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SUPPLEMENTARY INFORMATION 

A. Kinetics of the BZ reaction in a polymer gel 

The kinetics of the BZ reaction is described by a modification of the Oregonator model [29], 

formulated in terms of the dimensionless concentrations of the key reaction intermediate u  

( 2OBrH , the activator), and the oxidized metal-ion catalyst v  (
3Ru  in the case considered 

here). The modified model [9,10] accounts for the dependence of the BZ reaction rates on the 

volume fraction of polymer  , and on the total concentration of catalyst grafted to the network. 

The reaction rates BZF  and BZG  in eqs. (1) and (2) are determined as follows 
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The reaction rates depend on the dimensionless concentrations of the reduced catalyst 
2Ru  and 

the radical 

2BrO  denoted by r  and w , respectively [S2]. The concentration r  is calculated as 

1

0Rur c v    , where Ruc  and 0  are the catalyst concentration and volume fraction of 

polymer in the undeformed gel, respectively. The concentration of the radical w  is found as 

2 1/2

BZ BZ BZ( 2 / )w r u r      , where BZ  is a dimensionless parameter [S2]. Finally, the 

stoichiometric factor f  and the dimensionless parameters q  and BZ  have the same meaning as 

in the original Oregonator model [29]. 

 

We assume that the chemical composition of the BZ substrate and the volume fraction of 

polymer in the undeformed gel are the same as used in the experiments described in ref. [10], so 



the corresponding dimensionless parameters are estimated to be 
BZ 0.212  , 51052.9 q , 

27 10   , and 
0 0.16  . The stoichiometric parameter f  and the catalyst content Ruc  are the 

adjustable parameters in the study, and we assume them to be 1f  and 3Ruc . 

 

B. Osmotic pressure of the polymer in a gel 

The osmotic pressure of the polymer in gel is calculated according to the Flory-Huggins theory 
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Here, ( )   describes the polymer-solvent interactions. It is calculated as ( ) 0.338 0.518     , 

which is known to describe the PNIPAAm-water interaction at C20  [30]. Equation (S3) does 

not include the interaction between the BZ catalyst and solvent; the latter is taken into account by 

the second term on the right-hand-side of eq. (3).  

 

C. Properties of a bending piezoelectric bimorph plate 

The coefficients 11m , 12m , and 22m  in eqs. (4) and (5) that describe the behavior of a bending 

piezoelectric bimorph plate are given by the following equations [14] 
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Here, pL , pw , and ph  are the respective length, width, and layer thickness of the piezoelectric 

bimorph plate; E , 31d , and 33  are the Young’s modulus, piezoelectric constant, and dielectric 



constant of the piezoelectric material, respectively. Finally, 2 1/2

31 33( / )k d E   is the 

electromechanical coupling factor characterizing the piezoelectric material.  

 

The piezoelectric bimorph plate dimensions are taken to be mm1 pp wL , and μm10ph . 

The plate is assumed to be fabricated from polarized Lead-Zirconate-Titanate (PZT) ceramics. A 

typical PZT ceramic has a Young’s modulus of 50E GPa; typical values for the other 

parameters are 
110

31 Vm105.1 d  and 3

33 01.8 10    , where 1

0 8.85pFm   is the 

dielectric constant of the vacuum [24]. In our calculations, we use the latter values of E  and 33 , 

and a twofold greater value for the piezoelectric constant (setting 
110

31 Vm103 d ), which 

can be achieved in PZT through sophisticated processing methods [25,26]. 

 

D. Procedure used to map phase dynamics to 0 0.5    

The phase of oscillation is defined as 0 1   . In order to plot the phase dynamics within the 

range ]5.0,0[ , the phase differences within the range ]1,5.0[ are mapped onto ]5.0,0[ , as if the 

entire plot is folded in half. The latter procedure is illustrated in the plot below:  



fig. S1. The phase differences plotted in the range (a) [0,1] and (b) [0, 0.5]. The BZ-PZ 

oscillators with the force polarity of 1  (white pixels in the stored image) are represented by the 

blue color, and the ones with force polarity of 1  (black pixels) are labeled with red. 

 

E. Stability of the synchronization mode 

In this section, we use the linear stability approach to show that the synchronization mode used 

for the pattern recognition is stable. We consider a system of n  serially connected BZ-PZ 

oscillator units; 1n  of these units have force polarities of +1 and the remaining 12 nnn   units 

have force polarities of 1 . The equation of phase dynamics, eq. (8), is invariant under a 

renumbering of the units so we assign the polarity 1  to the units 1,,2,1 ni  , and the polarity 

1  to the units nnnj ,,2,1 11  . The application of eq. (8) to the two groups of units gives 

the following equations of phase dynamics 
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We assume that upon synchronization, the oscillators are synchronized in-phase within each 

group, and that the difference in phase of oscillation between these two groups is  . By 
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substituting 
i t   and j t    to eqs. (S7) and (S8), we obtain the following equations 

for the constant shift in the frequency of oscillation   and the phase difference   that 

characterize the state of synchronization 
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Equation (S10) is written with taking into account that the connection function H( )  is periodic 

so H( ) H(1 )   . Subtraction of eq. (S10) from eq. (S9) yields the equation for the phase 

difference 
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fig. S2. The phase difference   between the two groups of oscillators obtained by 

numerical solution of eq. (S11) at 60n . 

 

The connection function H( )  is known (see Fig. 13) so the phase difference   can be found by 

numerical solution of eq. (S11). Figure S2 shows the calculated values of   as a function of 1n  

at 60n .  
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In order to study the stability of the synchronization state, we introduce the phase difference 

between the oscillator ni ,,2   and the oscillator 1, 1i k    , and use eqs. (S7) and (S8) to 

obtain the equations for 
i . For 1,,2 ni  , the equation is 
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and for nnnj ,,2,1 11  , the obtained equation is 
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Linearization of eqs. (S12) and (S13) around the steady state, 
i i i    , where 0i   for 

ni ,,2   and j    for nnnj ,,2,1 11  ,  yields the following two respective equations 

for the phase perturbations 
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In eqs. (S14) and (S15), cbaa ,,, 21  are the numerical coefficients defined as 
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                                                       2 2 1H (0) H (1 )a n n                                                      (S17) 

                                                            H (0) H (1 )b                                                            (S18) 

                                                              H (0) H ( )c                                                               (S19) 

where the prime denotes the derivative of the connection function H  with respect to phase. The 

synchronization state is stable if all the eigenvalues of the matrix M  
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are negative. The matrix M , eq. (S20), has a block structure, where 1A  is a )1()1( 11  nn  

diagonal matrix, ijij a δ][ 11 A , 2A  is a ( 22 nn  ) matrix with the elements ca ijij  δ][ 22A , 

B  is a )1( 12  nn  matrix with all elements equal to b , bij ][B , and 0  is a 21 )1( nn   block 

filled with zeroes.  

 

Due to the block structure of eq. (S20), the set of eigenvalues of the matrix M  consists of the 

eigenvalues of the matrices 1A  and 2A . The matrix 1A  is diagonal with all the elements equal 

to 1a ; hence, all the eigenvalues of 1A  are equal to 1a . The matrix 2A  is a circulant matrix. By 

definition [31], a ( nn ) matrix C  is circulant if each row is obtained by a cyclic shift to the 

right of the row above it 
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It is known that the eigenvalues j , nj ,,2,1  , of the matrix C  are [31] 
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where 1i  is the imaginary unit. Applying eq. (S21) to the matrix 2A , we conclude that it 

possesses two distinct eigenvalues equal to 2a  and cna 22  . During the calculations, it is taken 

into account that 

1

1

2
exp ( 1)( 1) δ

n

j

k

i
k j n

n

 
   

 
  



Thus, the matrix M  has the three distinct eigenvalues },,{ 2221 cnaaa  , which depend on the 

connection function H , the number of oscillators in the system n , and on the set of force 

polarities 1n  and 12 nnn  (see eqs. (S11), (S16), (S17), and (S19). Numerical calculations 

show that all the eigenvalues are negative at 60n  and 59,,2,11 n . Therefore, the 

synchronization mode used for the pattern recognition is stable. 

 

F. Complete set of results for Test 3 

In the paper, figs. 11 and 12 show the results of Test 3 for only the digitized images ‘1’, ‘3’, ‘5’, 

and ‘7’. Figures S3 and S4 present the complete set of results that includes the digitized images 

from ‘0’ to ‘9’. 

 

The decrease in the accuracy of the pattern recognition with an increase in the number of flipped 

pixels (i.e., noise) is less drastic if the number of pixels that are flipped between successive 

simulations is incremented by a small amount. In particular, in Fig. 11 and 12, the number of 

flipped bits between successive simulations is increased by five. Figure S5 shows the accuracy of 

recognizing the digit “7” when only one pixel is flipped in each subsequent simulation. Notably, 

the plot shows a smooth decrease in accuracy. 

 



 

fig. S3. The accuracies of the recognition test 3 for the input patterns of all 10 digits 

distorted with various levels of noise. The bars are colored according the noise level. The 

horizontal axis indicates the input patterns. 

fig. S4. The height of the bars represents the average convergence time difference between 

the winner and the runner-up in all the hit cases in test 3. The error bars show the standard 

deviation obtained for each bar. The results indicate how fast the correct, recognized winner 

leads the runner-up. Other notations are the same as in fig. S3. 



fig. S5. The accuracy in recognizing the digit “7” as a function of the number of flipped 

pixels in the case where 60 pixels are used to represent the digit. 

 

G. The effect of gel heterogeneities on synchronization  

Within our model for the BZ-PZ system, it is assumed that all the BZ-PZ units are chemically 

and physically identical. The effect of variations in the properties of the individual oscillators, 

however, can be estimated within the phase dynamics approach. Specifically, we consider a 

network of BZ-PZ units where the periods of the free-running oscillations vary around 0T  due to 

heterogeneities among the units. The dynamics of this system is described by the following 

generalization of eq. (8) 
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where 0TTT ii   is the detuning of oscillator i . 



We assume that the relative variation of the period of oscillation, 0/TT , is a uniformly 

distributed random value within the interval [ , ]  , and perform simulations at various values 

of the distribution width  . Figure S6 shows the results of the simulation for the evolution of the 

input pattern corresponding to the distorted digit “1” towards the stored pattern “2” (see Fig. 4, 

third row) at four values of  . When   equals 0.001  and 0.002 , the synchronization 

dynamics is similar to that in the case of the identical oscillators. The only effect of the 

heterogeneity is a “widening” of the two final states of synchronization, i.e., the phases are 
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fig. S6. The phase dynamics for the uniform distribution 0/ [ , ]T T     

for various values of  . 

 



grouped within narrow bands around the phase differences 0 and 0.5. A further increase of the 

distribution width to 0.005    makes the recognition problematic, and the recognition is 

impossible at 0.01   . 

 

The criterion of convergence used for the pattern recognition should be adjusted depending on 

the magnitude of variations in 0/TT . The latter observation is evident from fig. S7, which 

shows an increase in the scattering of the convergence times resulting from an increase in the 

distribution width   from 41 10   to 
32 10  . Here, we set the convergence threshold to 0.1 

(each oscillator’s phase is within 10% of the group average), which is 10 times greater than the 

value used for the studies described in the main text. 

fig. S7. The convergence time at random 0/ [ , ]T T     as a function of the distribution 

width  . The convergence threshold is 0.1. 




