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SUPPLEMENTAL FIGURE LEGENDS

Supplemental Fig. S1: Analysis of VCP complexes by SEC-mass spectrometry. A, Time
course of efficiency of VCP knockdown induced by doxycycline (1pg/ml) using HEK293 cell
line that has a stably integrated, doxycycline-inducible VCP shRNA (DTC204). At the indicated
time after transfection, cell lysate was prepared and evaluated by SDS-PAGE and Western
blotting with anti-VCP. The 5 day point was chosen as the condition for all MS experiments,
since on day 6 a large amount of cell death occurred. B, Violin plots showing the distribution of
coefficients of variation (n=3) of apex measurements for proteins in each sample. C, Number of
proteins quantified in each experiment (mean £ SEM, n=3). D, Total abundance change (defined
as [LFQintensity]ieated divided by [LFQintensity]contror) for all detected proteins in response to
VCP knockdown (left panel) or NMS873 treatment (right panel). E, DAVID gene ontology
keywords for proteins whose mean apex position was increased or decreased by > 2.5 fractions
upon NMS873 treatment or VCP knockdown. F, Proteins from Fig. 1B with a shift in mean apex
position of >2.5 fractions, along with a >4 fold increase or decrease in abundance following VCP
knockdown. PTPN9 (marked with **) is the only protein that met these criteria in both the VCP
knockdown and NMS873 (panel G) treatment groups. Proteins in red have been reported either

in BioGRID or in the published literature to bind and/or interact with VCP in some manner. G,



Same as panel E, except for the experiment in Fig. 1C in which cells were treated with 10 uM

NM873 for 6h.

Supplemental Fig. S2: Fractionation of VCP adaptors by SEC. SEC fractionation behavior of
different classes of VCP adaptors upon perturbation of VCP activity by NMS873 or shRNA-
mediated depletion. A, Class | adaptors co-fractionated with VCP. B, Class Il adaptors were
constitutively assembled in complexes of higher MW than the VVCP peak. C, Class Il adaptors
fractionated at MWs lower than VCP and were not affected by either chemical inhibition or
depletion of VCP. D, The relative LFQ intensities of VCP and adaptors in SEC fractions from
HEK293 cells (bars represent standard error of the mean, n=3). E, HEK293 lysate from untreated
cells was chromatographed on a Superose 6 column, and 1 mL fractions were analyzed via
western blot. F, In silico-generated SEC chromatograms of representative VCP adaptors in the

Kirkwood et. al. dataset.

Supplemental Fig. S3: Control experiments for VCP immunoprecipitation. A, Western
blotting shows the expression of endogenous VCP bearing an N-terminal FLAG tag in HEK293
cells. Lysates of HEK293™“CVCP cells were incubated with anti-VCP or anti-FLAG antibody.
The input, flow through (FT) and bound fractions were separated by SDS-PAGE and blotted
with anti-VCP or anti-FLAG antibody. Note that the FLAG tag did not cause a perceptible shift
in the mobility of VCP. WB, Western blot. B, VCP was recovered in IPs as short as 6 min. The
time indicated above each lane is the duration of the incubation with antibody prior to adding
protein A/G beads for an additional 5 min to capture immune complexes. As the IP time

increased, the amount of VCP detected by Western blot decreased in the flow through and



increased in the elution. C, Label-free quantification of VCP recovery in IPs of varying duration
for the experiments in Fig. 3A and Fig. 3B. D, Venn diagram shows the overlap in protein
identifications comparing FLAG IP from HEK293™4¢VP cells with IP of untagged endogenous
VCP from wild type HEK293 cells. n=1 E, Enrichment of VCP adaptors in VCP pull-downs.
Two experiments were conducted in parallel. In the first experiment (black bars),
HEK?293 VP and HEK293 cells were grown in medium containing ‘heavy’ or ‘light’ lysine
plus arginine, respectively. Cell lysates from both cultures were individually subjected to IP with
anti-FLAG and following the IP step the samples were mixed and analyzed by mass
spectrometry. In the second experiment (gray bars), Lysate from the ‘heavy’ HEK293 cells was
subjected to IP with anti-VCP whereas lysate from the ‘light” HEK293 cells was subjected to
mock IP (no antibody was present before protein A/G beads added for capture). Following the IP
step the samples were mixed and analyzed by mass spectrometry. The H/L ratios for known

VCP-interacting proteins are shown. n=1.

Supplemental Fig. S4: Effect of NDIL ‘sponge’ on recovery of VCP binding proteins
during immunoprecipitation. Titration of increasing amounts of ‘light’ NDIL into ‘heavy’ cell
lysate progressively reduced the number of proteins recovered by IP with a VCP antibody that

does not bind ND1L.

Supplemental Fig. S5: Crosslinked VCP complex can be purified by immunoprecipitation.
When immunoprecipitated with anti-VCP for 2 hours, most of the cross-linked VCP was
recovered in the bound fraction. VCP cross-links were largely resolved upon treating the bound

fraction with the reducing agent DTT.



Supplemental Fig. S6: Chemical inhibition of VCP modulates its repertoire of associated
adaptor proteins in HEK293 cells and BJ fibroblasts. A, Label swap SILAC experiments
were performed in which cells were either mock-treated or supplemented with 10 uM NMS873
for 6 hours. Cells were treated with 800 uM DSP for 30 minutes prior to cell lysis, mixing of cell
lysates, IP with anti-VCP, and mass spectrometry analysis. The ratios for each protein identified
in the replicate experiments are plotted on the x and y axes. B, same as panel A, except that cells
were treated with or without 10 uM MG132 for 2 hours. C, Duplicate mass spectrometry
experiments with label-free quantification were performed in which cells were either mock-
treated or supplemented with 10 uM NMS873 for 6 hours. Cells were treated with 800 uM DSP
for 30 minutes prior to cell lysis, mixing of cell lysates, IP with anti-VCP, and mass
spectrometry analysis. The ratios for each protein identified in the replicate experiments are
plotted on the x and y axes. D, same as panel C, except that cells were treated with or without 10

MM MG132 for 2 hours.

Supplemental Fig. S7: Potential substrates for UFD1L-NPLOC4 and UBX domain

proteins as determined by covariance analyses.
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Predicted adaptor substrates by covariance:
{Accompanies Fig. 7B)

NPLOCA4:

CHCHD3, FAF2, NEDDB, NOPS58, RALY, RCN1, STT3A, TXN, UBAC2, UBXNT7, UFDIL,
VDAC

UFD1L:

NPLOC4, UBXNT
UBXNT:

RCN1, TXN, UFD1L
FAF2:

ACTG1, ANXAS, ANXAB, CALM1, CULZ, CUL4B, ERLIN1, ERLINZ, PPP1CA, RNF5, SEL1L,
SYVN1, TMUB1, UBAC2

FAF1:

ACSL3, ARLEIP5, ARMCX3, ASPH, ATL3, ATPEAP2, BAG2, BCAP31, BRIX1, BSG, CGorf120,
CCTs, COPS3, CPT1A, CUL1, CUL3, CUL4B, CYBSE, DDB1, DDX1, DERLZ, DNAJB11,
DNAJB12, DNM1L, DYNLL1, ERLEC1, ERLIN1, FADS2, FAMBA1, FKBP8, GANAB, GPX8,
HERPUD1, HNRNPAB, IMP3, ITGB1, KIAA1967, KPRP, MAGT1, MARCKS, MBOATY, MCM3,
MCM4, MYH14, NACA, NHP2L1, NOL6, OCIAD1, 0S8, P4HB, PIGK, POLR2A, PPIB,
PPP1CA, PTRH2Z, QARS, REM8A, REX1, RCN2, RDH11, RNF170, RNFS5, RPL18A, RPL22,
RPL37A, RPS10, SAMMS0, SDCEP, SERPINH1, SF1, SKP1, SLC25A11, SNRPF, SPTLC1,
SRPRB, SRSF10, SSR3, TCEB1, THRAP3, TMCO1, TMEDT7, TMED9, TMEM259, TMUBZ,
TOM1, TOR1AIP1, TP53, TRAZB, TUBBS, UBAPZL, UBE2G2, UBEZK, UGGT1, WDR26,
YIPFS, YWHAG

UBXN1:

ALYREF, ASPSCR1, COMT, DSG1, HNRNPF, HNRNPH3, HNRPDL, ILF3, PLAA, SYNCRIP,
UBXN4, UBXNG

NSFL1C:

GANAB, GEN, HLA-A, NACA, PPIB, RBX1, RCC1, RP529, SECE1B, SUMO1, TMEMEGE
UBXNE:

DNAJBZ, DSG1, FUS, PSMAZ, PSMAT, PSMB3, SUMO1, TMEMB6, UBXN1, UBXNZA
UBXN4:

GNB2L1, PCEPZ, PLAA, PSMA4, PSMAS, PSMAG, PSMAT, PSMB1, PSMEBEZ2, PSMC1,
PSMC2, PSMC4, PSMC6, PSMD1, PSMD11, PSMD12, PSMD13, PSMD2, PSMD3, PSMD?,
PSMD8, RP518, UBE4A, UBQLN1, UBQLNZ, UBXN1

UBXN&S:
HNRNPH3, TMEMEE
UBXN2B, UBXN10, UBXN2A, UBXN11, ASPSCR1:
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