1	
2	
3	
4	
5	Supplementary Appendix
6	

7 I) Introduction

- 8 **Table 1.** Causes Of Increasing High Bone Mass In Adults
- 9

	lasias
	Osteopetrosis
	Engelmann disease
	Endosteal hyperostosis
	Van Buchem disease
	Sclerosteosis
	Craniodiaphyseal dysplasia
	Craniometaphyseal dysplasia
	Melorheostosis
	Mixed-sclerosing-bone-dysplasia
Meta	bolic
	Skeletal fluorosis
	Heavy metal poisoning
	Hypervitaminosis A, D
	Hyper- and hypoparathyroidism
	Renal osteodystrophy
	Hypophosphatemic osteomalacia
	LRP5 activation
	Milk-alkali syndrome
Othe	r
	Myelofibrosis
	Mastocytosis
	Sarcoidosis
	Skeletal metastases
	Fibrogenesis imperfecta ossium
	Hepatitis C-associated osteosclerosis
	Ionizing radiation
	Lymphoma
	Multiple myeloma
	Osteonecrosis
	Paget bone disease

- 10
- 11 Reproduced from reference #<u>1-3</u>

13 II) Material and Methods

14

A) Serum Multiplex Biomarker Profiling:

15 We have used SMBP to characterize the biochemical disturbances of heritable metabolic bone diseases.⁽¹⁰⁾ Here we contrasted our patient's values to values from 36 control sera 16 acquired at Shriners Hospital for Children, St. Louis, MO, USA. Batch assays were used to 17 18 examine aliquots of serum from healthy children and adults. At Amgen, the aliquots were 19 thawed once for the patient together with sera multiple assays (Supplementary Table 2) that 20 were completed within 72 hours using the manufacturer's protocols. Sclerostin (SOST) and 21 dickkopf1 (DKK-1) were measured using custom ELISAs developed at Amgen Inc. (Thousand 22 Oaks, CA, USA). Commercial or custom-made Luminex-based microbead multiplex kits 23 (Millipore/Linco, St. Charles, MO, USA) were used for osteopontin (OPN), osteocalcin (OCN), 24 receptor activator of NF-KB ligand (RANKL), osteoprotegerin (OPG), transforming growth 25 factor-B (TGFB), adiponectin, fibroblast growth factor 23 (FGF-23), seven major cytokines 26 including interleukin (IL) 6, and matrix metalloproteinase (MMP) 1, 3, 7, 8, and 13. ELISA kits 27 were used for prostaglandin E₂ (PGE₂), insulin-like growth factor 1 (IGF1), and bone turnover 28 markers (BTMs) including bone-specific alkaline phosphatase (BAP), tartrate-resistant acid 29 phosphatase (TRACP5b), and collagen formation/degradation products such as CICP/CTX1, 30 respectively. The raw data were acquired in mean florescence intensity units using FlexMap 3D 31 (Luminex Corp, Austin, TX, USA). For the ELISAs, the initial measurements were collected as 32 optical density units at a specific wave length using a SpectraMax M5 plate reader (Molecular 33 Devices, Sunnyvale, CA, USA). Conversion of the results to concentration units was performed 34 using SoftMax Pro software (Molecular Devices) for the regression analysis of corresponding 35 standard curves. 36 To create the SMBP reference ranges, we considered control results for < 18 years-of-age "pediatric" values, and ≥ 18 years-of age "adult" values. To assess our patient's results, we 37

39 40

38

regarded the normal range as the $10^{th} - 90^{th}$ percentile using the information from the eight

pre-menopausal women with matching ages of 33 - 45 years.

- Table 2. 41
- 42

Assays For Serum Multiplex Biomarker Profile

13					
Test	Kit	Manufacturer or Distributor	Location	Catalog #	Limit of Detection
1	Human MMP-3 Panel	Affymetrix	Santa Clara, CA	PC1001M	0.4 ng/ml
2	Human MMP 4-Plex Panel			PC1004M	15-30 pg/ml
3	Cathepsin K	ALPCO	Salem, NH	04-BI-20432	26 pg/ml
4	PGE Metabolite Kit (all species)	Cayman Chemical	Ann Arbor, MI	514531	20 pg/ml
5	Human C2C (CTXII)	IBEX	Montreal, Quebec, Canada	60-1001-001	22 ng/ml
6	Serum CrossLaps (CTXI)	IDS	Fountain Hills, AZ	AC-02F1	0.04 ng/ml
7	Bone TRAP (Human)	"	"	SB-TR201R	1.0 U/L
8	Human CICP (c-terminal propeptide of collagen type I)	Quidel	San Diego, CA	8003	2.4 ng/ml
9	Human BAP (bone specific ALP)			8012	1.4 U/L
10	Human Adiponectin MagPlex	Millipore	Billerica, MA	HADK1MAG -61K-01	22 ng/ml
11	Human RANKL	دد	دد	HBN-51K- 1RANKL	9.6 pg/ml
12	Human MCP-1 MagPlex			HCYTOMAG -60K-01	1.9 pg/ml
13	Human SOST	۰۵	۰۵	SPR348	5 pg/ml
14	TGFB1	۰۵	۰۵	TGFB-64K-01	0.3 ng/ml
	Human MagPlex 6-Plex OPG/OC/OPN/PTH/FGF23/DKK-1	.د	.د	HBNMAG- 51K-06	See Below
15	OPG			دد	3.8 pg/ml
16	OC				0.137 ng/ml
17	OPN	دد	دد	دد	0.076 ng/ml
18	РТН	دد	دد	دد	3.9 pg/ml
19	FGF-23	دد	دد	دد	16 pg/ml
20	DKK-1	دد	دد	دد	0.003 ng/ml

- 44 45 46 47

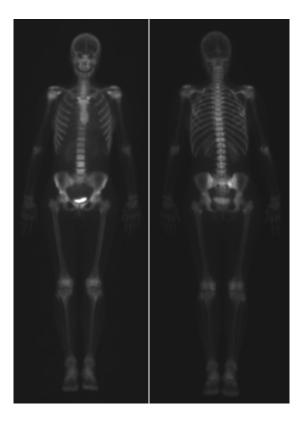
48 **Table 3.**

49

Patient's Serum Multiplex Biomarker Profiling

			Control Range			
			10 th -90 th			
Test #	Marker	Units	Percentile	Mean	SD	Patient⁺
1	CICP	ng/ml	27.3 - 144.3	82.7	40.4	152.5
2	Bone ALP	U/L	21.3 - 48.8	31	10.1	32.7
3	TRACP5b	U/L	1.4 -5.0	2.9	0.4	3.9
4	СТХІ	ng/ml	0.25 – 0.67	0.46	0.14	0.61
5	CTSK	pg/ml	10.0 - 349	60.9	118.8	590
6	TGFβ1	ng/ml	38.0 - 73.2	46.5	11.8	30.2
7	RANKL	pg/ml	4.0 - 10.7	4.8	2.4	44.9
8	SOST	pg/ml	181 – 756	435	169	1242
9	OC	ng/ml	13.7 – 31.5	19.5	6.0	17.1
10	OPN	ng/ml	3.4 - 25.5	11.4	7.2	29.9
11	OPG	ng/ml	199 - 480	317	108	271
12	DKK-1	ng/ml	2.0 - 4.6	3.0	0.9	1.9
13	PTH	pg/ml	28.7 – 92.0	51.2	22.1	89.0
14	FGF-23	pg/ml	25.6 - 46.3	35.4	7.4	29.7
15	MCP-1	pg/ml	335 – 1724	927	446	638
16	C2C	ng/ml	169 – 322	248	58	251
17	PGE2	pg/ml	10.0 - 82.5	46.6	26.3	74.2
18	Adiponectin	ug/ml	10.3 - 218.1	83.5	73.2	38.3
19	MMP-1	pg/ml	282 - 878	570	205	284
20	MMP-7	pg/ml	211.4 - 834.5	514	219	2126
21	MMP-8	pg/ml	26.4 – 70.5	45.2	17.7	47.2
22	MMP-3	ng/ml	5.1 – 10.5	7.1	1.9	52.0

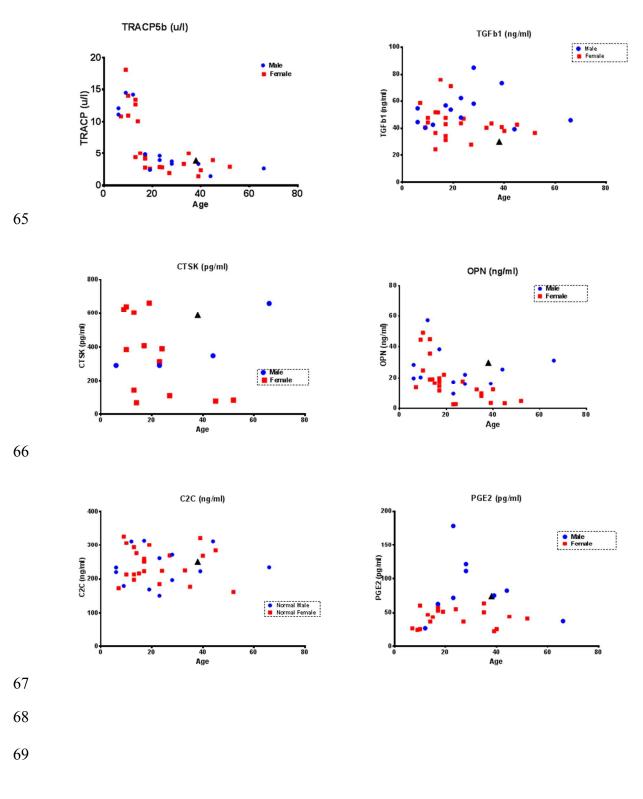
50

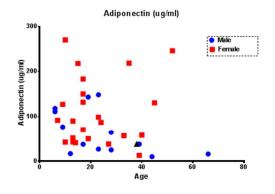

51 Controls = eight 33 to 45 year old women with normal range of $10^{th} - 90^{th}$ percentile values.

⁺Abnormal results are highlighted in bold italics.

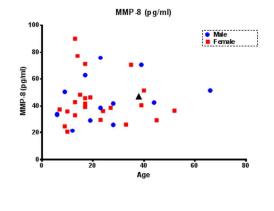
54 **Figure 1.**

55 Bone scan.


- 56 Anterior and posterior whole-body bone scintigraphy images demonstrate increased
- 57 radionuclide uptake in several thoracic vertebral bodies, and more focally in the right sacrum,
- 58 seen best on the posterior image. No abnormal appendicular skeleton radionuclide uptake was
- 59 noted to correlate with the long bone findings on radiographs.


60 61

64


Serum Multiplex Biomarker Profiling.

70 Figure 2 (continued)

72 73

71

SA-8