		No. of	Average v standard	vithin-site deviation	Average within-site	Average within-	Estimated attenuation in logistic regression coefficient_due
Pollutant†	Site Type	monitoring sites	Monitor sd(mon)	Model sd(mod)	covariance <i>Cov(mon, mod)</i>	site correlation Corr(mon, mod)	to CTM measurement error;
03	Rural Background	24	20.334	19.731	296.075	0.725	24%
	Urban Background	63	23.189	22.071	392.185	0.758	19%
NO ₂	Rural Background	16	14.110	17.608	170.796	0.651	45%
	Urban Background	75	23.425	23.343	301.655	0.542	45%
PM ₁₀	Rural Background	5	7.764	12.417	46.531	0.469	$70\%^\dagger$
	Urban Background	57	10.587	12.762	67.506	0.501	59%
PM _{2.5}	Rural Background	3	5.158	8.437	32.313	0.733	$55\%^{\dagger}$
	Urban Background	39	8.618	6.756	39.696	0.686	13%

Supplementary Table 1 Comparing monitored pollutant concentrations 2001-2010 at AURN monitoring sites* with their corresponding modelled equivalents

*(Source: Automatic Urban and Rural Monitoring Network (AURN) Data Archive. © Crown 2015 copyright Defra via uk-air.defra.gov.uk, licenced under the Open Government Licence (OGL))

[†]Pollutant metrics: daily mean $PM_{2.5}$, daily mean PM_{10} , daily maximum1-hour NO₂, daily maximum 8-hour mean O_{3.} The monitoring of $PM_{2.5}$ only began part-way through the comparison period of 2001-2010. Between 2001 and 2010 there were instrument changes in the monitoring of PM_{10} .

 $\text{Estimated attenuation} = \left[1 - \left\{\frac{cov(mon,mod)}{var(mod)}\right\}\right] \times 100\% \text{ [24] (Measurement error is assumed to be additive).}$

Supplementary Figure 1

Investigating the associations of myocardial infarction (ALL MI), ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI) with mean daily temperature averaged over lags 0-1 days and over lags 2-6 days.

Pollutant [†]	All MI % change [95% CI]	STEMI % change [95% CI]	NSTEMI % change [95% CI]					
Single pollutant regression model								
O ₃	-0.07 [-0.30, 0.16]	-0.21 [-0.61, 0.19]	-0.03 [-0.35, 0.29]					
NO ₂	0.10 [-0.09, 0.29]	-0.13 [-0.46, 0.20]	0.27 [0.01,0.54]					
PM _{2.5}	-0.03 [-0.44, 0.38]	-0.35 [-1.07, 0.38]	-0.14 [-0.71, 0.44]					
PM ₁₀	-0.24 [-0.57, 0.08]	-0.46 [-1.03, 0.12]	-0.33 [-0.78, 0.13]					

Supplementary Table 2: Estimates of the percentage change in risk [95% CI] per 10 μ g/m³ increase in pollutant: Single pollutant models* (no adjustment for sine cosine annual cycle)

*The conditional logistic regression model fits the pollutant(s) as unconstrained distributed lags 0-2 and adjusts for, the weekly RCGP influenza-like illness consultation rates per 100,000 England and Wales population, two natural cubic splines (df=5) for temperature (mean lag 0-1 and mean lag 2-6), public holidays.

[†]Pollutant metrics: daily mean $PM_{2.5}$, daily mean PM_{10} , daily maximum1-hour NO₂, daily maximum 8-hour mean O₃.