in terms of power. False positive rates

were consistently below 0.5% for all methods (data not shown).

The performance of SDA when the data contained missing samples was also investigated.

T iG incorporates information from individuals with incomplete data whereas T rG removes

individuals with any missing data before running a tensor decomposition. On average, after
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Mtrans #tiss
Best free energy Clustering

TG TK MG TG TK MG

150

1 0.84(0.04) 0.85(0.04) 0.68(0.18) 0.85(0.03) 0.85(0.03) 0.66(0.15)

2 0.84(0.03) 0.83(0.07) 0.71(0.15) 0.84(0.04) 0.84(0.04) 0.59(0.22)

3 0.83(0.06) 0.85(0.04) 0.64(0.19) 0.85(0.04) 0.85(0.04) 0.62(0.20)

75

1 0.78(0.10) 0.77(0.11) 0.71(0.13) 0.77(0.06) 0.77(0.10) 0.70(0.12)

2 0.80(0.10) 0.80(0.09) 0.67(0.16) 0.80(0.06) 0.80(0.07) 0.68(0.17)

3 0.82(0.05) 0.82(0.06) 0.71(0.13) 0.83(0.05) 0.83(0.05) 0.69(0.13)

Table 7: Power to find target genes in trans effects, conditional on the trans eQTL being
recovered. Only results for trans signals of strength half that of the KLF14 trans signal
shown. TG performs a tensor decomposition with a Gaussian prior on the scores matrix,
TK performs a tensor decomposition with kinship-informed prior on the scores matrix and
MG performs matrix decompositions on data from each tissue with Gaussian priors on the
scores matrices. Results averaged across 50 data sets with no missing samples. The best
result in each row is highlighted in red.

Mtrans #tiss
Clustering

T iG T rG

150

1 0.21 0.05

2 0.58 0.28

3 0.78 0.54

75

1 0.20 0.01

2 0.56 0.14

3 0.80 0.38

Table 8: Fraction of trans effects recovered. Results averaged across 50 data sets in which
25% of samples were missing. Two approaches are compared in this table, T iG ignores the
missing samples using the approach from section 1.10.1 and T rG only uses data for
individuals with no missing samples. Only results for trans signals of strength half that of
the KLF14 trans signal shown.

removing individuals with any missingness, only 350 individuals remained. Not surprisingly,

T iG consistently outperformed T rG, recovering more trans effects, with a higher power to find

the target genes (see Supplementary Tables 8 and 9). In fact, the power to find target genes

using T iG is comparable to the matrix decomposition approach MG, on the complete data

set. These results show the benefits of a method that can deal with missing samples. Again,

false positive rates for these methods were very low (< 0.5%).
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Mtrans #tiss
Clustering

T iG T rG

150

1 0.78(0.04) 0.56(0.05)

2 0.69(0.13) 0.60(0.07)

3 0.71(0.07) 0.61(0.05)

75

1 0.68(0.09) 0.35(0.05)

2 0.67(0.11) 0.38(0.10)

3 0.68(0.11) 0.47(0.08)

Table 9: Power to find target genes in trans effects, conditional on the trans eQTL being
recovered. Only results for trans signals of strength half that of the KLF14 trans signal
shown. Two approaches are compared in this table, T iG ignores the missing samples using
the approach from section 1.10.1 and T rG only uses data for individuals with no missing
samples. Results averaged across 50 data sets in which 25% of samples were missing.
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4 Method comparisons

4.1 Comparison of tensor decompositions

We have compared our method to the Bayesian Matrix Tensor Factorisation (BMTF) ap-

proach, which is a linked decomposition of an arbitrary number of matrices and tensors

(Khan and Kaski, 2014; Khan et al., 2014). For the case of decomposing a single 3D array

BMTF performs a PARAFAC decomposition (see Eqn 1), with a prior encouraging sparsity

on the loadings matrix given by,

xcl ∼ hcδ0 + (1− hc)N (xcl|0, α−1
cl ),

hc ∼ Bernoulli(πc). (47)

The spike and slab distribution in equation 47 has a mixing parameter, hc ∈ {0, 1}, which

determines the activity of each component. If hc = 0 then the whole component is shrunk to

zero; if hc = 1, then the prior on the loadings vector reduces to an element-wise ARD prior.

(In comparison, SDA uses a spike and slab distribution to obtain element-wise sparsity.)

BMTF places a Beta hyperprior on πc and a Gamma prior on the variance parameters

αcl. Standard normal priors are specified for the individual and tissue scores matrices.

A homogeneous Gaussian noise model is assumed such that εnlt ∼ N (0, σ2). Inference is

performed using Gibbs sampling. Code for BMTF written in R can be downloaded from

http://research.cs.aalto.fi/pml/software/bmtf/.

4.1.1 Data simulation

Data was simulated under the PARAFAC model,

ynlt =

C=8∑
c=1

ancbtcxcl + εnlt (48)

with C = 8 components and dimensions N = 200 individuals, L = 500 genes and T = 3

tissues. Three components were simulated to be active in a single tissue, a further three

were active in 2 tissues and the remaining two components were active in all tissues. If a

component c was active in tissue t then btc was randomly sampled from {−1, 1}, otherwise,

btc was set to zero. An example data set showing the pattern of zeros in B is given in Figure

41.

The loadings vectors (rows of X) were simulated to be sparse, with an element set to

zero (with probability 1−p) or drawn from N (0, 1) (with probability p). The parameter p

determines the fraction of non-zero elements in X. This choice of distribution for the loading

vectors does favour SDA, as this is exactly the spike and slab that SDA fits. However, it is

also an obvious choice for simulating sparse vectors (e.g. Zhao et al., 2014). The individual

scores matrix A was drawn from N (0, 1). Finally, a homogeneous noise model was used,

with εnlt drawn from N (0, 10). SDA uses a more general non-homogeneous noise model, so

these simulations are closer to the assumptions of the BMTF approach. Nevertheless, SDA

still outperforms BMTF (see below).

Data sets with increasing levels of sparsity were simulated with 50 data sets generated

for each value of p ∈ {0.5, 0.4, 0.3, 0.2, 0.1}.
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Supplementary Figure 41: Example of a data set simulated under the PARAFAC
model with p = 0.1 (noise not shown).

4.1.2 Post-processing and metrics

For method ∈ {SDA,BMTF}, denote the estimated individual scores matrix, tissue scores

matrix and loadings matrix by Amethod, Bmethod and Xmethod respectively. The true set of

scores and loadings matrices are given by Atruth, Btruth and Xtruth.

Number of estimated components: Both methods can automatically shrink compo-

nents to zero to estimate the true number of underlying components, i.e. perform model

selection. Both methods were initialised with 16 components and the number of estimated

components recorded to compare performance.

A set of 8 estimated components is required for the following post-processing steps. If

more than 8 components were estimated, extra components were removed to leave the set

most correlated with the true individual scores. If fewer than 8 components were estimated,

then additional components consisting of all zeros were used to make up the difference.

Permutation indeterminacy: Both models have a scaling and permutation indetermi-

nacy. This means that the estimated components will not necessarily be in the same order

as the true components, and a direct comparison can not be made. An exhaustive search

was performed to find the permutation of the estimated components which best matched the

truth. The optimal permutation was selected to maximise the average (absolute) correlation

between the true and estimated individual scores vectors. Once the optimal permutation

was recovered, the signs of the estimated components were flipped (if necessary) so that

correlations were positive. Correlations involving zero components were taken to be 0.

Root mean squared error (RMSE): Root mean squared error (RMSE) was used to

evaluate similarity between the true and estimated individual scores vectors. In addition

to the optimal permutation, RMSE requires that vectors be on the same scale. Scaling

was performed so that the estimated and true scores vectors both had unit variance. RMSE

between the true and estimated scores matrices (after a permutation and scaling) was defined

as

RMSE =
√

mean
(
(Atruth −Amethod)2

)
. (49)
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Sparse stability index (SSI): In some cases, if the set of estimated components is very

poor, it can be hard to find the best permutation. The sparse stability index (SSI) is

invariant to scaling and permutation (Gao et al., 2013).

Let Σ ∈ RC×C be a matrix such that Σck is the absolute correlation between the cth

true individual scores vector and the kth estimated individual scores vector. Additionally

let sr ∈ RC and sc ∈ RC be row and column means of Σ respectively. The sparse stability

index is defined as

SSI =
1

2C

C∑
i=1

[
max

(
Σi·
)
−
∑C
j=1 1

(
Σi,j > sri

)
Σij

C − 1

]

+
1

2C

C∑
j=1

[
max

(
Σ·j
)
−
∑C
i=1 1

(
Σi,j > sci

)
Σij

C − 1

]
, (50)

where 1(·) is an indicator function; it takes a value of 1 if the condition in the brackets is

true and a value of zero otherwise.

Equation 50 penalises cases in which there is more than one large number in each row

or column of Σ. This occurs if one of the true components is split across two components

in the estimated set. The metric also penalises the case where there are no large numbers

in a row or column. This arises if the estimated set of components misses one of the true

components, or, if the estimated set contains a component that does not exist in the true

components. A higher SSI implies a better correspondence between the two input matrices.

Receiver operating characteristic (ROC curve) Finally, the two methods were com-

pared by evaluating recovery of the correct set of non-zero elements in the loadings matrix.

Neither SDA not BMTF produce exact sparsity. For SDA, posterior inclusion probabilities

(PIPs) were used to threshold XSDA to create a set of genes with non-zero loadings. PIPs

tended to be at the extremes of the set [0, 1], i.e. either close to 0 or close to 1. A threshold

of 0.5 was used, but any threshold in (0.1, 0.9) gave very similar results. It is less clear how

to threshold the estimates for BMTF as different thresholds on XBMTF give rise to very

different levels of sparsity. Rather then selecting an arbitrary threshold, a wide range of

thresholds were tried, varying between the extreme cases of all zeros to no zeros in XBMTF .

For each threshold, power and false positive rates (FPR) were calculated, and plotted to

create an ROC curve. Power and FPR point estimates for SDA were also evaluated.

Power and false positive rates (FPR) were calculated as follows,

Power =

∑C
c=1

∑3L
l=1 1

(
X̂method
cl 6= 0 and X̂truth

cl 6= 0
)∑C

c=1

∑3L
l=1 1

(
X̂truth
cl 6= 0

)
,

(51)

FPR =

∑C
c=1

∑3L
l=1 1

(
X̂method
cl 6= 0 and X̂truth

cl = 0
)∑C

c=1

∑3L
l=1 1

(
X̂truth
cl 6= 0

)
.

(52)

A summary of the metrics used is give in Table 10.

4.1.3 Run settings

Both methods were initialised with 16 components, double the true number of components.

BMTF was run using the default settings and the posterior mean used as a point estimate.

SDA was run using settings given in 1.8. SDA was run 10 times and the set of estimates

with the highest negative free energy selected.
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Metric Description

Number of components
estimated

Evaluates model selection.

Root mean squared error
(RMSE) for individual scores

matrices

Measures the absolute difference between true and
estimated matrices. Requires permutation and

scaling of estimated components.

Sparse stability index (SSI)
for individual scores matrices

Measure of how similar two component sets are.
Invariant to permutations and scalings.

ROC curve (power and
false positive rate)

Evaluates recovery of sparsity in loadings matrices.
Requires a permutation of the estimated

components.

Table 10: Summary of metrics used for method comparison.

4.1.4 Results

p
Number of estimated components

1 2 3 4 5 6 7 8 9 10 11

SDA

0.5 21 19 8 2
0.4 38 9 3
0.3 47 3
0.2 46 4
0.1 5 28 13 4

BMTF

0.5 50
0.4 1 1 2 1 3 42
0.3 9 10 4 6 6 15
0.2 1 36 9 3 1
0.1 3 8 32 7

Table 11: Frequency table showing the number of component recovered by SDA and
BMTF across 50 data sets; the true number of components is 8. p determines the sparsity
of the true components; sparsity increases as p decreases.

Table 11 is a frequency table showing the number of components estimated by each

method across 50 data sets. The behaviour of the two methods changes as the sparsity

levels increase. When the simulated data set contains dense components (p = 0.5), SDA

often overestimates the number of components. This is presumably a unwanted effect of

adding an extra level of hierarchy into the spike and slab, making it harder to remove

components. The performance of SDA improves as the sparsity increases however, with

the correct number of component being estimated more often. For high sparsity (p= 0.1),

the performance starts to decrease again with too few components being estimated. This

is unsurprising as the signal-to-noise ratios are decreasing with increasing sparsity. BMTF

accurately estimates the number of components 100% of the time when the components are

dense (p = 0.5). However, for sparser components, this approach tends to underestimate

the number of components. This may be a result of the component-level spike and slab

removing components too aggressively.

Figure 14 shows the RMSE for estimated sets of individual scores. Each boxplot sum-

marises results from across 50 data sets. As the sparsity increases, the performance of both

models decay, but SDA performs substantially better at low levels of sparsity. The multi-
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Figure 14: Root mean squared error for individual scores matrices. Sparsity increases
from left to right. Boxplots summarise results for 50 data sets.
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Figure 15: Sparse stability index (SSI) for individual scores matrices. Sparsity increases
from left to right. Boxplots summarise results for 50 data sets.
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Figure 16: ROC curve for recovery of non-zero elements in the loadings matrices.
Sparsity increases from left to right. Blue lines show power and false positive rates for
different thresholds on the estimated loadings from BMTF.
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modal distribution appearing in some of the boxplots is caused by underestimation of the

number of components. BMTF performs less well at higher sparsity levels because of this.

SSI shows a similar pattern of behaviour to RMSE (see Figure 15).

The power and FPRs for recovery of non-zero elements in the estimated loadings matrices

are shown in Figure 16. The spike and slab distribution used in SDA appears to perform

better at feature selection than the ARD prior used in BMTF.

4.2 Comparison of group decompositions

As described in section 1.12 our more general method can carry out group factor analysis.

We compared this version of SDA with three other methods from the literature, BGFA

(Zhao et al., 2014), CCAGFA (Klami et al., 2014a), and iClusterPlus (Mo et al., 2013). All

four methods are based on group factor analysis,

y
(d)
nl =

C∑
c=1

ancx
(d)
cl + ε

(d)
nl (53)

for data Y (d) ∈ RN×Ld . Equation (53) decomposes several linked matrices to uncover

individual and shared structure. The methods differ in the assumptions they make on the

loadings matrices, noise and the inference scheme.

4.2.1 Method descriptions

BGFA: Bayesian Group Factor Analysis (BGFA) (Zhao et al., 2014) employs a three-

parameter beta prior to encourage sparsity in the loadings matrices (Armagan et al., 2011;

Gao et al., 2013). Briefly, this distribution extends the Beta distribution, adding another

parameter to allow it to model a wider range of densities. The BGFA formulation explicitly

shrinks globally, at a factor level and at an element level in the loadings matrix,

x
(d)
cl ∼ N (0, θ

(d)
cl ),

θ
(d)
cl ∼ π

(d)G(g, δ
(d)
cl ) + (1− π(d))δ(θcl),

π(d) ∼ Beta(1, 1). (54)

π(d) defines global shrinkage, if θ
(d)
cl takes a very small value, then x

(d)
cl will also be small.

Heteroscedastic noise is assumed in this model.

Inference for this model has two steps. First, a Gibbs sampler is run to find a good set of

initial estimates. These are then used as input for a variational expectation maximization

algorithm which finds maximum a posteriori estimates. The code is available for download

from http://beehive.cs.princeton.edu/software/.

CCAGFA: CCAGFA is an R package1 that implements several different models (canon-

ical correlation analysis and group factor analysis) described in Klami et al. (2014a,b) and

Virtanen et al. (2011, 2012). The method used here is group factor analysis from (Klami

et al., 2014a), referred to as CCAGFA from now on.

CCAGFA places an ARD prior on the loadings matrices to encourage sparsity,

x
(d)
cl ∼ N (0, (α(d)

c )−1) (55)

1http://cran.r-project.org/web/packages/CCAGFA/
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A noise model, E(d) ∼ N (e(d)|0, (τ (d))−1), with a different precision variable for each data

type is employed. Inference is performed using variational Bayes. Note that CCAGFA is

similar to BMFT with the use of an ARD prior, although CCAGFA learns one precision

variable per component, not per element. Also, CCAGFA does not use a spike and slab

prior to switch off components, however components can be shrunk to zero if the component

precision grows very large.

iClusterPlus: iClusterPlus is a method for joint clustering of multidimensional data (Mo

et al., 2013; Shen et al., 2009, 2013). The approach performs several generalised linear

regressions, with latent variables zn common to all regressions. The framework explicitly

allows for binary, categorical and continuous input data types by modelling the data with

Binomial, multinomial, and Gaussian random variables respectively. When the input data

is continuous, as in these simulations, the model is,

y
(d)
nl ∼ N (y

(d)
nl |znβ

(d)
l , (σ

(d)
l )2), (56)

zn ∼ N (0, 1), (57)

assuming the data has zero mean. A lasso penalty is placed on the loadings vectors, with

tuning parameters γ, (γ can also be data type specific), to give the following penalised

likelihood,

max
β

(d)
l

l(ynlt, zn;βl)−
∑
d

γ||β(d)
l ||1. (58)

Penalised likelihood estimation is performed using a Monte-Carlo Newton-Raphson al-

gorithm. iClusterPlus can be thought of as a non-Bayesian version of group factor analysis.

Regression coefficients βl and latent variables zn, have a similar interpretation to the gene

loadings and individual scores in equation 53 respectively. iClusterPlus is available as an R

package2.

Table 12 summarises the differences between these methods.

Model Sparsity Inference

SDA Spike and slab prior Variational Bayes

CCAGFA ARD prior Variational Bayes

BGFA Three parameter Beta prior
Gibbs sampling then variational

expectation maximisation

iClusterPlus Lasso penalty Monte-Carlo Newton-Raphson

Table 12: Summary of the main features of the methods being compared.

4.2.2 Data simulation

Data was simulated for D = 3 data types and N = 200 individuals; each data type consisted

of L=500 variables. Data was generated under the group factor analysis model as a linear

combination of C = 8 underlying components and additive noise as in equation (53).

2https://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
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Of the 8 components simulated, three were active in just one data type, a further three

were active in two of the data types and the remaining two were active in all three data

types. (A component is said to be ‘active’ in a data type if it contributes to the variance in

that data matrix.) Figure 17 summarises the component activity patterns. If a component

was not active in a particular data type, then the relevant row of the loadings matrix was

set to zero. For components which were active, their loadings vectors were sparse, with 90%

of the elements equal to 0. The non-zero elements were drawn from N (0, 1).

1 2 3 4 5 6 7 8

Data set 1

Data set 2

Data set 3

Component index

Not active
Active

Figure 17: Patten of component activity across data types.

Elements in the individual scores matrix A were also drawn from N (0, 1). Finally, a

homoscedastic noise model with precision λ was used, i.e. ε
(d)
nl ∼ N (0, λ−1) for d ∈ {1, 2, 3}.

In order to evaluate the performance of the methods at different signal-to-noise levels, data

was simulated with three different values of λ, (0.1, 0.2 and 0.3).

For each of the three noise levels, 50 data sets were simulated. Signal-to-noise ratios for

each data set were calculated as follows,

SNR =

∑
d trace

(
(AX(d))(AX(d))t

)∑
d trace(E(d)E(d)t)

. (59)

Values of λ = 0.3, 0.2 and 0.1 corresponded to signal-to-noise ratios (averaged over 50 data

sets) of 0.15, 0.1 and 0.05 respectively.

4.2.3 Run settings

All methods can estimate the number of underlying components in the data, however for

simplicity, the models were initialised using the true number of components. If fewer than

8 components were estimated, then components consisting of zeros were added to make up

the difference.

Default parameter settings for BGFA, CCAGFA and iClusterPlus were used. SDA was

run using parameter settings as described in previous sections. SDA, BGFA and CCAGFA

were all run 10 times and the set of estimates that resulted in the largest value of the negative

free energy selected. Posterior means were used as point estimates for SDA and CCAGFA.

BGFA evaluates a maximum a posteriori estimate.

The iClusterPlus algorithm requires selection of a tuning parameter (γ) which deter-

mines the sparsity of the resulting components. Rather than selecting a single value for γ,

iClusterPlus was run 20 times with different values for γ in [0, 1]. This range covered the

extreme cases of complete sparsity to very dense. As this procedure was slow, results for

iClusterPlus were only performed for one noise level, λ = 0.1.
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Figure 18: Root mean squared error (RMSE) for recovered individual scores matrices.
Boxplots summarise results from across 50 data sets. Noise levels in the simulated data
sets increase from left to right.

4.2.4 Post-processing and metrics

Estimated and true loadings matrices were concatenated to create matrices of dimensions C

by 3L, then the post-processing steps described in section 4.1.2 were used. Sparse estimates

for SDA were obtained by thresholding PIPs at 0.5. BGFA generated sparse loadings so no

thresholding was required. CCAGFA does not give exact sparsity so a sequence of thresholds

was used to create ROC curves (as for BMTF in the previous simulations). iClusterPlus

gives sparse estimates; power and FPRs were calculated for each value of γ and plotted to

create an ROC curve. For RMSE and SSI statistics, the value of γ that resulted in a FPR

of 0.01 was used.

4.2.5 Results

Figures 18 and 19 show RMSE and SSI for the estimated individual scores matrices at 3

different noise levels. The multi-modal distribution seen in some of these boxplots is again

due to an incorrect number of components being recovered. RMSE and SSI degrade as the

noise levels increase, with SDA outperforming BGFA and CCAGFA. iClusterPlus does not

recover the individual scores matrix as well as the other approaches. However, it should be

noted that the tuning parameter was selected to optimise metrics on the loadings matrices

rather then individual scores matrix.

Power and FPRs for the recovery of non-zero elements in the loadings matrices are shown

in the ROC curves in Figure 20. SDA, CCAGFA and BGFA perform similarly although at

low levels of sparsity (λ = 0.1) it appears that SDA slightly outperforms the other methods.

BGFA appears to shrink aggressively, resulting in a very low FPRs at the expense of power.

SDA on the other hand shrinks slightly less strictly resulting in more power but higher

FPRs compared to BGFA. Performance of CCAGFA depends heavily on the threshold, but

performs well at some thresholds. iClusterPlus does not recover sparsity in the loading

matrices as well as the other methods.
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Figure 19: Sparse stability index (SS1) for recovered individual scores matrices. Boxplots
summarise results from across 50 data sets. Noise levels in the simulated data sets increase
from left to right.
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Figure 20: ROC curves for recovery of non-zero elements in the loadings matrices. Point
estimates for SDA obtained by thresholding the PIPs at 0.5. No thresholding was required
for BGFA as the raw estimates have exact sparsity. Results for CCAGFA were generated
using a range of thresholds on the same estimate set, resulting in an ROC curve. The ROC
curve for iClusterPlus was generated by running the method multiple times with different
tuning parameters. Noise levels in the simulated data sets increase from left to right. The
top and bottom rows of plots only differ in their x-axis range.
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