
Transition between segregation and aggregation : the role of
environmental constraints

Supplemantary Material : Resolution of the system of equations (4)
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A Symmetrical case : βx = βy = β, ` = 1
After some straightforward manipulations, the first and third equations of model (4) at the steady state
lead to

−x1 (k + x2 + βy2) (s− x2 − y2) + x2 (k + x1 + βy1) (s− x1 − y1) = 0
−y1 (k + y2 + βx2) (s− x2 − y2) + y2 (k + y1 + βx1) (s− x1 − y1) = 0 (A.1)

Keeping in mind that x2y2 − x1y2 = y1 − x1 because of conservation of x1 + x2 and y1 + y2 we have

ks (x2 − x1) + x1x2 (y2 + x2 − x1 − y1)− (βs− k) (x1 − y1) +(
x1x2y2 + x1y

2
2 − x2x1y1 − x2y

2
1

)
β = 0 (A.2)

ks (y2 − y1) + y1y2 (y2 + x2 − x1 − y1) + (βs− k) (x1 − y1) +(
y1y2x2 + y1x

2
2 − y2y1x1 − y2x

2
1

)
β = 0 (A.3)

Adding together the two equations (A.2) and (A.3) yields after some rearrangements,

2 (1− x1 − y1)︸ ︷︷ ︸
T1

(βx1y2 + x1x2 + βx2y1 + ks+ y1y2)︸ ︷︷ ︸
T2

= 0 (A.4)

Clearly, the second factor T2 of equation (A.4) cannot lead to a solution, as all terms are positive. We
are therefore left with T1 = 0, i.e.

y1 = 1− x1 and similarly y2 = 1− x2 (A.5)

Substituting equation (A.5) into equation (A.2), we obtain

(x1 − x2) (s− 1) (k + b) = 0 (A.6)

and thus

x1 = x2 = y1 = y2 = 1
2 (A.7)
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B Symmetrical case : βx = βy = β, ` = 2
B.1 Steady states and stability

B.1.1 Homogeneous solution (x1 = x2 = y1 = y2)

Equating all variables of eqs. (4) gives straightforwardly :

x1,s = x2,s = y1,s = y2,s = 0.5 (B.1)

corresponding to the case where the individuals of each subgroup equally select both patches, signaling a
situation of dispersion

B.1.2 Aggregation (x1 = y1)

Setting x1 = y1 = x and x2 = 1 − x, y2 = 1 − y1 and eliminating the homogeneous solution x = 1/2
already found we are left with

x2 − x+ δ1 = 0 where δ1 = k2s

(β + 1)2(s− 2)

This equation has two solutions :

x1,s = y1,s = 1
2
(
1±

√
1− 4δ1

)
(B.2)

which exist as long as δ1 ≤ 1/4, or

β ≥ 1
s− 2

(
−s± 2

√
k2s (s− 2) + 2

)
(B.3)

B.1.3 Segregation (x1 = y2).

Setting this time x1 = y2 = x and x2 = 1− x, y1 = 1− x we have

x2 − x+ δ2 = 0 where δ2 = k2 + β2

(β − 1)2

This equation has two solutions :

x1,s = y2,s = 1
2
(
1±

√
1− 4δ2

)
(B.4)

which exist as long as δ2 ≤ 1/4, or

β ≥ 2
3
√

1− 3k2 − 1
3 (B.5)
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B.1.4 Inhomogeneous solutions(x1 6= x2 6= y1 6= y2).

Adding and subtracting the first and third equations of eqs. (4) at the steady state we have

(−x1 − y1 + 1)
(
β2s (2x1y1 − x1 − y1) + β2

(
x2

1 − 6x1y1 + 2x1 + y2
1 + 2y1

)
+

βs (4x1y1 − 2x1 − 2y1) + β
(
−2x2

1 − 4x1y1 + 4x1 − 2y2
1 + 4y1

)
+

s
(
2k2 + 2x2

1 − 2x1y1 − x1 + 2y2
1 − y1

)
− 3x2

1 + 2x1y1 + 2x1 − 3y2
1 + 2y1

)
= 0

(x1 − y1)
(
β2s (2x1y1 − x1 − y1 − 1) + β2

(
x2

1 − x1 + y2
1 − y1 + 2

)
+ βs (−4x1y1 + 2x1 + 2y1 − 2) +

β
(
2x2

1 + 8x1y1 − 6x1 + 2y2
1 − 6y1 + 4

)
+ s

(
−2k2 − 2x2

1 − 2x1y1 + 3x1 − 2y2
1 + 3y1 − 1

)
+

3x2
1 + 4x1y1 − 5x1 + 3y2

1 − 5y1 + 2 + 2k2
)

= 0 (B.6)

We notice that

• We can factor out the solutions x1 = 1− y1 = y2 and x1 = y1 found earlier.

• Upon the change of variables, x1 + y1 = u, x1y1 = v, equation (B.6) reduces to

vs = 1
2
α1u

2 + α2u− 2k2

α3
0 = u2 − 2u+ α4 → us = 1±

√
1− α4 (B.7)

where

α1 = −β2 + 2β − 2s+ 3, α2 = (β + 1)2 (s− 2) , α3 = (β − 1) (βs− 4β + 3s− 4)

α4 =
(s− 2)

(
β2 (s− 4) + β (4s− 8) + 4k2s− 4k2 + 3s− 4

)
(β − 2s+ 3) (3β − 2s+ 3)

Therefore, switching back to the original variables x1 and y1 we have

x1,sy1,s = 1
2
α1u

2 + α2u− 2k2

α3
x1,s + y1,s = 1±

√
1− α4 (B.8)

which can be straightforwardly solved.
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Now that we have analytical expressions of the different types of solutions, we need to evaluate their
stability. As stated earlier, the model possesses four variables but because there is conservation, we are
left with two equations for e.g. x1 and y1. Evaluation of the elements of the Jacobian matrix leads to the
characteristic equation :

λ2 + ε1λ+ ε2 = 0 (B.9)

where

ε1 = − 2A1A5(
A2

5 + k2)2
(
−A0
s

+ 1
)

+ A1
s
(
A2

5 + k2) − 2A2A6(
A2

6 + k2)2
(
−A0
s

+ 1
)

+

A2
s
(
A2

6 + k2) − 2A3x1(
A2

3 + k2)2
(

1− 1
s

(−A0 + 2)
)
− 2A4y1(

A2
4 + k2)2

(
1− 1

s
(−A0 + 2)

)
+

1
A2

4 + k2

(
1− 1

s
(−A0 + 2)

)
+ 1
A2

3 + k2

(
1− 1

s
(−A0 + 2)

)
+

−A0
s + 1

A2
6 + k2 +

−A0
s + 1

A2
5 + k2 + x1

s
(
A2

3 + k2) + y1
s
(
A2

4 + k2)
ε2 = −

[
2A1A5β(
A2

5 + k2)2
(
−A0
s

+ 1
)
− A1
s
(
A2

5 + k2) + 2A3βx1(
A2

3 + k2)2
(

1− 1
s

(−A0 + 2)
)
−

x1
s
(
A2

3 + k2)
][

2A2A6β(
A2

6 + k2)2
(
−A0
s

+ 1
)
− A2
s
(
A2

6 + k2) +

2A4βy1(
A2

4 + k2)2
(

1− 1
s

(−A0 + 2)
)
− y1
s
(
A2

4 + k2)
]

+
[

2A1A5(
A2

5 + k2)2
(
−A0
s

+ 1
)
−

A1
s
(
A2

5 + k2) + 2A3x1(
A2

3 + k2)2
(

1− 1
s

(−A0 + 2)
)

+ 1
A2

3 + k2

(
−1 + 1

s
(−A0 + 2)

)
−

−A0
s + 1

A2
5 + k2 −

x1
s
(
A2

3 + k2)
][

2A2A6(
A2

6 + k2)2
(
−A0
s

+ 1
)
− A2
s
(
A2

6 + k2) +

2A4y1(
A2

4 + k2)2
(

1− 1
s

(−A0 + 2)
)

+ 1
A2

4 + k2

(
−1 + 1

s
(−A0 + 2)

)
−

−A0
s + 1

A2
6 + k2 −

y1
s
(
A2

4 + k2)
]

and

A0 = x1 + y1, A1 = 1− x1, A2 = 1− x2,

A3 = βy1 + x1, A4 = βx1 + y1,

A5 = β(1− y1)− x1 + 1 A6 = β(1− x1)− y1 + 1
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Replacing then the stationary solutions xi,s, yi,s (i = 1, 2) into equation (B.9), we are able to assess
the stability of the solutions of different nature found. In particular, the homogeneous state is analytically
accessible because of its explicit expression. In that case, the associated eigenvalues read

λ1 = −8 (s− 1)
(
3β2 + 2β + 4k2 − 1

)
s (β2 + 2β + 4k2 + 1)2

λ2 = 8
(
β2s− 2β2 + 2βs− 4β − 4k2s+ s− 2

)
s (β2 + 2β + 4k2 + 1)2 (B.10)

The condition for the homogeneous state to be stable is that the real parts of the two eigenvalues
are negative. We notice that the common denominator is always positive. We then have the following
conditions

k > ±
√
−(β + 1)(3β − 1)

2

k > ±

√
(β+1)2(s−2)

s

2 (B.11)

C Asymmetrical case : βx = β and βy = 0, ` = 2
This situation is not fully accessible analytically, but by combining the first and third equations of the
model (4) we are nevertheless able to cast the problem to the following ninth degree algebraic equation
and the following relation between x1 and y1(

y1 −
1
2

)(
χ8y

8
1 + χ7y

7
1 + χ6y

6
1 + +χ5y

5
1 + +χ4y

4
1 + +χ3y

3
1 + +χ2y

2
1 + +χ1y1 + χ0

)
= 0

x1 =
(
−2k2sy1 + k2s+ k2y1 − 2sy3

1 + 3sy2
1 − sy1 + 3y3

1 − 5y2
1 + 2y1

)
k2 − y2

1 + y1
(C.1)
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where

χ8 = (−s+ 2) (β − 2s+ 3) (β + 2s− 3)
χ7 = (4s− 8) (β − 2s+ 3) (β + 2s− 3)
χ6 = β2

(
−3k2s+ 3k2 − 6s+ 12

)
+ β

(
−8k2s2 + 24k2s− 18k2

)
+

12k2s3 − 48k2s2 + 60k2s− 22k2 + 25s3 − 125s2 + 206s− 112
χ5 = β2

(
9k2s− 9k2 + 4s− 8

)
+ β

(
24k2s2 − 72k2s+ 54k2

)
−

36k2s3 + 144k2s2 − 180k2s+ 66k2 − 19s3 + 95s2 − 156s+ 84

χ4 = β2
(
k4s− 4k4 − 10k2s+ 11k2 − s+ 2

)
+ β

(
− 16k4s2 + 32k4s− 12k4 −

26k2s2 + 78k2s− 58k2
)

+ 12k4s3 − 36k4s2 + 30k4s− 6k4 + 39k2s3 − 156k2s2 +

195k2s− 72k2 + 7s3 − 35s2 + 57s− 30
χ3 = β2

(
−2k4s+ 8k4 + 5k2s− 7k2

)
+ β

(
32k4s2 − 64k4s+ 24k4 + 12k2s2 − 36k2s+ 26k2

)
−

24k4s3 + 72k4s2 − 60k4s+ 12k4 − 18k2s3 + 72k2s2 − 90k2s+ 34k2 − s3 + 5s2 − 8s+ 4

χ2 = k2
(
β2
(
3k4s− k4 + k2s− 6k2 − s+ 2

)
+ β

(
− 8k4s2 + 8k4s− 2k4 − 20k2s2 + 40k2s−

16k2 − 2s2 + 6s− 4
)

+ 4k4s3 − 8k4s2 + 4k4s− 2k4 + 15k2s3 − 45k2s2 +

38k2s− 8k2 + 3s3 − 12s2 + 15s− 6
)

χ1 = −k4
(
β2
(
3k2s− k2 − 2

)
+ β(−8k2s2 + 8k2s− 2k2 − 4s2 + 8s− 4) +

4k2s3 − 8k2s2 + 4k2s− 2k2 + 3s3 − 9s2 + 8s− 2
)

χ0 = k6s
(
β2 + β (−2s+ 2) + k2 + s2 − 2s+ 1

)
(C.2)

Apart from the homogeneous solution which is directly accessible, equations (C.1) and (C.2) can only
be solved numerically.
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