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Supporting Figures

Figure S1: Pulse sequences used in this study. In all cases, narrow black rectangles and wider open
rectangles denote π/2 and π pulses, respectively applied at 100 kHz (1H) and 75 kHz (15N). Cross-
polarization (CP) was applied with an RF field strengh of approximately 60 kHz ( 15N) and 95 kHz
(1H, ramped by approximately ±10%). Decoupling on 1H (15N) was performed WALTZ-16 at a field
strength of 5 kHz (3 kHz). Solvent suppression (“sat”) was achieved by applying a two-pulse phase-
modulation sequence with 850 μs length of the individual pulses and a total duration of 50 ms, and
a field strength of 10 kHz. In all cases, the total duration of the spin-lock was kept constant, i.e. an
extra spin-lock period was inserted after the FID, as indicated. (A) Sequence used for measurement
of Nx R1ρ decay without 1H decoupling. (B) Sequence used for acquisition of differential R 1ρ decay
of the two doublet components, achieved by omitting the 1H decoupling during 15N evolution. (C)
Pulse sequence used for recording in-phase Nx R1ρ decay with 1H decoupling. (D) Pulse sequence
used to measure 1H spin diffusion (data shown in Figure 5).

All the simulations take into account only the spin-lock part, neglecting the CP transfer steps.
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Figure S2. Simulated R1ρ relaxation curves of the doublet components Nx-Hα and Nx-Hβ averaged
over a powder of orientations (A,B) and for individual crystallites (C-F). (C) and (D) show three
representative orientations, and (E) and (F) show the distribution of relaxation rate constants across
the simulation of powder orientations.
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Figure S3. The effect of proton relaxation on 15N transverse relaxation parameters, from numerical
simulations with an ad hoc added random field fluctuation leading to proton relaxation. The
simulations are akin to those shown in Figure 4, with a larger amplitude of motion, i.e. a jump angle
of 20 degrees.
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Figure S4. The increase of R1ρ depends on the RF field strength and the MAS frequency. Shown are
numerical simulations of R1ρ at a MAS frequency of 40 kHz. The jump angle was set to zero (no
dynamics). 
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Figure S5. Experimental investigation of multi-pulse decoupling, shown for 13C relaxation in CHD2

methyl groups in the protein TET2.1 13C R1ρ relaxation was measured in a deuterated sample
labelled with CHD2 groups in an otherwise deuterated background. The MAS frequency was set to
55 kHz, and the spin-lock RF field set to 15 kHz. No 2H decoupling was used in these
measurements. The three panels show the case of no 1H decoupling during the 13C spin-lock, a
single 1H π pulse and a train of 1H π pulses, applied every 5 ms. No rotor synchronization was
attempted for these latter decoupling pulses. Remarkably, even though the delay between pulses
exceeds by far the rotor period, slow recoupling due to the pulse train is manifest as enhanced
apparent relaxation rate constants.  
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Figure S6. Examples of 15N R1ρ decay curves in microcrystalline ubiquitin in the absence of any 1H
irradiation (i.e. without suppression of CSA/D CCR). Residue numbers are shown in each panel.
The experiment was performed at 39.5 kHz MAS, and 12 kHz spin-lock RF field strength, using a
50% back-exchanged, deuterated ubiquitin sample.2 
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Additional discussion of the effect of 1H spin flips on R1ρ rate constants

The simulations in Figure 4 have revealed that the proton spin flips lead to an increase in the
observed R1ρ rate constants. This increase of R1ρ can be understood even without invoking
dynamics, i.e. also for a static HN spin pair, and is described as follows. Consider the evolution of
in-phase Nx coherence for a given 1H-15N spin pair in the presence of a spin-lock RF field, and
assume that the RF field amplitude matches the MAS frequency, i.e. ωRF= ωMAS, rotary-resonance.
In this situation the heteronuclear dipolar coupling is reintroduced, such that the initial coherence N x

rapidly interconverts to proton coherence and is periodically refocused. When considering a single
crystallite, the coherence is fully refocused, on a time scale that depends on the orientation of the
crystallite. For a powder, different crystallites oscillate at different frequencies, and the net
oscillation is damped, resulting in a loss of the initial Nx coherence. This particular case, choosing
the rotary-resonance for the spin-lock, is of course not of practical relevance, because this rapid
decay due to the coherence evolution makes extraction of dynamic information impossible. 

However, if the spin-lock RF field is chosen at a frequency that differs from the rotary resonance
condition (i.e. νRF≠n.νMAS), the described oscillation changes in its amplitude and frequency, but the
situation is qualitatively similar: the main difference is that the loss of initial N x coherence is
reduced to only a small part. If the RF field and MAS frequencies are sufficiently separated, the
coherent decay may in fact be negligibly small. The remaining part of the N x coherence undergoes
during each rotor period small evolution under the H-N dipolar coupling (and CSA), which is
continuously refocused by MAS. Consequently, no net decay occurs. Now consider the possibility
that the proton stochastically changes its spin state. As the proton spin flips, the dipolar coupling is
inverted. As a consequence, the dipolar-coupling evolution, which was otherwise refocused under
MAS, is not refocused any more. For a given spin pair at a given orientation with respect to the
rotor-fixed frame this failure of refocusing translates to a sudden change of the mean Nx intensity,
i.e. rather than oscillating in the vicinity of <Nx>=1, the oscillation is at a different level. In
principle, subsequent proton spin flips may restore the oscillation level to a similar level as the
initial starting point. However, when considering a whole ensemble and powder average of spin
pairs, the failure of refocusing the dipolar evolution, brought about by the sudden jumps of the
proton spin state, will inevitably lead to a net decrease of N x, i.e. a process that appears as
“relaxation”, even though strictly speaking it is not 15N relaxation, but an indirect effect of
stochastic fluctuations of the proton spin state. This “excess R 1ρ decay” increases the observed R1ρ

rate constants, as shown by the numerical simulations in Figure 4 (most easily seen in the inserts).

In principle, a second possible reason for the increased R1ρ decay may come into play if the spin
flips are fast enough such that the flipping proton constitutes itself a fluctuating magnetic field,
which relaxes the 15N spin. (One may consider this as similar to scalar relaxation of the second
kind.) For this latter mechanism to be active, the proton spin flips would need to be of the order of
thousands per second, a scenario that seems unlikely at least in the samples used here (see below).
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Figure 4 and Figure S3 also reveal that in cases where R1ρ is very large, the inclusion of the proton
flips may actually reduce the effective 15N R1ρ relaxation rate constant. This situation appears only
in cases of R1ρ that are at the maximum of the observed rate constants, i.e. for microsecond motions.
A simple simulation of the exchange between two states, NxHα and NxHβ, taking into account auto-
relaxation, cross-correlated relaxation and an exchange between these two states, illustrates that
such an apparent decrease of the average relaxation rate constant of the two states can be explained:

Consider the most simplistic approach for relaxation in the system of the two states, N x[Hα] and

Nx[Hβ]. Consider that the two states relaxes with R1ρ+Γ1ρ
CSA / D and R1ρ−Γ1ρ

CSA / D , respectively,

and that the two states are interconverted through a proton spin flip, that occurs at a rate k.
Relaxation in this system is described with the relaxation matrix:

Γ=[R1ρ+Γ1ρ
CSA /D−k k

k R1ρ−Γ1ρ
CSA/ D−k ] . (1)

This equation shows that the evolution of the two doublet components are coupled. The R 1ρ decay
of the average of the two doublet components, i.e. the in-phase Nx coherence decay with time t, is

then described by I (t)=e(k−R 1ρ)t .cosh (√((Γ1ρ
CSA/ D)2+k2))t  (2)

(as derived with Mathematica). Figure S7 shows plausible cases, using this simplistic approach, in
which the introduction of a proton flip rate, k, leads to an apparent longer life time of the N x

coherence. 

The simulations in Figure S3 suggest that this apparent decrease of R 1ρ occurs only in the range
where the rate constants are largest, and in practice it appears that the increase of R1ρ through the
mechanism described above dominates. Investigating these effects further is deferred to future
work.

Figure S7. Simulation of the evolution of the average of the two doublet components, using the
simple approach described with Equations (1) and (2) above. Three different proton flip rate
constants, k, are shown.
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Numerical spin simulation source code

The following program, to be used with the GAMMA package3, simulates the evolution of 15N
coherence (either 2NxHα or 2NxHβ or Nx, to be chosen using a flag) under a 15N spin-lock, assuming
an explicit two-state jump. The program requires a spin-system input file (shown further below),
which states the number and identity of the spins in the two exchanging states. 

The source code below must be saved in a .cc file (e.g. “R1rho_exchange_DMPS.cc”) and compiled
with GAMMA (http://scion.duhs.duke.edu/vespa/gamma/wiki). Typically the program is executed
with an input file, which contains all the relevant parameters, such as the interaction strengths, the
number of powder points, the spin-lock RF field strength and the available flags and options. The
latter are described within the source code. An example input file is also given below.

The program outputs a MATLAB format file, which contains an array of time points and an array
containing the expectation value of the relevant operator (2NxHα or 2NxHβ or Nx). Fitting such a
decay curve, using an external program, allows extracting a relaxation rate constant. In this study
we used scipy (python) modules to import the MATLAB files, and numpy routines for fitting.

 Source code:

/*
 R1rho simulation program with explicit exchange between two exchanging spin systems.
 RF spin-lock on 15N and 0, 1, N 180º pulse on 1H to suppress CDA/DD cross-correlation
 Evolution computed on a single crystallite or averaged over a powder
 Detection of the 15N in-phase coherence (Nx) or of the individual lines (NxHa or NxHb)
(C) Dominique Marion, Emmanuelle Weber, Paul Schanda IBS-Grenoble 2015-2016
 Adapted from a CPMG-simulation code written by Matthias Ernst (ETH Zurich), as used in Tollinger 
 et al, JACS 2012.
 If you use this code or modified code based on this we kindly ask to cite 
 Kurauskas et al., J. Phys. Chem. B, 2016 (i.e., this publication)
*/

#include "gamma.h"
#include <sys/time.h>
#include <sys/resource.h>

#define MAXSPINS 8

using namespace std;

complex powl(const complex& z, int m)  
{ if(norm(z) == 0)
    return complex(0);
  else
    return complex(exp(m * log(z)));
}

super_op powl(const super_op& LOp, int power)  
{ super_op LOp1;
  complex z;
  LOp.set_EBR();              
  LOp1=LOp;
  for(int i=0; i<LOp.LS(); i++)
  { z = LOp.get(i,i);
    LOp1.put(i,i, powl(z, power));
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  }
  return LOp1;
}

int main(int argc, char *argv[])

{
  sys_dynamic axc[2];
  multi_sys ax;
  gen_op temp, zz, Upp[4], Ham, H[2][5], sigmax, sigma1, sigma; 
  
  gen_op detect, detectSxIa, detectSxIb, Hrf;
  super_op Iop,K,L,U,UT,Un,Un1,L0;
  space_T Adip[2][MAXSPINS][MAXSPINS], Adip_R[2][MAXSPINS][MAXSPINS];
  space_T Acsa[2][MAXSPINS], Acsa_R[2][MAXSPINS];
  double J[2][MAXSPINS][MAXSPINS], D[2][MAXSPINS][MAXSPINS];
  double iso_CSA[2][MAXSPINS], eta_CSA[2][MAXSPINS], delta_CSA[2][MAXSPINS];
  int i,j,k,m,n,Fnp,count,qu,steps;
  int coherence, decoupling, orientation, val1, val2;
  string name, names;
  const double thetam=54.73561032;
  double mas_freq;
  double ltime, time, scale;
  int nspins[2];
  double alpha,beta,gamma;
  double alpha_CSA[2][MAXSPINS], beta_CSA[2][MAXSPINS];
  double gamma_CSA[2][MAXSPINS];
  double alpha_D[2][MAXSPINS][MAXSPINS], beta_D[2][MAXSPINS][MAXSPINS];
  double gamma_D[2][MAXSPINS][MAXSPINS];
  double kex,k_ex,kd;
  double Ttotal;   /* Total relax delay */

  struct rusage me;
  int sampling_taur;  

  double gamB1;

/*
Investigations of a nonrandom numerical method for multidimensional integration
Vera B. Cheng, Henry H. Suzukawa Jr., and Max Wolfsberg
The Journal of Chemical Physics 59, 3992 (1973); doi: 10.1063/1.1680590
*/

  int value1[] = {1, 50, 100, 144, 200, 300, 538, 1154};
  int value2[] = {1,  7,  27,  11,  29,  37,  55,  107};
  int value3[] = {1, 11,  41,  53,  79,  61, 229,  271};

  count = 1;
  query_parameter(argc,argv,count++,"Spin System Name            ? ", names);
/*       Read a Gamma spin-system                                                       */
  ax.read(names);
  axc[0] = ax.Comp(0);
  axc[1] = ax.Comp(1);

  nspins[0]=axc[0].spins();
  nspins[1]=axc[1].spins();
  for(k=0;k<2;++k)
  { for(i=0;i<nspins[k]-1;++i)
    { for(j=i+1;j<nspins[k];++j)
/*       J-coupling and dipolar coupling between 1H and 15N                             */ 
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      { query_parameter(argc,argv,count++,"J Coupling Constant         ? ", J[k][i][j]);
        query_parameter(argc,argv,count++,"Dipolar Coupling Constant   ? ", D[k][i][j]);
        query_parameter(argc,argv,count++,"Euler angle alpha           ? ", alpha_D[k][i][j]);
        query_parameter(argc,argv,count++,"Euler angle beta            ? ", beta_D[k][i][j]);
        query_parameter(argc,argv,count++,"Euler angle gamma           ? ", gamma_D[k][i][j]);
      }
    }
  }
  for(k=0;k<2;++k)
  { for(i=0;i<nspins[k];++i)
/*       Isotropic chemical shift and CSA for 1H (spin 0) and 15N (spin 1)              */
    { query_parameter(argc,argv,count++,"isotropic chemical shift    ? ", iso_CSA[k][i]);
      query_parameter(argc,argv,count++,"CSA tensor (delta CSA)      ? ", delta_CSA[k][i]);
      query_parameter(argc,argv,count++,"CSA tensor (eta CSA)        ? ", eta_CSA[k][i]);
      query_parameter(argc,argv,count++,"Euler angle alpha           ? ", alpha_CSA[k][i]);
      query_parameter(argc,argv,count++,"Euler angle beta            ? ", beta_CSA[k][i]);
      query_parameter(argc,argv,count++,"Euler angle gamma           ? ", gamma_CSA[k][i]);
    }
  }
  query_parameter(argc,argv,count++,"Powder Quality (cheng)      ? ", qu);
  query_parameter(argc,argv,count++,"Number of time steps        ? ", steps);
  query_parameter(argc,argv,count++,"spinning speed              ? ", mas_freq);
/*       We only sample the spin-system after multiple rotations of the MAS rotor       */
  query_parameter(argc,argv,count++,"Rate of sampling, in units of tau_r ?", sampling_taur); 
  query_parameter(argc,argv,count++,"Total relaxation delay      ? ", Ttotal);
/*       Random field relaxation acting on 1H                                           */
  query_parameter(argc,argv,count++,"Random field constant       ? ", kd);
/*       Kinetic exchange rate constant between the two states                          */
  query_parameter(argc,argv,count++,"Jump rate constant          ? ", k_ex);
  query_parameter(argc,argv,count++,"Output Filename             ? ", name);
  query_parameter(argc,argv,count++,"RF field strength           ? ", gamB1);
/*       0 = NxHa   1 =  NxHb    2 =  Nx                                                */
  query_parameter(argc,argv,count++,"Det. coherence (Na Nb Nx)   ? ", coherence);
/*       0 (no 180º pulse)  1 (single 180º pulse)  2 (180º pulse train)                 */  
  query_parameter(argc,argv,count++,"NoDec Dec MultiDec          ? ", decoupling);
/*       0 (powder = average over all orientation) >0 single orientation                */
  query_parameter(argc,argv,count++,"Orientation                 ? ", orientation);

  time       = (1.0/mas_freq)/steps;
  kex        = 1.0/2.0*k_ex;  
/* kex = kforward+kbackward */  
  Fnp = Ttotal * mas_freq / (sampling_taur * 2); // data points to be sampled. ; factor /2 comes 
from splitting the spinlock in two halves.
/*
                1/mas_freq
            |------------------|  x sampling_taur * 2
                ^
                 step                              echo
*/
    

  cout << "\nR1rho simulation under MAS with stochastic motional processes for NH        \n";
  cout << "==========================================================\n\n";
  cout << "Program version: " << __FILE__ << " compiled at " << __DATE__ ", "
       << __TIME__ << "\n\n";
  cout << "Parameters:\n";
  cout << "rotation angle thetam          : " << thetam << " Degree\n";
  cout << "size of spin system            : " << nspins[0]+nspins[1] << " spins\n";
  for(k=0;k<2;++k)
  { for(i=0;i<nspins[k]-1;++i)
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    { for(j=i+1;j<nspins[k];++j)
      { cout << "J       coupling constant (" << i << "," << j << ") : " << 
                J[k][i][j] << " Hz\n";
        cout << "Dipolar coupling constant (" << i << "," << j << ") : " << 
                D[k][i][j] << " Hz\n";
        cout << "Relative orientation of D tensor: (" << alpha_D[k][i][j] << "," <<
                 beta_D[k][i][j] << "," << gamma_D[k][i][j] << ")\n";
      }
    }
  }
  for(k=0;k<2;++k)
  { for(i=0;i<nspins[k];++i)
    { cout << "Isotropic chem shift(" << i << ") : " << 
              iso_CSA[k][i] << " Hz\n";
      cout << "Delta of CSA tensor (" << i << ") : " << 
              delta_CSA[k][i] << " Hz\n";
      cout << "Eta of CSA tensor   (" << i << ") : " << 
              eta_CSA[k][i] << "\n";
      cout << "Relative orientation of CSA tensor: (" << alpha_CSA[k][i] << "," <<
               beta_CSA[k][i] << "," << gamma_CSA[k][i] << ")\n";
    }
  }

  cout << "Powder Quality Number:         " << qu << "  (" << value1[qu] << " orientations)\n";
  cout << "Ttotal:                        " << Ttotal << "\n";
  cout << "Maximum relaxation delay:      " << Ttotal << " s\n";
  cout << "Sampling every                 " << sampling_taur << "th rotor period\n";
  cout << "Number of data points (Fnp):   " << Fnp << " points\n";
  cout << "MAS frequency:                 " << mas_freq << " Hz\n";
  cout << "Time increments:               " << time << "s\n";
  cout << "Exchange rate constant         " << 2.0*kex << " s-1\n";
  cout << "Random field constant          " << kd << " s-1\n";
  cout << "Output filename:               " << name << "\n";
  cout << "RF fields (gamma*B1, in Hz)    " << gamB1 << "\n";

  cout << "\n";
  cout << "Nb of delays = " << Fnp <<"\n"; 
  cout << "Delays = [0:"<< 2.0*sampling_taur/mas_freq << ":" << 2.0*(Fnp-1)*sampling_taur/mas_freq 
<<"];\n";
  cout << "\n";

  
  cout.flush();

  ax.Kex(kex,0);
  zz = Fx(axc[0]);
    
  Iop = commutator(multize(zz,ax,0));
    
  matrix mx(ax.LS(),ax.LS(),i_matrix_type);
  Iop.put_mx(mx);
    
  block_2D data(2,Fnp);
/* 

The output file contains the computed amplitude (data(0,m)) and 
the corresponding delays (data(0,m)

*/
  for(m=0;m<Fnp;++m)
    {
      data(0,m) = 0;
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      data(1,m) = float (m) * 2.0*sampling_taur/mas_freq;
    }

    
//setup for the space tensor
  matrix help(3,3,0);
  for(k=0;k<2;++k)
  { for(i=0;i<nspins[k]-1;++i)
    { for(j=i+1;j<nspins[k];++j)
      { help.put_h(-1.0/2.0,0,0);
        help.put_h(-1.0/2.0,1,1);
        help.put_h( 1.0,2,2);
        help   = - (complex) D[k][i][j] * help;
        Adip[k][i][j] = A2(help);
        Adip[k][i][j] = Adip[k][i][j].rotate(alpha_D[k][i][j],beta_D[k][i][j],gamma_D[k][i][j]);
      }
    }
  }
  for(k=0;k<2;++k)
  { for(i=0;i<nspins[k];++i)
    { help.put_h(-1.0/2.0*(1.0+eta_CSA[k][i]),0,0);
      help.put_h(-1.0/2.0*(1.0-eta_CSA[k][i]),1,1);
      help.put_h( 1.0,2,2);
      help = (complex) delta_CSA[k][i] * help;
      Acsa[k][i] = A2(help);
      Acsa[k][i] = Acsa[k][i].rotate(alpha_CSA[k][i],beta_CSA[k][i],gamma_CSA[k][i]);
    }
  }

  string name1 = name+".mat";
  string name2 = name;

/* 1H pi pulse */
zz=Ixypuls_U(axc[0],"1H",0.0,180.0);
Upp[0] = multize(zz,ax,0);
zz=Ixypuls_U(axc[1],"1H",0.0,180.0);
Upp[0] += multize(zz,ax,1);

    zz = gamB1 * Fx(axc[0],"15N");
    Hrf = multize(zz,ax,0);
    zz = gamB1 * Fx(axc[1],"15N");
    Hrf += multize(zz,ax,1);
   
/* Random field contribution acting on the 1H spins                                     */
   
    zz = Fz(axc[0],"1H");
    temp = multize(zz,ax,0);
    zz = Fz(axc[1],"1H");
    temp += multize(zz,ax,1);
    L0  = kd*d_commutator(temp);
    
    zz = Fx(axc[0],"1H");
    temp = multize(zz,ax,0);
    zz = Fx(axc[1],"1H");
    temp += multize(zz,ax,1);
    L0  += kd*d_commutator(temp);
    
    zz = Fy(axc[0],"1H");
    temp = multize(zz,ax,0);
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    zz = Fy(axc[1],"1H");
    temp += multize(zz,ax,1);
    L0  += kd*d_commutator(temp);

if (orientation == 0)
{ val1 = 1; 
  val2 = value1[qu]; 
}
else
{ if (orientation > value1[qu])
  {  orientation = value1[qu];
     cout << "Orientation set to " << value1[qu]<< "\n";
  }
  val1 = orientation;
  val2 = orientation;
}

/* if orientation == 0 the observable is averaged over a powder
   if orientation >0 the observable is computed for a single orientation
*/

for(count=val1; count<=val2; ++count) /*              Powder loop         */
  { beta  = 180.0 * count/value1[qu];
    alpha = 360.0 * ((value2[qu]*count) % value1[qu])/value1[qu];
    gamma = 360.0 * ((value3[qu]*count) % value1[qu])/value1[qu];
    if ((count % 10 == 1) || (orientation >0))
    { getrusage(0, & me);
      cout << count << "\tbeta = " << beta << "\talpha = "
           << alpha << "\tgamma = " << gamma
           << ",\ttime used: " << me.ru_utime.tv_sec << " seconds\n";
      cout.flush();
    }
    scale = sin(beta/180.0*PI);
    
/*       Initial state                                                                  */

    sigmax = Fx(axc[0],"15N");
    sigma1 = multize(sigmax,ax,0)*ax.pop(0); 
    sigmax = Fx(axc[0],"15N"); 
    sigma1 += multize(sigmax,ax,1)*ax.pop(1);

/*       Computing the detection operators                                              */    
    
    zz     = Fm(axc[0],"15N");
    detect = multize(zz, ax, 0);
    zz     = Ix(axc[0],1)*Ia(axc[0],0);
    detectSxIa = multize(zz, ax, 0);
    zz     = Ix(axc[0],1)*Ib(axc[0],0);
    detectSxIb = multize(zz, ax ,0);

/*       Rotation of the space tensor                                                   */
      
    for(k=0;k<2;++k)
    { for(i=0;i<nspins[k]-1;++i)
      { for(j=i+1;j<nspins[k];++j)
        { Adip_R[k][i][j] = Adip[k][i][j].rotate(alpha,beta,gamma);
        }
      }
    }
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    for(k=0;k<2;++k)
    { for(i=0;i<nspins[k];++i)
      { Acsa_R[k][i] = Acsa[k][i].rotate(alpha,beta,gamma);
      }
    }

/*       Zero all components                                                            */
    for(k=0;k<2;++k)
      for(i=0;i<5;++i)
        H[k][i] = gen_op();

/*       Computation of the Hamiltonian ....                                            */
    for(k=0;k<2;++k)
    {  for(j=-2;j<=2;++j)
/*       ... Dipolar interaction and J-coupling                                         */

      { for(m=0;m<nspins[k]-1;++m)
        { for(n=m+1;n<nspins[k];++n)
          { if(axc[k].isotope(m) != axc[k].isotope(n))
            { H[k][j+2] += Adip_R[k][m][n].component(2,j) * d2(j,0,thetam) * 
1/sqrt(6.0)*2*Iz(axc[k],m)*Iz(axc[k],n);
              if(j==0)
              { H[k][j+2] += J[k][m][n]*Iz(axc[k],m)*Iz(axc[k],n);
              }
            }
            else
            { H[k][j+2] += Adip_R[k][m][n].component(2,j) * d2(j,0,thetam) * 1/sqrt(6.0)* 
                        (2*Iz(axc[k],m)*Iz(axc[k],n)-(Ix(axc[k],m)*Ix(axc[k],n)
+Iy(axc[k],m)*Iy(axc[k],n)));
              if(j==0)
              { H[k][j+2] += J[k][m][n]*(Iz(axc[k],m)*Iz(axc[k],n)+Ix(axc[k],m)*Ix(axc[k],n)
+Iy(axc[k],m)*Iy(axc[k],n));
              }
            }
          }
        }
        
 /*       ... isotropic chemical shift and CSA                                          */

        for(m=0;m<nspins[k];++m)
        { H[k][j+2] += Acsa_R[k][m].component(2,j) * d2(j,0,thetam) * 1/sqrt(6.0)*2*Iz(axc[k],m);
          if(j==0)
          { H[k][j+2] += iso_CSA[k][m]*Iz(axc[k],m);
          }
        }
      }
    }

    U = Iop;  // Identity Operator
    
/*     Calculation of the propagator over one cycle of the MAS                          */

    for(ltime=0.5*time;ltime<=steps*time;ltime += time)
    { 
      Ham = Hrf;
      for(k=0;k<2;++k)
      { for(i=-2;i<=2;++i)
          Ham += exp(complex(0,i*2.0*PI*ltime*mas_freq)) * multize(H[k][i+2],ax,k);
      }
      L = complex(0,2.0*PI)*commutator(Ham);
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      if ( kd != 0.0 ) 
      { L = L + L0;
      }
      K = Xnm(ax); 
      L += K; 
      UT = exp(L,-time);  
      UT.set_HBR();
      U = UT*U;  
    }  

  
/*     Places the superoperator into its original Hilbert space basis.                  */   
    U.set_HBR();      
    sigma1.set_DBR(); 
    sigma=sigma1;
/*     Makes a longer propagator, in order to sample less often than every taur         */ 
    Un=powl(U,sampling_taur);   
/*     Places the superoperator into its original Hilbert space basis.                  */   

Un.set_HBR();    
    Un1=Un;   

  
/*     Loop over the complete spin-lock period       

    */  

    for(i=0;i<Fnp;++i) 
    { 
      if (coherence == 0)
      data(0,i) += proj(sigma,detectSxIa)*scale;
      if (coherence == 1)
      data(0,i) += proj(sigma,detectSxIb)*scale;
      if (coherence == 2)
      data(0,i) += proj(sigma,detect)*scale;
      if (decoupling == 0)  
/*     No 1H Decoupling pulse                                                           */
/*             |            Un            |            Un            | (Fnp)            */
      {
         sigma=Un*sigma;
         sigma=Un*sigma;
      }
      if (decoupling == 1)  
/*     Single 1H Decoupling pulse                                                       */      
/*             |            Un1          180º          Un1            | (Fnp)           */
/*             with        Un1=Un*Un*Un*Un                                              */
      {
/* set sigma back to initial value, before applying the whole sequence                  */         
         sigma=sigma1;
         sigma=Un1*sigma;

     sigma.sim_trans_ip(Upp[0]); // 1H pi pulse
     sigma=Un1*sigma;
     Un1=Un*Un1;

      }
      if (decoupling == 2)  
/*     Multiple 1H Decoupling pulse                                                     */     
/*             |           Un1           180º         Un1             | (Fnp)           */
/*             with        Un1=Un                                                       */

  {
     sigma=Un1*sigma;

         sigma.sim_trans_ip(Upp[0]);    // 1H pi pulse
         sigma=Un1*sigma;
      }    
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    }   

  } /*    end of powder loop            */

  
  
  MATLAB(name1,name2,data,1);
  cout << "1st point  " << data(0,0) << data(0,1) << data(0,2) << "\n";
  cout << "Delays     " << data(1,0)*1e6 << data(1,1)*1e6 << data(1,2)*1e6 << "\n";
  cout.flush();
  exit(0);
}

Spin system file:

The following file is a spin system file, which is required and called by the GAMMA program.
Copy this into a file, e.g. “2spin_50perc.sys”, and use this name to the call “names” in the GAMMA
program. The values of chemical shift, J coupling and Larmor frequency are all irrelevant here,
because these values are called explicitly by the GAMMA program.

MSysName      (2) : Two-Spin Exchange      - Name of overall spin system
NComp         (0) : 2           - Number of Components in the System
Popul(0)      (1) : 0.5         - Population of Component 0
Popul(1)      (1) : 0.5         - Population of Component 1
Exch(0)       (2) : (0<=>1)     - Non-Mutual Exchange Scheme
Smap(0,0)     (2) : (0)0(1)0    - Map (Cmp 0 0th spin) to (Cmp 1 0th spin)
Smap(0,1)     (2) : (0)1(1)1    - Map (Cmp 0 1st spin) to (Cmp 1 1st spin)
Kex_nm(0)     (1) : 0.0         - Non-Mutual Exchange Rate (1/Sec)

[0]SysName    (2) : NHa         - Name of component 1
[0]NSpins     (0) : 2           - Number of Spins in the System
[0]Iso(0)     (2) : 1H          - Spin Isotope Type
[0]Iso(1)     (2) : 15N         - Spin Isotope Type
[0]v(0)       (1) :      0.0    - Chemical Shifts in Hz – irrelevant
[0]v(1)       (1) :      0.0    - Chemical Shifts in Hz – irrelevant
[0]J(0,1)     (1) :      0.0    - J coupling in Hz – irrelevant
[0]Omega      (1) :    300.0    - Spectrometer Frequency in MHz (1H based) – irrelevant

[1]SysName    (2) : NHb         - Name of component 1
[1]NSpins     (0) : 2           - Number of Spins in the System
[1]Iso(0)     (2) : 1H          - Spin Isotope Type
[1]Iso(1)     (2) : 15N         - Spin Isotope Type
[1]v(0)       (1) :      0.0    - Chemical Shifts in Hz – irrelevant
[1]v(1)       (1) :      0.0    - Chemical Shifts in Hz – irrelevant
[1]J(0,1)     (1) :      0.0    - J coupling in Hz – irrelevant
[1]Omega      (1) :    300.0    - Spectrometer Frequency in MHz (1H based) – irrelevant

Example input file:

The following example input file detects the evolution of Nx, uses one 1H π pulse and averages over
a powder (100 orientations). The 15N CSA and the 1H-15N dipolar coupling span a 20 degree angle,
and both jump by 5 degrees between the two orientations. The spins are on-resonance (no isotropic
chemical shift) in both exchanging states. The 1H chemical-shift tensor is not altered upon
exchange. It is assumed that the executable GAMMA program is called R1rho_exchange_DMPS,
and the spin system file “2spin_50perc.sys”.
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set filename = kex_25000_angle_5_pop_50_RF_15000_600
./R1rho_exchange_DMPS 2spin_50perc.sys\
          90 21228 0 103 0\
          90 21228 0 103 5 \
          0 480 0 0 0 0\
          0 6300 0 0 83 0\
          0 480 0 0 0 0\
          0 6300 0 0 83 5 \
2 100 40000 1 0.12 5  25000  ${filename}\
15000 2 1 0
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