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Supplement S1: Description of individual segmentation methods

Here we provide more detailed information on available methods for path segmentation listed in the

publication. Further, we cite literature with applied examples to illustrate the utility of the different

methods.  Table  S1  summarizes  basic  statistical  properties  of  the  discussed  methods  and  lists

background papers and availability of code for implementing methods in the program R [1].

As outlined in the main article, the presented methods could generally be distinguished based on

their  analytical background. For a better  overview, we assigned the presented methods to three

different categories based on whether they focus predominantly on path-topology, or apply different

time-series  based  analyses.  Within  the  latter,  one  can  further  distinguish  state-space  modeling

approaches from other general time-series analyses which focus on .

Table  S1: Statistical  characteristics  of  the  different  methodological  approaches  within  the

three categories of segmentation methods SI indicates the required sampling interval, which can

be either  irregular  (-),  strictly regular  (+) or both (-/+).  AC provides information on whether a

method  accounts  for  (+),  neglects  (-)  or  only  partly  implements  (~)  estimates  of  temporal

autocorrelation.  Further,  for  each  method  an  outline  of  the  analytical  approach,  necessary

specifications (e.g., parameter settings) and the generated output (results) are listed.



Category Method SI AC Statistical Approach Specifications Result References R Implementation
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Thresholding -/+ - Indexing/classifying each relocation based on thresholding scheme assigned index of each relocation [2-5] see Supplement S2

Change Point Test -/+ - positions of significant change points [6, 7] R code provided in [6]

Spatio-Temporal Criteria Segmentation -/+ - monotone criteria (based on path parameter) positions of significant change points [8, 9]

Supervised Classification -/+ - assigned class of each relocation [10-12]

Clustering -/+ - assigned cluster of each relocation [15, 16]

Line Simplification -/+ - [19, 20]

+ ~ [22-24]
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Piecewise Regression -/+ + incorporated path signal and model settings positions of significant change points [25, 26]

Penalized Contrast Method (PCM) + ~ positions of significant change points [28-30]

Behavioral Change Point Analysis (BCPA) -/+ + positions of significant change points [22, 31]

Pruned Exact Linear Time (PELT) Algorithm + ~ positions of significant change points [33, 34]

Behavioral Movement Segmentation (BMS) + ~ [36]
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Hidden-Markov Models (HMM) + + assigned hidden state of each relocation [37 – 39]

State-Space Models with Location Filtering -/+ + Bayesian Likelihood Estimation, Particle Filtering, Kalman Filtering [43-47]

Thresholding scheme (absolute or relative threshold 
values for single or multiple path parameters)

Permutation test for detecting significant change points in movement 
direction between a starting point and an attraction point

subtrajectory defining the potential point of attraction 
and a starting point; parameters for permutation test

Search algorithm for optimal segmentation based on monotone criteria; 
segment size is increased as long as predefined criteria are fulfilled

NA, theoretical and 
MATLAB code provided in 

[8]

Regression trees, vector support machines, random forests, machine 
learning algorithms; tests for assessing classification accuracy

Multivariate set of path parameters (signals); training 
set for fitting the classification algorithm

e.g. e1071 [13], tree [14] 
packages

K-means Clustering, Expectation-Maximization Binary Clustering; e.g. 
gap-statistics for determining optimal number of clusters

Multivariate set of path parameters (signals); number 
of clusters, tolerance value

EMbC [17], cluster [18] 
packages

Reduction of the trajectory dimension by removing relocations which do 
not add to variation e.g. using the Douglas-Peucker Algorithm

tolerance parameter defining the sensitivity for 
removing a relocation

position of significant change points 
(i.e., remaining relocations)

rgeos [21] package

Bayesian Partitioning of Markov Models 
(BPMM)

Partitioning and classification algorithm for determining the number and 
sequence of homogenous processes (models) within  a signal (time series) 
using randomized likelihood estimation

input path signal (time series); number and 
distributions of candidate models (processes)

estimated state of each relocation and 
distributions of state sequences

adehabitatLT [24] package

Split linear (time) series into most representative segments and fit a 
polynomial model for each segment

segmented [27] package

Non-parametric segmentation of signal; the unknown number of segments 
is estimated by minimizing a penalized contrast function

input either based on mean, var or mean & var of 
input signal; minimum segment length; maximum 
number of change points

adehabitatLT [24] package

Likelihood-based method for detecting significant change points; applies 
moving window over continuous autocorrelated time series of input signal

input path signal (time series); window size; sensitivity 
parameter (BIC restriction); minimum number of 
change point detections

bcpa [32] package

Pruning search method for detecting optimal number and locations of 
change points minimizing given cost and linear penalty functions

input path signal; type of expected data changes 
(mean, var, mean & var); penalty method (SIC, BIC)

changepoint [72]

Combined search algorithm using BIC values for optimizing segmentation 
based on parsimony and subsequent K-means clustering for assigning 
segments to similar behaviors

minimum segment length, sampling resolution, 
number of behavioral clusters

path-segments and their behavioral 
classification

Mathematical code 
available from author [36]

Expectation-Maximization, maximum likelihood or Bayesian likelihood 
estimation; Viterbi and Baum-Welch algorithms for estimating state 
sequences

number of hidden states, input path parameters, 
assumed parameter distributions

moveHMM [40]; R code 
provided in [41, 42]

distributions of path parameters for random walk 
models, number of states, distributions of switching 
probabilities (state-space model structure, nr. of 
particles, weighting scheme)

assigned hidden model of each 
relocation; estimated  parameters of 
movement model and states

bsam [48], argosTrack [49] 
packages, R code provided 
in [49 – 51]
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Thresholding 

In this most basic segmentation approach, movement modes can be defined directly from observed

values of path-signals. Commonly, a set of thresholds is needed as a filtering scheme to separate the

relocations into different groups of movement behavior.  In many cases,  thresholding is  used to

partition path-signals into either high or low values [37, 51], or to differentiate between localized

and long-range movements [2, 52]. The applied thresholds can either be absolute or relative values

based on certain observations or hypotheses. The selection of one or more path-signals is mostly

based on the research question and data resolution and could be any kind of spatial or temporal

property of the movement track (primary or secondary derivatives,  see  Table 1 in publication).

Further, no data regularity is required in case that signals of relative displacement (e.g. velocity or

persistence velocity)  are  chosen.  Absolute thresholds  usually  constitute  a  cut-off  value where a

signal is split into two different groups. For example, Zeller et al.  [51] defined relocations with a

step length less than 200m as “resource use” whereas a step length larger than this threshold was

interpreted as actual “movement” (e.g., dispersal). Similarly, Gutenkunst et al.   [5] applied a low-

pass filter on the ratio between the net-squared displacement and the total length of a movement

track of Atlantic bluefin tuna (Thunnus thynnus). A predefined threshold of this ratio was used to

distinguish localized from long-ranged movements. In contrast to that, relative thresholds are often

based on the distribution of the considered path-signal, for example by testing whether the observed

values  are  higher  or  lower  than  those contained within  the  95% confidence  interval  across  all

observations [4].  

Thresholding  can  also  be  extended  to  multiple  path-signals  summarized  around  one  or  more

relocations (e.g.,  using a  moving-window or circular  neighborhood) which in  the next  step are

classified according to a thresholding scheme. For example, LaPoint et al. [53]  identified potential

corridor  use  behavior  of  fishers  (Martes  pennanti)  based  on  multiple  relocations  which  were
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parallel and comparably linear in direction at a certain speed. To calculate this kind of parallelism of

multiple movements,  they introduced a path parameter called “pseudo-azimuth” (Table 1 in the

main manuscript) which is based on a buffer around midpoints between consecutive relocations. 

Supervised Classification 

These algorithms have been applied to assign relocations (steps) to different classes of movement

behavior based on multiple path-signals. For this, individual steps of a subset of available data (e.g.,

a  training  dataset)  are  assigned  to  certain  classes  of  movement  behavior  either  visually  or  by

applying a threshold approach as described above. The remaining data sets are then fitted to this

classification scheme using either decision trees [54], support vector machines [10] or classification

trees [11]. 

Clustering 

Clustering can be regarded as a type of unsupervised classification, where no training data is used to

define the groups that the data should be assigned to. In the context of movement data, clustering

methods aim to identify distinctive groups within a multivariate set of path-signals without any

prior assumptions on the underlying processes  [55]. For cluster analyses in general, test statistics

have been developed to assess classification accuracy and to find the optimal value for the k number

of clusters that should be distinguished (e.g. [56, 57] ). Further, algorithm performance will depend

on the  distribution  of  the  parameter  values  used for  clustering  (usually  one ore  multiple  path-

signals). For example, Van Moorter et al.  [55] used a classic  k-means clustering approach with

several parameters including step-length, turning angles and activity data to group movements of

elk  (Cervus  elaphus)  into  within  and  between  feeding  patch  behaviors.  The  expectation-

maximization  binary  clustering  algorithm  (EmBC;  [58])  was  used  by  Louzao  et  al.  [59] to

distinguish four different behavioral modes in the movements of wandering albatrosses (Diomedea
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exulans). This method essential splits the relocations into different groups based on a combination

of either high or low values for two different path-signals (e.g., speed and turning angles). 

Spatio-Temporal Criteria Segmentation

This special type of thresholding relies on a search algorithm that extends an initial segment as long

as path-signals at each step fulfill a certain criterion [8, 9]. Thus, the approach essentially attempts

to obtain an optimal segmentation of a trajectory, in terms of a minimum number of homogeneous

segments. For example, path-signals can be compared to predefined ranges of values such as upper

and lower bounds for movement speeds or directional changes that are expected to occur during

known movement modes [8]. Consecutive steps are then included in the same segment as long as

observed values fall within these bounds, but separated if outside of expected values. In contrast to

simple thresholding, spatio-temporal criteria segmentation is based on the concept of monotone

criteria, which means that within each segment defined by certain criteria, any subsegment must

also fulfill the criteria (e.g., speed and heading within predefined bounds). For example, Buchin et

al.  [8] applied this  algorithm to differ  segments  of  migration flights  from stopovers within the

trajectories of white-fronted geese (Anser albifrons). The monotone criterion for a segment to be

determined as migration flight behavior was that all consecutive relocations had to have bounded

headings (angles) of around 120°. Therefore,  these segments comprised of approximately linear

movements.  In  contrast  to  that,  segments  were  identified  as  stopovers  when  they  fulfilled  the

criterion of containing relocations that where within a disk (radius) of 30km and remained within

this  disk  for  a  duration  of  minimum  of  48  hours  [8].  Finally,  the  change-points,  where  the

trajectories  switched  between  one  of  these  behavioral  states  were  detected  and  linked  to  their

recorded timing of the year. 

Change Point Test

The method detects significant changes in the observed movement direction or orientation of a
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trajectory  [6]. For this, a subset of the trajectory based on a potential attraction point (e.g., food

source) and the previous relocations back to a starting point (e.g., den or roosting spot) is used as an

input. Each of the previous relocations prior to the attraction point is tested “backwards in time” for

a change in total direction [6]. The collinearity of the movement vectors before and after a potential

change-point  are  calculated  to  assess  whether  movements  after  a  given  point  are  aligned  with

movements  before that  point.  The significance of the change in  directionality  is  tested using a

permutation test, which avoids any assumptions about the distributions of turning angles  [6]. The

approach is most useful when attraction points can be defined a priori. For example, Noser & Byrne

[7] applied the change point test to daily travel routes of baboons (Papio ursinus) and were able to

identify  locations  where  the  animals  decided  to  return  back  towards  their  sleeping  sites,  and

locations  were  they  adjusted  their  movements  due  to  important  landmarks  (e.g.,  change  of

topographic slope or tire tracks).  

Line Simplification 

Line  simplification  is  an  approach  commonly  used  in  cartography  and  geographic  information

science to reduce the number of vertices in geometric objects while maintaining their basic structure

[60, 61]. For movement data, this method can be applied to test whether simplifying a trajectory by

deleting  relocations  has  a  significant  impact  on  the  topology  of  the  trajectory.  Consecutive

relocations that do not change path-topology when being removed can be grouped into the same

segment. In contrast, change-points are indicated if their exclusion strongly alters path-topology. As

the most prevalent method, the Douglas-Peucker algorithm [61] excludes points which do not add

variation along a simplified line between two non-consecutive relocations. For example, Thiebault

& Tremblay [20] used this algorithm to segment movement paths of Cape gannets (Morus capensis)

by calculating the distance between the original path and the simplified, straight line connection of

relocations before and after a potential change-point has been removed. If the distance between true
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and simplified paths was larger than a specified threshold, a change-point was detected. Since small

threshold  values lead to small-scale segmentation, and high values to broader-scale segmentation,

multiple threshold values should be assessed and compared [20]. The cited example shows that line

simplification can also be applied to segment time-ordered data, such that these methods are at the

convergence between the two categories of topology-based and time-series analyses.

Bayesian Partitioning of Markov Models (BPMM)

This algorithm can also be interpreted as a hybrid between a method focusing on path-topology on

the  one  hand and accounting for  sequential  time-series  data  on the other  hand.  It  is  originally

derived from a DNA classification method developed by Guéguen [2001] and applies randomized

likelihood  estimation  for  determining  the  optimal  number  and  sequence  of  a  list  of  candidate

Markov models  [24]. The input path-signal for the candidate models needs to be ordered in time

and derived from a regular trajectory. The input data could be any primary or secondary signal

conveying spatial or temporal information (e.g., step length). The candidate models, for example,

could have Gaussian distributions with a range of different means while keeping a constant variance

[62]. As a result, the trajectory is split into homogeneous segments based on the optimal sequence

of Markov models. The BPMM method assumes that the path-signals within these segments are

independent, an assumption that is often violated for movement data  [62]. Additionally, for each

relocation  (step)  the  associated  candidate  model  is  specified  [24].  Therefore,  BPMM has  been

viewed as a sophisticated classification algorithm (e.g., [62]). However, the list of candidate models

could also be interpreted as “hidden states” and therefore we point out that this method could also

be potentially applied for identifying hidden processes (see Table 2 of main article). 

Methods based on time-series analyses

Piecewise Regression
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This approach is also termed “broken-stick” or “segmented” regression and is essentially a type of

curve fitting  [63]. Basically, the approach finds breakpoints where the relationships between the

dependent variable and the independent variable change abruptly. The data are then split at these

breakpoints and a separate regression line is fit in each interval. For movement data, the dependent

data  is  a  path-signal  of  interest  (e.g.,  primary  or  secondary  descriptors  like  net-squared

displacement), which is analyzed as a function of time. Detected breakpoints can be interpreted as a

change in movement behavior, so that the trajectory can be segmented at that given point in time.

For  example,  Liminana  et  al.  [26] used  piecewise  linear  regression  to  detect  the  start  of  the

migratory phase in the movement paths of Montagu’s  harriers (Circus pygargus).  Similar,  non-

linear types of curve-fitting approaches have been used to determine breaks regarding individual

scales of movements [25, 64, 65].

Penalized Contrast Method (PCM) 

This method developed by Lavielle [28, 29] as been widely applied in animal movement analyses

(e.g.,  [4, 66]). The optimal number of segments is determined by minimizing a contrast function

which  rates  the  differences  between  signals  of  the  entire  trajectory  versus  the  signals  of  the

segmented series.  The contrast  functions are either  based on the mean,  standard deviation or a

combination  of  both.  The  method  implies  that  the  contrast  function  decreases  with  increasing

numbers of segments in the series [29]. In order to avoid visual (and potentially subjective) splitting

of the trajectory, Lavielle [28] proposed to use the second derivative of the contrast function and the

value at which it reaches a certain threshold. Le Corre et al. [67] used this approach to objectively

determine  departure  and arrival  dates  in  migration  patterns  of  caribou,  (Rangifer  tarandus). In

addition, the method requires the definition of the minimum length of resulting segments to avoid

over-splitting, and a maximum amount of possible segments in order to limit processing time [24].

PCM is also less susceptible  to  biases from temporal autocorrelation  [29,  66].  The majority  of
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studies applying the PCM algorithm used either the first-passage- or residence-time (see Table1 of

publication) as the input signal (e.g.,  [68]). However, potentially any primary or secondary signal

conveying spatial  or  temporal  information on movement  properties  (e.g.,  step length)  could  be

applied. 

Behavioral Change Point Analysis (BCPA) 

The  behavioral  change  point  analysis  introduced  by  Gurarie  et  al.  [31].   consists  of  several

consecutive analytical steps. First, either the persistence or turning velocity is chosen as the input

signal as these parameters are less sensitive to irregular sampling (see Table 1 of publication). The

signal  is  modeled as a  continuous autocorrelated time-series  with three local  components  (e.g.,

mean,  variance,  and temporal  autocorrelation).  In a second step,  the likelihood of  a  significant

change-point within the three local parameters is estimated for a subsample (window) of the time-

series  [31]. Subsequently, the window is moved forward along the entire time-series. Whether a

relocation is  a change-point is then evaluated based on a Bayesian Information Criterion (BIC;

[69]). which compares different model assumptions ranging from a null-model (no changes) to one,

any two, or all three parameters changing at a potential change point. The BCPA does not depend on

regular sampling and is  able to cope with missing data because primary descriptive features of

movements are captured in the velocity signal and the continuous-time modeling framework [31,

70]. However, a set of multiple input parameters, such as the window size and the minimum number

of detections of each change-point, have to be set prior to the analysis (see Table S1). For example,

Zhang et al.  [70] applied the BCPA to detect different behaviors (e.g., foraging) in the movement

tracks of little penguins (Eudyptula minor).

Pruned Exact Linear Time (PELT) Algorithm 

This algorithm searches for an optimal combination of the number and locations of change-points

along a time-series [34].  Simply put, the algorithm treats the segmentations produced by different
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change-points as competing models, and assesses which model best fits the mean, variance, or a

combination  of  both  within  the  produced  segments.  Optimality  of  any  set  of  change-points  is

defined by a cost function that  needs  to be minimized and with a penalty term to avoid over-

splitting  (for  example  via  BIC).  Madon  & Hingrat  [33] used  the  PELT algorithm to  segment

movement paths of Macqueen’s bustards (Chlamydotis macqueenii) and subsequently classified the

identified segments into migratory, non-migratory, and staging movements. Similar to the BCPA,

the PELT approach is able to detect a set of change-points in an individual movement signal without

any a priori knowledge on the total number of behavioral modes and switches (see Table S1). Any

primary or secondary derivative of path-signals could be used as an input. However, the data is

assumed to follow a normal distribution with constant mean, and relocations are assumed to be

independent (non-autocorrelated). 

Behavioral Movement Segmentation (BMS) 

This approach characterizes a behavioral state by a specific mean for one or several path-signals

which can be estimated from the data (e.g., any primary or secondary derivative parameter or even

acceleration data)  [36]. The positions of change-points are also treated as a parameter that can be

estimated from the data. The BMS approach attempts to find the most parsimonious set of these two

parameters  and  again  uses  the  BIC  [69] to  quantify  parsimony.  For  this,  a  series  of  different

combinations for the number of segments and number of behavioral states is compared and the

combination  with lowest  BIC is  chosen.  A cluster  analysis  is  then  performed to  group similar

segments and infer behavioral states. One major advantage of the approach is that the estimation of

the most likely number and location of behavioral switches can easily be extended to include data

other than movement signals. Additionally, the grouping of the resulting segments into clusters of

potentially similar movement behaviors is already implemented within the algorithm. For example,

Nams [36] combined GPS-relocations and accelerometer (activity) data within the BMS approach
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to analyze movement behavior of a fisher (Martes pennant). When only using movement speed and

turning angles to distinguish behavioral states, four different movement stages could be identified.

When additionally accounting for acceleration data, seven behavioral stages could be distinguished,

revealing  greater  complexity  in  movement  behavior  than  could  be  inferred  from the  trajectory

alone. 

Methods based on state-space models

Methods within this category stem from the broad state-space modeling (SSM) framework. From a

statistical perspective, state-space models are special types of time-series analyses also accounting

for the correlation structure of consecutive measurements  [45].  In general, within this framework

the future state of a system is estimated from its previous state(s) through a probabilistic model. For

this, two stochastic time-series models, one based on an unobservable state process, and another

based on a known observation process are coupled [44, 45]. SSMs differ with regard to the number

and  composition  of  the  state  variables  (e.g.,  discrete  vs.  continuous),  the  statistical  estimation

technique  as  well  as  the  structure  of  the  main  components,  the  two  stochastic  process  and

observation models. Nomenclature for differentiating is unfortunately inconsistent in the literature

(e.g., [44, 45, 62, 71]).

In  order  to  provide better  guidance  for  deciding  among different  SSMs we distinguished three

general  classes  of  state-spaces  modeling  approaches.  For  example,  Hidden Markov models  are

based on a predefined number of discrete states and typically neglect observation errors within the

data. In contrast  to that, state-space models can also be extended to include a location filtering

component  essentially  estimating probabilities  of different  parameters of the movement process

including the probable relocations of error-prone movement data. Further, they can work with an

undefined number of either discrete or even continuous behavioral states and fit various movement
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models (e.g., different variants of a correlated random walk) [22, 45, 71]. Therefore, certain state-

space  models  can  also  be  applied  in  hierarchical  and  meta-analyses  accounting  for  individual

variations in the number and composition of the hidden states [72–75]. 

Hidden Markov Models (HMM) 

These are special cases of SSMs that estimate properties of a fixed set of discrete hidden states [37,

76].  In an HMM, state transitions are usually driven by first order Markovian processes, which

means that a state depends only on the previous state. However, State transitions in HMMs can be

modified,  so that  the switching probability  can also depend on several  previous  states  or  their

durations [42, 77],  environmental and social factors [78],  as well as habitat data [38, 41]. Some

HMMs integrate extensions of the random walk framework (see [79] for more details)  as part of

their process model [62, 71]. For example, Morales et al. [38] used a Bayesian approach to model

movements of elk (Cervus elaphus) as a mixture of different random walks, and found that elk

movements were either exploratory or encamped, with the latter occurring in open habitats during

foraging. Recently, HMMs have also been applied to model behavior based on bio-logger data (e.g.,

[42, 80]). In summary, the focus of HMM methods is on the estimation of switching probabilities

between states,  the  most  likely  sequence  of  the  hidden states  as  well  as  their  length  [37,  76].

Parameters in HMMs can be estimated through various statistical techniques, including expectation-

maximization [37, 81], likelihood-maximization [42, 76, 82] or Bayesian likelihood estimation [38,

41, 83].  Similarly, several test statistics for evaluating the association between the observed data

sequences and the estimated HMM have been suggested, including correct percentage statistics or

pseudo-residuals [37, 42, 44].

SSMs with Location Filtering

The majority of SSMs applied in movement-based studies are multi-state random walks integrating
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different forms of movement models, such as extensions of the random walk framework, as part of

their  process component  [45,  62].   However,  in contrast  to HMMs some SSMs do not  neglect

potential sampling errors of the relocation data but account for them within their observation model

structure [44, 71].  Typically, these models include both continuous (e.g., estimated true locations)

and one or several discrete behavioral states in the process component [50, 84]. 

Different  Bayesian  estimation  techniques  (e.g.,  Markov  Chain  Monte  Carlo,  MCMC [50])  are

usually required since multiple probability distributions need to be integrated along with non-linear

structures  within  the  models.  Further,  MCMC  estimation  also  allows  for  non-Gaussian  error

structures in the observation model  [44, 45].  Besides MCMC, there are also different so called

filtering methods for fitting such SSMs. Filtering methods can be applied to obtain parameters of

linear state-space models  [71, 85] as well as to estimate the most likely position of missing or

biased relocations [86, 87].  For example, Kalman Filtering (KF;[88])  provides unbiased estimates

of a first-order autoregressive model (e.g., the diffusion coefficient in a random walk model) given

that the movement model is strictly linear with a Gaussian error distribution [89]. Kalman filtering

can further account for the influence of environmental covariates  [90]. However, the KF is not

applicable  for  estimation  of  time-varying  and  discrete  behavioral  states.  Particle  Filters  (PF)

represent Bayesian approaches which overcome those limitations and can also fit non-linear SSMs.

They are based on Sequential Monte Carlo sampling using ensembles of random sampling units

(particles) which are moved forward by the process model of the state-space framework [45, 71].

The  importance  of  each  particle  is  weighted  in  order  to  estimate  the  likelihood  or  posterior

distributions  of  the  model  parameters.  PFs  are  able  to  estimate  non-linear  and  non-stationary

movement models and can also implement non-Gaussian error structures in the process model [47,

89, 91]. Overall, these types of SSMs are highly useful for error-prone or incomplete relocation data

with large gaps in sampling frequency. For example, many studies use different SSMs with location

filtering  in  order  to  account  for  errors  in  Argos  telemetry  data  [92–94]. However,  all  of  these
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algorithms  can  be  quite  complex  and  computational  intensive.  More  detailed  explanations  on

different statistical options, including model fitting and diagnostics are provided in Jonsen et al.

[44]. Different examples for implementations and applications in R are presented in [47, 49, 50, 95].
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