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Supplementary Notes 

Additional Explanations of Parameters 

Locus Heterogeneity  

Locus heterogeneity refers to the number of genes in which pathogenic mutations can 

cause a given disease. We assign a parameter ƒcase to denote the proportion of cases caused by 

mutations in a given disease-associated gene, which is inversely related to locus heterogeneity. 

Throughout, we use a bolded fcase to represent a summary parameter for the average 

contributions of disease-associated genes to a given disorder, and unbolded fcase to represent the 

contribution of a given gene.  

In our framework, we assume that there are no subgroups of the disorder that can be 

recognized clinically; therefore, different genes associated with a given disorder are 

indistinguishable phenotypically. Throughout the majority of the manuscript, we also assume 

that there are no phenocopies for the disorder and that all cases have disease as result of a 

pathogenic mutation in a monogenic disease-associated gene (i.e., the cases do not have disease 

from a non-genetic cause and or a polygenic burden of disease risk-increasing variants). Thus, 

the fractional contributions of the disease-associated genes sum to 100%. In Figure S10, we also 

consider the impact of potential phenocopies. Also, we assume that there are no known genes for 

a given disorder. If disease-associated genes are known and are screened against in the case 

cohort, the fractional contributions of the remaining unknown genes are increased.  

Penetrance 

Penetrance, π, is the proportion of individuals carrying pathogenic variants who develop 

disease. Incomplete penetrance influences the background rate of variation as pathogenic 

variants that do not manifest disease. When observing the number of qualifying variants 



 

empirically from the data, we cannot readily determine the proportion of qualifying variants 

present in controls that represent incompletely penetrant variants versus the proportion that 

represent benign variants misclassified as qualifying variants. It is also important to note that 

prevalence of disease (P) is an important consideration in the presence of incomplete penetrance.  

This is because the proportion of individuals in a disease-free control cohort who carry 

pathogenic mutations in a given disease-associated gene is proportional to !/# ×	 1 − # . In 

the presence of full penetrance, this term goes to 0. 

When penetrance approaches the disease prevalence, the likelihood of affected relatives 

sharing the same pathogenic variant(s) decreases; as such, we define a monogenic disorder as 

being caused by variants whose penetrance is sufficiently greater than disease prevalence to 

make it likely that affected relatives share the same pathogenic variants. The definition of what 

“sufficiently greater” is depends on the number of meiosis separating relatives and can be 

estimated using Bayes’ Theorem. For example, when penetrance is ten-fold greater than the 

prevalence of a dominant disorder, then an affected individual will have at least a ~90% 

probability of sharing a pathogenic variant present in a sibling; for first cousins, the penetrance 

needs to be 70-fold greater than prevalence to achieve the same probability of sharing. 

Sensitivity and Specificity to Distinguish Variants 

The typical gene-based burden test applies filters (such as MAF and predicted effect on 

protein function) to try to enrich for variants that are more likely to be pathogenic. However, 

these filters are imperfect and thus have an associated specificity and sensitivity for each disease-

associated gene. Increasing the stringency of each threshold can result in increased specificity, 

with fewer benign variants classified as qualifying variants, but can also likely decrease 

sensitivity, with fewer pathogenic variants classified as qualifying variants. The precise nature of 



 

trade-off between the stringency of the thresholds and the specificity and sensitivity is a complex 

relationship that is not readily assessable empirically and is beyond the scope of this work. This 

is because most currently assignments of the pathogenicity of variants are dependent on MAF 

and protein prediction annotations, introducing an inherent circularity in assessments of 

sensitivity and specificity.  

A consideration that is intricately linked with sensitivity is the technical ability to detect 

pathogenic variants. Some parts of the exome and some forms of genetic variation are poorly 

sequenced and/or are difficult to variant call 1. These poorly genotyped variants may be 

ascertained by lowering sequencing/variant calling quality thresholds, which would improve 

sensitivity, but at the cost of introducing noise in the form of artifactual variants 2. In addition, 

current exome sequencing technologies fail to capture regions of the exome, often up to 20% 3. 

Also, some forms of genetic variation are largely missed by exome sequencing, such as longer 

indels and CNVs.  

 

Statistical Significance 

Throughout our studies, we have used a p-value threshold of 2.5x10-6 for declaring 

association of a gene with disease. This represents α=0.05 corrected for testing of approximately 

20,000 genes. However, genes that meet this p-value threshold may not be truly disease-causing 

even in the absence of any artifacts (such as batch effects or mismatching of ancestry between 

cases and controls). Approximately 5% of disease-associated genes that meet this threshold will 

be false positives given the α. Additionally, a significant p-value in isolation is unlikely to be 

sufficient evidence to claim causality 4. Almost certainly, additional functional or genetic 

replication will need to be performed. 



 

 Reaching a significant p-value actually does not require many cases. For example, for a 

gene with no controls (out of 2597 total controls) who carry a qualifying variant in a given gene, 

only 3 cases out of 10 total cases are needed to reach statistical significance under a Fisher’s 

exact test (p=4.07x10-8). If fcase is 0.1, then in a given experiment, it is quite likely that any one 

of ten disease-associated genes will have 3 or more cases carrying variants in that gene when 

sequencing 10 disease cases. 

 

  



 

dbGaP Sample Information/ Acknowledgements 

The datasets used for the analyses described in this manuscript were obtained from dbGaP at 

http://www.ncbi.nlm.nih.gov/gap through dbGaP accession numbers: phs000007 (FHS), 

phs000179 (COPDGene), phs000200 (WHI), phs000209 (MESA), phs000280 (ARIC), 

phs000286 (JHS), phs000287 (CHS), and phs000285 (CARDIA). 

ARIC 

The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported 

by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, 

HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, 

HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and 

HHSN268201100012C). The authors thank the staff and participants of the ARIC study for their 

important contributions. This study is part of the NHLBI Grand Opportunity Exome Sequencing 

Project (GO-ESP). Funding for GO-ESP was provided by NHLBI grants RC2 HL103010 

(HeartGO), RC2 HL102923 (LungGO) and RC2 HL102924 (WHISP). The exome sequencing 

was performed through NHLBI grants RC2 HL102925 (BroadGO) and RC2 HL102926 

(SeattleGO). HeartGO gratefully acknowledges the following groups and individuals who 

provided biological samples or data for this study. DNA samples and phenotypic data were 

obtained from the following studies supported by the NHLBI: the Atherosclerosis Risk in 

Communities (ARIC) study, the Coronary Artery Risk Development in Young Adults 

(CARDIA) study, Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), the 

Jackson Heart Study (JHS) and the Multi-Ethnic Study of Atherosclerosis (MESA). This 

manuscript was not prepared in collaboration with investigators of the Atherosclerosis Risk in 



 

Communities Study and does not necessarily reflect the opinions or views of the ARIC, or 

NHLBI. 

CARDIA 

The Coronary Artery Risk Development in Young Adults Study (CARDIA) is conducted and 

supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with the 

University of Alabama at Birmingham (N01-HC95095 & N01-HC48047), University of 

Minnesota (N01-HC48048), Northwestern University (N01-HC48049), and Kaiser Foundation 

Research Institute (N01-HC48050).  This study is part of the NHLBI Grand Opportunity Exome 

Sequencing Project (GO-ESP). Funding for GO-ESP was provided by NHLBI grants RC2 

HL103010 (HeartGO), RC2 HL102923 (LungGO) and RC2 HL102924 (WHISP). The exome 

sequencing was performed through NHLBI grants RC2 HL102925 (BroadGO) and RC2 

HL102926 (SeattleGO). HeartGO gratefully acknowledges the following groups and individuals 

who provided biological samples or data for this study. DNA samples and phenotypic data were 

obtained from the following studies supported by the NHLBI: the Atherosclerosis Risk in 

Communities (ARIC) study, the Coronary Artery Risk Development in Young Adults 

(CARDIA) study, Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), the 

Jackson Heart Study (JHS) and the Multi-Ethnic Study of Atherosclerosis (MESA). This 

manuscript was not approved by CARDIA. The opinions and conclusions contained in this 

publication are solely those of the authors, and are not endorsed by CARDIA or the NHLBI and 

should not be assumed to reflect the opinions or conclusions of either. 

CHS 

The research reported in this article was supported by contract numbers N01-HC-85079, N01-

HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-85083, N01-HC- 85084, N01-HC-85085, 



 

N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC- 55222, N01-HC-75150, N01-HC-

45133, N01-HC-85239 and HHSN268201200036C; grant numbers U01 HL080295 from the 

National Heart, Lung, and Blood Institute and R01 AG-023629 from the National Institute on 

Aging, with additional contribution from the National Institute of Neurological Disorders and 

Stroke. A full list of principal CHS investigators and institutions can be found at http://www.chs-

nhlbi.org/pi.htm. This study is part of the NHLBI Grand Opportunity Exome Sequencing Project 

(GO-ESP). Funding for GO-ESP was provided by NHLBI grants RC2 HL103010 (HeartGO), 

RC2 HL102923 (LungGO) and RC2 HL102924 (WHISP). The exome sequencing was 

performed through NHLBI grants RC2 HL102925 (BroadGO) and RC2 HL102926 (SeattleGO).  

HeartGO gratefully acknowledges the following groups and individuals who provided biological 

samples or data for this study. DNA samples and phenotypic data were obtained from the 

following studies supported by the NHLBI: the Atherosclerosis Risk in Communities (ARIC) 

study, the Coronary Artery Risk Development in Young Adults (CARDIA) study, 

Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), the Jackson Heart 

Study (JHS) and the Multi-Ethnic Study of Atherosclerosis (MESA). This manuscript was not 

prepared in collaboration with CHS investigators and does not necessarily reflect the opinions or 

views of CHS, or the NHLBI. 

COPDGene 

This research used data generated by the COPDGene study, which was supported by NIH grants 

U01HL089856 and U01HL089897.  The COPDGene project is also supported by the COPD 

Foundation through contributions made by an Industry AdvisoryBoard comprised of Pfizer, 

AstraZeneca, Boehringer Ingelheim, Novartis, and Sunovion. This study is part of the NHLBI 

Grand Opportunity Exome Sequencing Project (GO-ESP).  Funding for GO-ESP was provided 



 

by NHLBI grants RC2 HL103010 (HeartGO), RC2 HL102923 (LungGO) and RC2 HL102924 

(WHISP).  The exome sequencing was performed through NHLBI grants RC2 HL102925 

(BroadGO) and RC2 HL102926 (SeattleGO). This manuscript was not prepared in collaboration 

with investigators of the COPDGene and does not necessarily reflect the opinions or views of the 

COPDGene, or NIH. 

FHS 

The Framingham Heart Study is conducted and supported by the National Heart, Lung, and 

Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195). 

The project utilized data from the Heart Cohorts Exome Sequencing Project (FHS), part of the 

NHLBI Grand Opportunity Exome Sequencing Project (GO-ESP). Funding for GO-ESP was 

provided by NHLBI grants RC2 HL103010 (HeartGO), RC2 HL102923 (LungGO) and RC2 

HL102924 (WHISP). The exome sequencing was performed through NHLBI grants RC2 

HL102925 (BroadGO) and RC2 HL102926 (SeattleGO).   HeartGO gratefully acknowledges the 

following groups and individuals who provided biological samples or data for this study. DNA 

samples and phenotypic data were obtained from the following studies supported by the NHLBI: 

the Atherosclerosis Risk in Communities (ARIC) study, the Coronary Artery Risk Development 

in Young Adults (CARDIA) study, Cardiovascular Health Study (CHS), the Framingham Heart 

Study (FHS), the Jackson Heart Study (JHS) and the Multi-Ethnic Study of Atherosclerosis 

(MESA).  This manuscript was not prepared in collaboration with investigators of the 

Framingham Heart Study and does not necessarily reflect the opinions or views of the 

Framingham Heart Study, Boston University, or NHLBI. 

JHS 



 

The Jackson Heart Study is supported and conducted in collaboration with Jackson State 

University (N01-HC-95170), University of Mississippi Medical Center (N01-HC-95171), and 

Touglaoo College (N01-HC-95172) contracts from the National Heart, Lung, and Blood Institute 

(NHLBI) and the National Institute for Minority Health and Health Disparities (NIMHD), with 

additional support from the National Institute on Biomedical Imaging and Bioengineering 

(NIBIB). This study is part of the NHLBI Grand Opportunity Exome Sequencing Project (GO-

ESP). Funding for GO-ESP was provided by NHLBI grants RC2 HL103010 (HeartGO), RC2 

HL102923 (LungGO) and RC2 HL102924 (WHISP). The exome sequencing was performed 

through NHLBI grants RC2 HL102925 (BroadGO) and RC2 HL102926 (SeattleGO).  HeartGO 

gratefully acknowledges the following groups and individuals who provided biological samples 

or data for this study. DNA samples and phenotypic data were obtained from the following 

studies supported by the NHLBI: the Atherosclerosis Risk in Communities (ARIC) study, the 

Coronary Artery Risk Development in Young Adults (CARDIA) study, Cardiovascular Health 

Study (CHS), the Framingham Heart Study (FHS), the Jackson Heart Study (JHS) and the Multi-

Ethnic Study of Atherosclerosis (MESA).  This manuscript was not prepared in collaboration 

with JHS investigators and does not necessarily reflect the opinions or views of JHS, or the 

NHLBI. 

MESA 

MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, 

and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is 

provided by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-

HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, 

N01-HC-95169 and CTSA UL1-RR-024156. This study is part of the NHLBI Grand 



 

Opportunity Exome Sequencing Project (GO-ESP). Funding for GO-ESP was provided by 

NHLBI grants RC2 HL103010 (HeartGO), RC2 HL102923 (LungGO) and RC2 HL102924 

(WHISP). The exome sequencing was performed through NHLBI grants RC2 HL102925 

(BroadGO) and RC2 HL102926 (SeattleGO). HeartGO gratefully acknowledges the following 

groups and individuals who provided biological samples or data for this study. DNA samples and 

phenotypic data were obtained from the following studies supported by the NHLBI: the 

Atherosclerosis Risk in Communities (ARIC) study, the Coronary Artery Risk Development in 

Young Adults (CARDIA) study, Cardiovascular Health Study (CHS), the Framingham Heart 

Study (FHS), the Jackson Heart Study (JHS) and the Multi-Ethnic Study of Atherosclerosis 

(MESA). This manuscript was not prepared in collaboration with MESA investigators and does 

not necessarily reflect the opinions or views of MESA, or the NHLBI. 

WHI 

The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes 

of Health, U.S. Department of Health and Human Services through contracts N01WH22110, 

24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-

32, and 44221. The Women’s Health Initiative Sequencing Project (WHISP) is funded by Grant 

Number RC2 HL102924. This study is part of the NHLBI Grand Opportunity Exome 

Sequencing Project (GO-ESP).  Funding for GO-ESP was provided by NHLBI grants RC2 

HL103010 (HeartGO), RC2 HL102923 (LungGO) and RC2 HL102924 (WHISP).  The exome 

sequencing was performed through NHLBI grants RC2 HL102925 (BroadGO) and RC2 

HL102926 (SeattleGO). This manuscript was not prepared in collaboration with investigators of 

the WHI, has not been reviewed and/or approved by the Women’s Health Initiative (WHI), and 

does not necessarily reflect the opinions of the WHI investigators or the NHLBI.  



CASEQV
Estimate based on 

simulated total case size, 
background variation, 
ƒcase, and sensitivity

CONTROLQV
Observe from 

sequencing data based 
on thresholds

CASENQV
Simulate

CONTROLNQV
Observe from 

sequencing data based 
on thresholds

CASES CONTROLS

CARRY 
QUALIFYING 

VARIANT

NO QUALIFYING
VARIANT

For each gene (n=1,2…20000):

Figure S1: Simulation framework  
For each gene, we construct a 2x2 contingency table with cases and controls and 
presence/absence of qualifying variant. We estimate the number of controls 
carrying (background variation, CONTROLQV) and not carrying (CONTROLNQV) 
qualifying variants at a set of thresholds from the control exome sequencing data 
(n=2597). We simulate the total case size (CASEQV+CASENQV), and based on the 
total case size, background variation, and genetic architecture parameters (fcase
and sensitivity), estimate the number of cases carrying a qualifying variant 
(CASEQV). A p-value can then be calculated based on this 2x2 contingency table.

Figure S1



Legends for Figure S2-S6 

Figure S2: Background rates at different MAF thresholds
Background rate of variation (proportion of controls carrying qualifying variants) in each 
gene considering all nonsynonymous variants for private (S2A), MAF≤0.01% (S2B), 
MAF≤0.1% (S2C), and MAF≤1% (S2D). Genes are ranked on the horizontal axis from the 
least variable to the most variable. Each point on the plot represents a single gene. Plot 
truncated at background rate of 0.2 (20%).

Figure S3: Sample size needs at different MAF thresholds 
Sample size needs to have 80% power to detect each gene for private (S3A), 
MAF≤0.01% (S3B), MAF≤0.1% (S3C), and MAF≤1% (S3D) under the base model. 
Analyses performed using all nonsynonymous variants under a dominant model. Plot 
truncated at 300 samples.

Figure S4: Background rates at different protein-deleteriousness thresholds
Background rate of variation (proportion of controls carrying qualifying variants) in each 
gene at MAF≤0.1%. Analyses performed under a dominant model using all 
nonsynonymous variants (S4A), LOF plus damaging missense variants (S4B) or LOF 
variants only (S4C). Genes are ranked on the horizontal axis from the least variable to the 
most variable. Each point on the plot represents a single gene. Plot truncated at 
background rate of 0.2 (20%).

Figure S5: Sample size needs at different protein-deleteriousness thresholds 
Sample size needs to have 80% power to detect each gene at MAF threshold≤0.1% 
under the base model. Analyses performed under a dominant model using all 
nonsynonymous variants (S5A), LOF plus damaging missense variants (S5B) or LOF 
variants only (S5C). Plot truncated at 300 samples.

Figure S6: Background rates at different MAF thresholds under recessive model
Background rate of variation (proportion of controls carrying qualifying variants) in each 
gene for private (S6A), MAF≤0.01% (S6B), MAF≤0.1% (S6C), and MAF≤1% (S6D). 
Genes are ranked on the horizontal axis from the least variable to the most variable. Each 
point on the plot represents a single gene. Plot truncated at background rate of 0.2 (20%).

Figure S7: Sample size needs at different MAF thresholds under recessive model
Sample size needs to have 80% power to detect each gene for private (S7A), 
MAF≤0.01% (S7B), MAF≤0.1% (S7C), and MAF≤1% (S7D) under the base model, except 
considering a recessive model. Analyses performed using all nonsynonymous variants. 
Plot truncated at 300 samples.
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A: Private
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Figure S8: Comparison of dominant and recessive models
A) Background rate of variation (proportion of controls carrying qualifying 

variants) in each gene considering all nonsynonymous variants at MAF≤ 
0.1% under a base model for a recessive (red) or dominant (blue, same as 
Figure 2A) disorder. Genes are ranked on the horizontal axis from the least 
variable to the most variable. Each point on the plot represents a single 
gene. Plot truncated at background rate of 0.2 (20%).

B) Sample size needs to have 80% power to detect each gene in the genome 
under a base model for a recessive (red), or dominant (blue, same as Figure 
2B) disorder. Simulations were performed using with all nonsynonymous 
variants at MAF ≤ 0.1%. Plot truncated at 300 samples.
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Figure S9: Power for unequal contributions to disease cases
Power to detect at least one disease-associated gene (green), at least two 
(red), at least three (purple), at least four (blue), at least five genes (orange), 
and no genes (black) at increasing case sample sizes. Analyses were 
performed for three separate sets of disease-associated gene contributions 
(Set 1,2,3 in A-C respectively) and considering all nonsynonymous variants at 
MAF≤0.1% under a dominant model. In set 1, each of ten genes contributes to 
10% of cases (base model); in set 2, one gene contributes to 50% of cases and 
five genes each contribute to 10% of cases; in set 3, one gene contributes to 
50% of cases, while 50 additional genes each contribute to 1% of cases. 
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Figure S10: Effect of phenocopies
Samples needed for 80% power to detect at least one gene associated with disease 
as a function of phenocopy rate (expressed as a percentage). Phenocopy rate 
represents the percentage of disease cases who do not have disease due to 
pathogenic mutations in a monogenic disease-associated gene.
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Figure S11: Effect of penetrance at fcase of 0.05
Effect of penetrance on sample sizes needed for 80% power to detect at 
least one disease-associated gene. Simulations were performed at varying 
disease prevalence of 1% (A), 0.1% (B), 0.01% (C) or 0.001% (D). Values of 
penetrance ranged from 0.1 to 1.0. Simulations were performed assuming a 
dominant disorder with 10 disease-associated genes, each of which 
contributes to 5% of cases (fcase=0.05). 
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Figure S12: Effect of Penetrance at fcase of 0.01
Effect of penetrance on sample sizes needed for 80% power to detect at 
least one disease-associated gene. Simulations were performed at varying 
disease prevalence of 1% (A), 0.1% (B), 0.01% (C) or 0.001% (D). Values of 
penetrance ranged from 0.1 to 1.0. Simulations were performed assuming a 
dominant disorder with 100 disease-associated genes, each of which 
contributes to 1% of cases (fcase=0.01). 
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Figure S13: Effect of characteristics of control cohort
A) Effect of control cohort sizes on samples needed for 80% power to detect at 

least one disease-associated gene at different control cohort sizes (1000, 
10000, 100000, 1000000). Simulations performed under base model.

B) Effect of using population-based cohort on samples needed for 80% power 
to detect at least one disease-associated gene. Simulations were performed 
assuming a disease-free control cohort, as well as disease prevalences of 
0.01%, 0.1% and 1.0%. Simulations performed under base model.
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Figure S14: Power for GDI-constrained genes
A) Background rate of variation for GDI-constrained genes as compared to all other 

genes. Plot truncated at a background rate of 0.05.
B) Power to detect at least one gene for a disease with 10 associated genes, each of 

which contributes to 10% of cases (fcase=0.1). Analyses were performed for all
genes in the genome (blue) as compared to GDI-constrained genes (red). All
parameters are the same as Figure 3A.

C) Sample sizes needed to have 80% power to detect at least one gene associated 
with a disease using all genes in the genome (blue) as compared to GDI-
constrained genes (red). All parameters are the same as Figure 3B.
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Figure S15: Power for RVIS-constrained genes
A) Background rate of variation for RVIS-constrained genes as compared to all other 

genes. Plot truncated at a background rate of 0.05.
B) Power to detect at least one gene for a disease with 10 associated genes, each of 

which contributes to 10% of cases (fcase=0.1). Analyses were performed for all
genes in the genome (blue) as compared to RVIS-constrained genes (red). All
parameters are the same as Figure 3A.

C) Sample sizes needed to have 80% power to detect at least one gene associated 
with a disease using all genes in the genome (blue) as compared to RVIS-
constrained genes (red). All parameters are the same as Figure 3B.
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Figure S16: Power for Known Disease Genes (Next Page)
A) Background rate of variation for dominant genes associated with disease 

according to OMIM compared with non-OMIM genes. Plot truncated at a 
background rate of 0.05.

B) Length of coding region for dominant OMIM genes compared with non-OMIM 
genes. 

C) Correlation of background rate of variation (y-axis) with coding gene length (x-
axis). Red dots represent dominant OMIM genes, while all other genes in the 
genome are shown as blue dots.

D) Power to detect at least one gene for a disease with 10 associated genes, each of 
which contributes to 10% of cases (fcase=0.1). Analyses were performed for all
genes in the genome (blue) as compared to dominant OMIM genes (red). All
parameters are the same as Figure 3A.

E) Sample sizes needed to have 80% power to detect at least one gene associated 
with a disease using all genes in the genome (blue) as compared to dominant 
OMIM genes (red). All parameters are the same as Figure 3B.
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