A Novel Genome Scale Metabolic Model of *Clostridium thermocellum* DSM 1313 Implementing an Adjustable Cellulosome for Examining Complex Cellular Phenotypes and Model-Guided Strain Design

Supplementary File S2

R. Adam Thompson^{1,2}, Sanjeev Dahal^{2,3}, Sergio Garcia^{2,4}, Intawat Nookaew^{2,3}, and Cong T. Trinh^{1,2,4*}

¹Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA and Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

² BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

³Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831

⁴Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.

*Corresponding author: <u>ctrinh@utk.edu</u>

Supplementary Table S1. Comparison of *i*AT601 predictions of mutant strain growth using the calculated GAM parameter. Fermentation product fluxes were constrained using experimental values presented in Thompson et al, *Met. Eng.*, 2015, **32**:207-219. Gene deletions were implemented by constraining appropriate reaction bounds to zero.

	Specific growth rate µ (hr ⁻¹)	
Strain	Experiment	Simulation
Parent	0.33	0.33
$\Delta hydG$	0.24	0.26
$\Delta hydG \Delta ech$	0.22	0.25
$\Delta hydG \Delta pta$ -ack	0.16	0.18

Supplementary Figure S1. Distribution of amino acids per unit cellulosome for growth of *C*. *thermocellum* on various cellulosic substrates. Abbreviations: Cb, cellobiose; C, crystalline cellulose (Avicel); CX, cellulose + xylan; CP, cellulose + pectin; CPX, cellulose + pectin + xylan; SWG, pretreated switchgrass; ZT, amorphous cellulose (Z-Trim®); and Cell, median values across all other amino acid distributions and the values used in our cellulosome term. Data adapted from Raman et al, *PLoS ONE*, 2009, **4**:e5271.

Supplementary Figure S2. Fractional reaction appearance in ethanol constrained Minimal Cut Set strategies for reactions with a fraction above 1%. Fractional appearance calculated by summing the times a reaction is present in an MCS divided by the total cMCS count.

Supplementary Figure S3. Predicted averaged fluxes of major fermentation products for growth of *C. thermocellum* on cellobiose (**A-C**) and cellulose (**D-F**). These fluxes were presented for low growth phase (**A, D**), moderate growth phase (**B, E**), and high growth phase (**C, F**).

