Three Measures of Explained Variation for Correlated Survival Data under the Proportional Hazards Mixed-effects Model Supplemental Materials

Gordon Honerkamp-Smith and Ronghui Xu

March 2, 2016

A second estimate of Ω^2 can be based on the sample variance of the $\hat{\eta}_{ij} = \hat{\beta}' Z_{ij} + \hat{b}'_{ij} W_{ij}$'s:

$$R_1^2 = 1 - \frac{\pi^2/6}{\sum_{i,j} (\hat{\eta}_{ij} - \overline{\hat{\eta}})^2 / (N - 1) + \pi^2/6},\tag{1}$$

where $N = \sum_{i=1}^{m} n_i$ is the total number of observations. As discussed in the main paper for the \boldsymbol{b}_i 's to be well estimated, the cluster sizes n_i need to be reasonably large, and this is when we expect R_1^2 to be a reasonable estimate of Ω^2 . We include R_1^2 in the simulations here.

All the simulations below used 25 clusters with 25 observations each (25×25) , and the setup is otherwise the same as described in the main paper.

Figure 1 shows how the performance of the measures depends on the amount of censoring in the data. The measures R^2 and R_1^2 are mostly unaffected by the level of censoring, though slightly more variation is seen in R_1^2 . For R_{res}^2 , the amount of censoring has a modest effect, with the value of R_{res}^2 increasing as the amount of censoring increases for a fixed value of β ; this effect appears to be independent of the magnitude of β . The measure $\hat{\rho}^2$ exhibits the same relationship but also appears to be more sensitive to the amount of censoring. As discussed in O'Quigley *et al.* (2005), this dependence of $\hat{\rho}^2$ on the censoring appears to a large extent affected by the finite follow up time τ .

Also of interest is whether the measures depend on the distribution of the covariates Z. Here we fix the variance of Z so that we are comparing the discreteness, skewness and higher moments of the distribution; note that otherwise rescaling Z by a non-zero constant just leads to multiplying β by a constant. In Figure 2, simulations were carried out using four different distributions for the covariate Z: Normal, Uniform, Bernoulli, and Exponential. The parameters of these distributions were chosen so that $E[Z_{ij}] = 0.5$ and $Var[Z_{ij}] = 0.25$ in each case. While all four sample based measures appear to be largely unaffected by the covariate distribution, the plots suggests that R_{res}^2 and $\hat{\rho}^2$ show a slight dependence on the distribution of the covariates.

Finally, we investigate whether the measures are sensitive to the baseline survival distribution. We carried out simulations using the baseline hazard function $\lambda_0(t) = a/b \cdot (t/b)^{a-1} \exp\{-(x/b)^a\}$, where a, b > 0. This corresponds to a Weibull distribution with shape parameter a and scale parameter b. In Figure 3, we fixed b = 1 and varied the shape parameter a; note that a = 1 corresponds to the standard exponential distribution that was used in the other simulations studies. The results in Figure 3 suggest that all four measures are not sensitive to the baseline survival distribution.

Figure 1: Performance of the measures as the percentage of censored failure times varies: (a) R^2 , (b) R_1^2 , (c) R_{res}^2 , (d) $\hat{\rho}^2$.

Figure 2: Simulations for the measures with different covariate distributions: (a) R^2 , (b) R_{1}^2 , (c) R_{res}^2 , (d) $\hat{\rho}^2$.

Figure 3: Top: plots of the hazard function for the Weibull distribution with varying shape parameter a and fixed scale parameter b = 1. Bottom: simulations for the R^2 measures with different baseline survival distributions: (a) R^2 , (b) R_1^2 , (c) R_{res}^2 , (d) $\hat{\rho}^2$.