2

3

Supplementary Information

4
5 Authors: Vicky W. Y. Lam, William W. L. Cheung, Gabriel Reygondeau and U. Rashid
6 Sumaila

Manuscript title: Projected change in global fisheries revenues under climate change

7

8 <u>Climate scenarios and models</u>

9 To explore future changes in potential fisheries catches during the period from 1971 to 2060, environmental outputs of several atmospheric-ocean physical models coupled with 10 11 biogeochemical models have been acquired. Annual average values of surface and bottom sea water temperature (°C), oxygen concentration (ml.L⁻¹), salinity, net primary production 12 (mgC.km².year⁻¹), surface advection (zonal and meridional vectors in m.sec⁻¹), and percentage of 13 sea ice coverage (%) were gathered from the outputs of the Geophysical Fluid Dynamics 14 Laboratory Earth System Model (GFDL ESM2M)¹, the Institut Pierre Simon Laplace model² 15 (IPSL-CM5-MR) and from the Max Planck Institute for Meteorology model (MPI-ESM)³. Each 16 environmental output is re-gridded onto a regular grid of 0.5° using the nearest neighbour method 17 and values in some coastal cells were extrapolated using bilinear extrapolation. 18

19

The different types of uncertainties associated with the use of climate models have been explored in this study. Firstly, to evaluate the uncertainties associated to future climate projections due to potential changes in Green House Gas (GHG) emissions, two representative concentration pathways scenario (RCP 2.6 and 8.5) are gathered for each environmental variables from the 24 GFDL-ESM2M. The first scenario (RCP2.6) emphasizes the radiative forcing trajectory peaked at $3W/m^2$ before 2100 and then followed by a decline to $2.6W/m^2$ by 2100. The second scenario 25 (RCP8.5) is a high emission scenario with rising radiative forcing pathway leading to 8.5 W/m² by 26 2100⁴. GFDL ESM2M model has been selected as the main model because of its good skills in 27 representing climate changes relating to surface circulation particularly in simulating surface 28 temperature, salinity, and height patterns, tropical Pacific circulation and variability; and Southern 29 Ocean dynamics¹. Secondly, to explore the inter-model uncertainties, our projections were also 30 driven by the two other IPCC-class Earth System Models (IPSL-CM5-MR and MPI-ESM-MR). 31

32

33 Biological Model

The Dynamic Bioclimate Envelope Model (DBEM) simulates changes in the distributions
 and relative abundances of the marine species under the climate change scenarios.

36 Current species distribution

Current species' distributions in the recent decade (1971 - 2000) were obtained using a spatial distribution model developed by the *Sea Around Us*^{5,6}(www.searoundus.org). The model determines distributions of marine fishes and invertebrates by predicting the relative abundance of a species on a 30' latitude x 30' longitude grid based on the species' (i) known FAO area(s); (ii) latitudinal range; (iii) polygons encompassing their known occurrence regions; (iv) depth range; and (v) habitat preferences (for detailed methodology, please refer to Close *et al.*⁵).

43 **Projecting future distribution**

DBEM simulates how changes in temperature and oxygen content (represented by O₂ concentration) would affect growth of marine fishes and invertebrates. This model was done for each species. The model algorithm is derived from a growth function:

47
$$\frac{dB}{dt} = H \cdot W^a - k \cdot W \tag{1}$$

where *H* and *k* are coefficients for anabolism and catabolism, respectively. *B* is the biomass of each species. Anabolism scales with body weight (*W*) with an exponent a < 1, while catabolism scales linearly with *W*. Solving for dB/dt = 0, we obtained H = k where W_{∞} is the asymptotic weight.

52 Equation (1) can be integrated to a generalized von Bertalanffy Growth Function (VBGF;
53 Pauly 1981):

54
$$W_t = W_{\infty} \cdot [1 - e^{-K \cdot (t - t_0)}]^{\frac{1}{1 - a}}$$
 (2)

55 where *K* is the von Bertalanffy growth parameter.

56

For simplification, we assume that a = 0.7, although empirical studies show that a generally varies from 0.50 to 0.95 between fish species^{7,8}, with 2/3 corresponding to the special or standard VBGF.

Moreover, metabolism is temperature dependent and aerobic scope is dependent on oxygen
 availability in water and maintenance metabolism is affected by physiological stress (e.g.,
 increased acidity). Thus:

$$H = g \cdot [O_2] \cdot e^{-j_1/T} \tag{3a}$$

$$k = h \cdot [H^+] \cdot e^{-j_2/T} \cdot \tag{3b}$$

where $j = E_a/R$ with E_a and R are the activation energy and Boltzmann constant, respectively, while *T* is temperature in Kelvin. In addition, the aerobic scope of marine fishes and invertebrates decreases as temperature approaches their upper and lower temperature limits⁹. The coefficients *g* and *h* were derived from the average W_{∞} , *K* and environmental temperature (T_o) of the species reported in literature:

70
$$g = \frac{W_{\infty}^{1-a} K}{[O_2] \cdot e^{-j_1/T_0}}$$
(4a)

71
$$h = \frac{K/(1-a)}{[H^+] \cdot e^{-j_2/T_0}}$$
(4a)

72 where H = k and k = K / (1-a) (eq. 1 and 2).

The model predicts changes in VGBF parameters according to changes in temperature,
oxygen, and pH in the ocean relative to the initial conditions, as:

75
$$W_{\infty} = \left(\frac{H}{k}\right)^{\frac{1}{(1-a)}}$$
(5a)

76
$$K = k \cdot (1 - a)$$
 (5b)

Based on the computed VGBF parameters and environmental conditions, the model
determined change in carrying capacity in each 30' latitude x 30' longitude cell. The model
identifies the 'environmental preference profiles' of the studied species, defined by the sea water
temperature (bottom and surface), depth, salinity, distance from sea-ice and habitat types.
Preference profiles are defined as the suitability of each of these environmental conditions to each
species, with suitability calculated by overlaying environmental data (1970-2000) with distribution

range of relative abundance of the species¹⁰. Temperature is not used for predicting baseline 83 current distribution¹¹. For example, for each species, the model calculated a temperature 84 preference profile for the adult and the pre-recruit phases based on the relative abundance and the 85 computed recruitment strength of the species. Sea surface temperature is then used for temperature 86 preference profiles for pre-recruit phase while bottom temperature is applied to preference profiles 87 for adult demersal species. Moreover, the carrying capacity is expressed as a function of expected 88 89 biomass per recruit and recruitment. Expected biomass per recruit was determined by a size-based population model. Thus, a change in species' carrying capacity in each spatial cell is dependent on 90 its calculated theoretical relative abundance, environmental preferences and net primary 91 production. Natural mortality rate (M) and length at maturity are determined from published 92 empirical equations (see Cheung *et al.*¹² for details). Initial relative recruitment strength (R) is 93 calculated from the initial relative abundance (A, normalized across the 30' x 30' degree resolution 94 grid) and calculated biomass per recruit (BPR) in each cell, as 95

$$BPR = c \cdot A/R \tag{6a}$$

96 where c is a constant that scales from relative abundance to absolute abundance. Thus,

$$R = c \cdot A / BPR \tag{6b}$$

97 and

$$A = BPR \cdot R/c \tag{6c}$$

98 The model simulates changes in relative abundance of a species by:

$$\frac{dA_i}{dt} = \sum_{j=1}^{N} (L_{ji} + I_{ji}) + G_i$$
(7)

99 where A_i is the relative abundance of a 30' x 30' cell *i*, *G* is the intrinsic population growth and L_{ji} 100 and I_{ji} are settled larvae and net migrated adults from surrounding cells (*j*), respectively.

101

102 Intrinsic growth is modeled by a logistic equation:

$$G_i = r \cdot A_i \cdot (1 - \frac{A_i}{A_{\infty i}}) \tag{8}$$

where *r* is the intrinsic rate of population increase. The model explicitly represents larval dispersal through ocean current with an advection-diffusion-reaction model (see Cheung *et al.*¹⁰ for details).

$$\frac{\partial Lav}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial Lav}{\partial x} \right) + \frac{\partial}{\partial y} \left(D \frac{\partial Lav}{\partial y} \right) - \frac{\partial}{\partial x} \left(u \cdot Lav \right) - \frac{\partial}{\partial y} \left(v \cdot N \right) - \lambda \cdot Lav$$
(9)

105 where change in relative larvae abundance over time $(\partial Lav/\partial t)$ is determined by diffusion (i.e., the 106 first two terms on the right-hand side of eq. 9) and current-driven movements (i.e., the third and 107 fourth terms of eq. 9). Diffusion is characterized by a diffusion parameter *D*, while advection is 108 characterized by the two current velocity parameters (*u*, *v*) which describe the east-west and north-109 south current movement.

110

111 Maximum Catch Potential

We applied a constant fishing mortality rate across the geographic range of each species.Specifically, to predict the theoretical maximum potential catches (MCP), we assumed that fishing

114 was approximately at maximum sustainable yield (MSY) throughout the simulation. Given that 115 logistic population growth was assumed in all versions of DBEM, fishing mortality rate at MSY for each species was equal to half of the intrinsic population growth rate of the species. i.e., F =116 117 r/2. The resulted outputs were the MCP of each species in each grid cell at each time step. To allocate the MCP of each species to each fishing country in each cell, we used the current cell-118 based catch data from the reconstructed catch database developed by Sea Around Us 119 120 (www.seaaroundus.org). In the Sea Around Us catch data, the historical and current catch data of each marine species was allocated to each half degree cell using three main components: 1. the 121 catch data; 2. the fishing access observations/agreements, and 3. the biological taxon 122 distributions¹³. MCP of each species in each cell is calculated by: 123

$$MCP_{ijk} = MCP_{ik} * \frac{C_{ijk}}{\sum_{j=1}^{m} (C_{ijk})}$$
(10)

where MCP_{ijk} is the maximum catch potential of species *i* by country *j* in a cell *k* and MCP_{ik} is the total maximum catch potential of species *i* in a cell *k*. C_{ijk} is the current catch (average from year 1991 to 2010) of species *i* by country *j* in a cell *k*.

129 Table S1. Parameters of the DBEM.

Parameters	Symbols	Unit
Abundance	A	No. of individuals
Activation energy	E_a	
Area the geographic range of a species	Α	
Asymptotic weight	W_{∞}	
Biomass	В	t
Biomass per recruit	BPR	t
Body weight	W	
Bolzmann constant	R	
Change in relative larvae abundance over time	$(\partial Lav/\partial t)$	
Coefficient for anabolism	Н	
Coefficient for catabolism	k	
Coefficients derived from the average W_{∞} , <i>K</i> and environmental temperature (T_{α}) of the species	g, h	
Diffusion coefficient	D	m⋅s ⁻¹
East-west current velocity	u	$\mathbf{m} \cdot \mathbf{s}^{-1}$
Initial relative recruitment strength	R	
Intrinsic population growth	G	year ⁻¹
Intrinsic rate of population increase	r	
Maximum sustainable yield	MSY	t
Natural mortality rate	М	year ⁻¹
Net migrated juveniles and adults from surrounding cells j to cell i	I_{ij}	count
North-south current velocity	v	$\mathbf{m} \cdot \mathbf{s}^{-1}$
Number of grid cells	Ν	Count
Primary production within its exploitable range	Р	

Proportion of exploitable range relative	α	
to the geographic range of a species	_	
Seawater temperature	T	Kelvin
Settled larvae	L	
Trophic level	λ	
von Bertalanffy growth parameter	Κ	

131 **DBEM** – alternative structure

We applied alternative versions of DBEM for assessing the structural uncertainty of the 132 projections. Other than using the spatial distribution model (SDM) developed by Sea Around Us, 133 we used two other species distribution models, Maxent and AquaMaps, that are generative 134 statistical procedures to determine species' environmental envelopes from species occurrence data 135 and a suite of environmental variables¹⁴. These two models were applied to predict the current 136 distribution of marine species using 30-year averaged environmental data center on 1985 (1970 – 137 1999). Then, we applied the oceanographic variables from the GFDL ESM2M to project species 138 distribution using the 2 spatial distribution model. For details of these two models, please refer to 139 the supplementary information of Jones & Cheung¹⁴ and Cheung *et al.* in press¹⁵. The models that 140 we used to address the uncertainty of the ESMs and the structural uncertainty of the projections 141 are summarized in Table S2. The results from the DBEM using different SDMs are shown in Table 142 S3. 143

		Structural uncertainty of projections		Model un	certainty	
Climate scenarios	RCP 2.6			RCP 8.5		
Earth System	GFDL	GFDL	GFDL	GFDL	IPSL	CMIP
Models (ESM)						
Spatial	Sea	Sea Around	AquaMaps	Maxent	Sea Around	Sea Around
distribution	Around	Us			Us	Us
models	Us					

146 Table S2. Climate scenarios used in this study.

147

Table S3. Percentage change in the global maximum catch potential and maximum revenue
potential in fisheries from the DBEM using different spatial distribution models under RCP 8.5
scenario in the 2050s from the current status (2000s).

% change in global maximum revenue potential in fisheries in the 2050s from the current status (2000s)					
Earth System Model		GFDL		Maan	Standard
Spatial distribution models	Basic	AquaMaps	Maxent	Mean	deviation
Maximum catch potential	-4.4	-8.2	-3.6	-5.4	2.4
Maximum revenue potential	-6.9	-9.6	-4.1	-6.9	2.8

151

152 **Estimating economic parameters**

153 Fisheries revenue

Total global revenues is the product of ex-vessel price (*P*) and landing in the case of commercial fisheries. In our model, the global total maximum revenue potential (MRP) in fisheries can be expressed as:

$$MRP = \sum_{j=1}^{m} \left[\sum_{i=1}^{n} (P_{ij} * MCP_{ij}) \right]$$
(11)

157 where P_{ij} is ex-vessel price and MCP_{ij} is the current maximum catch potential (the model MCP) of species *i* caught by country *j*. The total fisheries MRP of each country *j* was first computed by 158 summing up MRP (i.e., modelled landed values) of *n* species caught from its EEZ *j*, other EEZs 159 and the high seas. The current total MRP was estimated using a 20-year (from 1991 - 2010) 160 average ex-vessel prices of each species in 2005 real dollars^{16,17} by each country and the 20-year 161 average MCP data from the DBEM. Then, the global total fisheries MRP was obtained by 162 summing up the fisheries MRP of all countries, where the total number of fishing countries is m 163 (*m* = 192). 164

Projected total MRP (*MRP*') is the product of ex-vessel price (*P*') and projected MCP
(*MCP*') of each species and can be expressed as:

$$MRP' = \sum_{j=1}^{m} \left[\sum_{i=1}^{n} (P'_{ij} * MCP'_{ij}) \right]$$
(12)

The ex-vessel price of each species *i* in each country j (*P*'_{*ii*}) was assumed to be constant through 167 time, although fish prices could be influenced by local markets, the global supply of fish, 168 preference of consumers, prices of alternative products on the market and also the abundance of 169 targeted species¹⁸⁻²². The projected imbalance between fish supply and demand might also lead to 170 increases in fish price^{23,24}. This study assumes that the real ex-vessel price (after adjusting for 171 inflation) to be constant throughout the study period because the projection of future price is 172 173 limited by data availability and model complexity. Also, real ex-vessel fish prices have remained relatively stable since $1970^{17,25}$. Although real fish prices are likely to rise in the future, for example, 174 fish prices were projected to increase by about 6 - 15% over the 1997 level by 2020^{26} , the constant 175 176 price assumption allows us to understand the general pattern of the impact of climate change on

global fisheries economics before a more detailed price projection model is available²⁵. Meanwhile,
sensitivity analysis is carried out to explore how changes in prices are likely to affect the results
derived from our study.

180

181 **Estimating economic uncertainties**

It is expected that change in price trends is crucial to the degree of impact of climate change on 182 fisheries and its subsequent economics. Therefore, we tested the sensitivity of our results to price 183 based on available price information. We adopted the project scenarios described in the IMPACT 184 model²⁶ as our catch scenarios in this analysis. Table S4 describes the details of each scenario. 185 Then, the price ranges from 1997 to 2020 provided in literature²⁶ were used to project the price 186 range from 2000 to 2050 of each scenario in our analysis. We assumed that the rate of price change 187 is constant throughout the time period. Then, the annual percentage change in price was calculated 188 189 by dividing the projected total change in price by the total number of years from 1997 to 2020 (i.e., 190 24 years). By assuming the price would increase at the same rate from 2000 to 2050, we then estimated the total price change in 2050 relative to the level in 2000. The projected percentage of 191 total price change of each commodity group in 2050 is shown in Table S5. 192

193

194 Determine the high price and low price species

Since the SAU catch database does not associate with the commodity groups, we allocated different marine species to the 4 commodity groups listed in Table S5 based on the functional groups that they belong to and also their price ranges. For finfish, we segregated them into low value and high value groups based on their current ex-vessel price. We first took the median price of all the exploited marine fish species (i.e., US\$ 1,924) and then used that as the threshold for

- segregating low and high values fish species. For any fish species with prices lower than this
- threshold price, we considered them as low price food fish and vice versa.
- 202
- 203
- Table S4. Description of production scenarios.

	Scenario	Description
1.	Baseline	Judged to be the most plausible set of assumptions.
2.	Faster aquaculture expansion	Production growth trends, excluding supply response to price change, for all four aquaculture output aggregate commodities are increased by 50 percent relative to the baseline scenario.
3.	Lower China production	Chinese capture fisheries production is reduced by 4.6 mmt in base year 1996–98 following Watson and Pauly (2001). Consumption is reduced an identical amount to maintain balance. Reductions are spread proportionately among fish commodities. Income demand elasticities, production growth trends, and feed conversion ratios are adjusted downward, consistent with the view that actual growth in production and consumption over past two decades was in fact slower than reported.
4.	Fishmeal and oil efficiency	Feed conversion efficiency for fishmeal and fish oil improves at twice the rate specified in the baseline scenario.
5.	Slower aquaculture expansion	Production growth trends, excluding supply response to price change, for all aqua culture commodities is decreased by 50 percent relative to the baseline scenario.

205 Source: Delgado (2003)²⁶

206

Table S5. Projected total change in prices under different production scenarios, 2000 – 2050.

	Projected total change in price (%), 2000 – 2050					
Seafood groups	Base line	Faster Aquaculture expansion	Lower China production	Fishmeal and fish oil efficiency	Slower aquaculture expansion	
Low value food fish	13.04	-26.09	13.04	10.87	54.00	
High-value finfish	32.61	19.57	34.78	30.43	41.30	
Crustacean	34.78	8.70	41.30	32.61	56.52	
Mollusks	8.70	-34.78	6.52	6.52	54.00	

209 Project landed values under different production scenario

With the projected total price change of each commodity group, we projected the price of each marine species in the 2050s under different production scenarios. The future fisheries MRP were then calculated with these projected prices and projected catch under the RCP 8.5 and RCP 2.6 scenarios. The percentage changes in the fisheries MRP under different production scenarios are shown in Table 2 in the main text.

- 215
- 216

217 Dependency of a country's national economy on its fisheries

We used the percentage of current total economic impact of fisheries sector to a country's 218 national Gross Domestic Product (GDP) to determine the importance of the fisheries sector to a 219 country's economy. To capture important contributions of fish populations to the whole economy, 220 the value created through the production chain was also captured in this study. The added value or 221 impact through the fish value chain is the indirect economic effects of fisheries due to their impact 222 223 on activities such as boat building/maintenance, equipment supply and the restaurant sector²⁷. In most of the countries, fisheries constitute a base industry to the whole national economy, for 224 example, in Iceland and in Greenland²⁸. The estimated indirect and induced economic impacts of 225 climate change on the fisheries sector of each fishing country were estimated by applying the 226 national fishing output multipliers, M_i , reported in Dyck and Sumaila²⁹ (Table S6). 227

$$Economic Impact = Total Revenue * M_i$$
(13)

The GDP of each country in 2010 was obtained from International Monetary Fund (IMF),World Economic Outlook Database

230 (<u>https://www.imf.org/external/pubs/ft/weo/2014/02/weodata/index.aspx</u>). The total revenue is the

231	current actual landed values obtained from Sea Around Us and Fisheries Economics Research
232	Unit price database ¹⁷ . Then, the percentage of the economic impact by the fisheries sector to the
233	total GDP of a country was computed to represent the dependency of a country's national
234	economy on fisheries (Table S7).
235	
236	Human Development Index
237	In this study, the Human Development Index (HDI) (http://hdr.undp.org/en), which is a
238	composite index measuring average achievement in the 3 basic dimensions of human
239	development (i.e., a long and healthy life, knowledge and a decent standard of living), is used to
240	represent the adaptive capacity of a country to climate change. The HDI of the most recent year
241	available (2013) was obtained from the United Nations Development Programme
242	(http://hdr.undp.org/en/content/human-development-index-hdi-table) (Table S7).
243	

Country	Output multiplier	Country	Output multiplier
Albania	1.63	Cayman Is	1.22
Algeria	1.19	Chile	2.44
American Samoa	3.34	China Main	3.34
Angola	3.54	Colombia	3.14
Anguilla	1.21	Comoros	2.95
Antigua Barb	1.22	Congo Dem Rep	3.53
Argentina	2.97	Congo Rep	2.96
Aruba	1.23	Cook Is.	3.34
Australia	3.69	Costa Rica	2.16
Bahamas	1.22	Cote d'Ivoire	1.52
Bahrain	1.02	Croatia	3.27
Bangladesh	2.97	Cuba	1.22
Barbados	1.21	Cyprus	0.61
Belgium	6.22	Denmark	3.72
Belize	3.46	Djibouti	3.00
Benin	1.52	Dominica	1.22
Bermuda	7.34	Dominican Republic	1.21
Br Virgin Is	1.21	East Timor	2.11
Brazil	2.39	Ecuador	3.25
Brunei Darussalam	2.16	Egypt	2.42
Bulgaria	18.34	El Salvador	3.46
Cambodia	1.73	Equatorial Guinea	2.97
Cameroon	2.96	Eritrea	2.95
Canada	3.30	Estonia	3.81
Cape Verde	1.52	Faeroe Is	2.10

Table S6. National fishing output multipliers by country²⁹.

Country	Output multiplier	Country	Output multiplier
Falkland Is	2.12	India	1.36
Fiji	3.34	Indonesia	1.66
Finland	1.56	Iran	1.94
Fr Guiana	2.12	Iraq	1.03
Fr Polynesia	3.34	Ireland	2.15
France	4.11	Israel	1.03
Gabon	2.96	Italy	1.75
Gambia	1.52	Jamaica	1.22
Gaza Strip	1.02	Japan	2.75
Georgia	2.04	Jordan	1.06
Germany	3.28	Kenya	2.95
Ghana	1.52	Kiribati	3.34
Gibraltar	0.00	Korea D P Rp (N Korea)	3.04
Greece	3.31	Korea Rep (S Korea)	2.91
Greenland	7.38	Kuwait	1.02
Grenada	1.21	Latvia	4.31
Guadeloupe	1.21	Lebanon	1.02
Guam	3.36	Liberia	1.52
Guatemala	1.87	Libya	1.19
Guinea	1.52	Lithuania	3.79
Guinea Bissau	1.52	Macau	3.05
Guyana	2.12	Madagascar	2.34
Haiti	1.22	Malaysia	2.58
Honduras	3.46	Maldives	2.97
Hong Kong	2.59	Malta	2.54
Iceland	2.49	Marshall Is	3.34

Country	Output multiplier	Country	Output multiplier
Martinique	1.21	Panama	2.56
Mauritania	1.52	Papua New Guinea	3.34
Mauritius	1.62	Peru	2.95
Mayotte	2.95	Philippines	1.19
Mexico	0.61	Poland	4.27
Micronesia	3.34	Portugal	4.78
Monaco	0.00	Puerto Rico	1.21
Montserrat	1.20	Qatar	1.02
Morocco	2.81	Reunion	2.95
Mozambique	1.83	Romania	3.73
Myanmar	0.85	Russian Fed	2.50
N Marianas	3.35	Samoa	3.34
Namibia	4.82	Sao Tome Prn	2.96
Nauru	3.31	Saudi Arabia	1.02
Netherlands Antilles	1.21	Senegal	2.21
Netherlands	2.95	Serbia Montenegro	2.10
New Caledonia	3.34	Seychelles	2.95
New Zealand	2.58	Sierra Leone	1.52
Nicaragua	1.50	Singapore	4.01
Nigeria	0.28	Slovenia	6.23
Niue	3.35	Solomon Is.	3.34
Norfolk I.	0.00	Somalia	2.95
Norway	3.36	South Africa	3.13
Oman	1.02	Spain	3.86
Pakistan	2.16	Sri Lanka	1.01
Palau	3.34	St Helena	1.53

Country	Output multiplier	Country	Output multiplier
St Kitts and Nevis	1.22	US Virgin Is	1.22
St Lucia	1.22	USA	3.10
St Pierre & Miquelon	7.37	Vanuatu	3.34
St Vincent	1.22	Venezuela	1.06
Sudan	2.95	Viet Nam	3.47
Suriname	2.12	Wallis and Futuna	3.33
Sweden	2.66	Yemen	1.02
Syria	1.02		
Taiwan	3.28		
Tanzania	2.72		
Thailand	2.12		
Togo	1.52		
Tokelau	3.35		
Tonga	3.34		
Trinidad Tobago	1.22		
Tunisia	1.46		
Turkey	1.59		
Turks Caicos	1.21		
Tuvalu	3.34		
UK	4.26		
Ukraine	5.56		
United Arab Emirates	1.02		
Uruguay	2.63		
US Virgin Is	1.22		
USA	3.10		
Vanuatu	3.34		

Table S7. Dependency of a country's economy on fisheries – percentage of economic impact by

the fisheries sector to the total Gross Domestic Product (GDP) of each fishing country.

	% of economic	UDI	HDI Level
Country	impact to GDP	HDI	
Albania	0.02	0.72	High
Algeria	0.13	0.72	High
American Samoa	0.04	0.70	Medium
Angola	0.96	0.53	Low
Anguilla (UK)	1.01	0.77	High
Antigua & Barbuda	0.23	0.77	High
Argentina	0.85	0.81	Very high
Aruba (Netherlands)	0.05	0.79	High
Australia	0.17	0.93	Very high
Azores Isl. (Portugal)	0.44	0.89	Very high
Bahamas	1.66	0.79	High
Bahrain	0.27	0.82	Very high
Bangladesh	0.32	0.56	Medium
Barbados	0.03	0.78	High
Belgium	0.17	0.88	Very high
Belize	3.79	0.73	High
Benin	0.18	0.48	Low
Bermuda (UK)	0.51	0.91	Very high
Bosnia & Herzegovina	0.00	0.73	High
Brazil	0.06	0.74	High
British Virgin Isl. (UK)	0.57	0.84	Very high
Brunei Darussalam	0.01	0.85	Very high
Bulgaria	0.23	0.78	High
Cambodia	0.44	0.58	Medium
Cameroon	0.55	0.50	Low
Canada	0.42	0.90	Very high
Cape Verde	3.06	0.64	Medium
Cayman Isl. (UK)	0.00	0.87	Very high
Chile	3.49	0.82	Very high
China	0.26	0.72	High
Colombia	0.04	0.71	High

Country	% of economic	HDI	HDI Level
	impact to GDP		
Comoros	11.20	0.49	Low
Congo (ex-Zaire)	0.10	0.56	Medium
Congo, R. of	0.70	0.34	Low
Cook Islands	2.57	0.71	High
Costa Rica	0.18	0.76	High
Côte d'Ivoire	0.17	0.45	Low
Croatia	0.22	0.81	Very high
Cuba	0.15	0.81	Very high
Curacao	0.31	0.81	Very high
Denmark	0.85	0.90	Very high
Djibouti	0.00	0.47	Low
Dominica	5.62	0.72	High
Dominican Republic	0.01	0.70	High
Ecuador	0.62	0.71	High
Egypt	0.04	0.68	Medium
El Salvador	0.06	0.66	Medium
Equatorial Guinea	0.40	0.56	Medium
Eritrea	0.10	0.38	Low
Estonia	1.65	0.84	Very high
Faeroe Isl. (Denmark)	25.87	0.86	Very high
Falkland Isl. (UK)	48.59	0.86	Very high
Fiji	1.46	0.72	High
Finland	0.03	0.88	Very high
France	0.09	0.88	Very high
French Guiana	0.02	0.80	Very high
French Polynesia	16.37	0.78	High
Gabon	0.88	0.67	Medium
Gambia	2.96	0.44	Low
Georgia	0.20	0.74	High
Germany	0.03	0.91	Very high
Ghana	1.50	0.57	Medium
Greece	0.66	0.85	Very high
Greenland	51.10	0.79	High
Grenada	0.66	0.74	High

Country	% of economic	HDI	HDI Level
	impact to GDP		
Guadeloupe (France)	0.06	0.83	Very high
Guam (USA)	0.02	0.77	High
Guatemala	0.02	0.63	Medium
Guinea	1.53	0.39	Low
Guinea-Bissau	2.51	0.40	Low
Guyana	3.60	0.64	Medium
Haiti	0.09	0.47	Low
Honduras	0.45	0.62	Medium
Hong Kong	0.13	0.89	Very high
Iceland	22.71	0.89	Very high
India	0.06	0.59	Medium
Indonesia	0.29	0.68	Medium
Iran	0.30	0.75	High
Iraq	0.00	0.64	Medium
Ireland	0.45	0.90	Very high
Israel	0.00	0.89	Very high
Italy	0.15	0.87	Very high
Jamaica	0.03	0.72	High
Japan	0.37	0.89	Very high
Jordan	0.00	0.75	High
Kenya	0.03	0.54	Low
Kiribati	22.51	0.61	Medium
Korea (North)	2.36	0.54	Low
Korea (South)	0.61	0.89	Very high
Kuwait	0.00	0.81	Very high
Latvia	0.69	0.81	Very high
Lebanon	0.00	0.77	High
Liberia	0.91	0.41	Low
Libya	0.11	0.78	High
Lithuania	0.78	0.83	Very high
Madagascar	1.25	0.50	Low
Madeira Isl. (Portugal)	0.27	0.57	Medium
Malaysia	0.82	0.77	High
Maldives	17.97	0.70	Medium

Country	% of economic	HDI	HDI Level
	impact to GDP		
Malta	0.24	0.83	Very high
Marshall Isl.	52.15	0.57	Medium
Martinique (France)	0.11	0.84	Very high
Mauritania	7.01	0.49	Low
Mauritius	0.21	0.77	High
Mayotte (France)	3.21	0.69	Medium
Mexico	0.05	0.76	High
Micronesia	34.89	0.65	Medium
Montenegro	0.03	0.79	High
Montserrat (UK)	0.14	0.64	Medium
Morocco	2.21	0.62	Medium
Mozambique	0.10	0.39	Low
Myanmar	0.10	0.52	Low
Namibia	11.42	0.62	Medium
Nauru	2.03	0.63	Medium
Netherlands	0.24	0.92	Very high
New Caledonia (France)	0.24	0.78	High
New Zealand	1.45	0.91	Very high
Nicaragua	0.40	0.61	Medium
Nigeria	0.02	0.50	Low
Niue (New Zealand)	11.76	0.64	Medium
North Cyprus	0.12	0.85	Very high
North Marianas (USA)	0.03	0.77	High
Norway	1.05	0.94	Very high
Oman	0.28	0.78	High
Pakistan	0.33	0.54	Low
Palau	2.33	0.77	High
Panama	1.72	0.77	High
Papua New Guinea	3.58	0.49	Low
Peru	13.86	0.74	High
Philippines	0.43	0.66	Medium
Poland	0.09	0.83	Very high
Portugal	0.75	0.82	Very high
Puerto Rico (USA)	0.01	0.87	Very high

Country	% of economic	HDI	HDI Level
	impact to GDP		
Qatar	0.01	0.85	Very high
Réunion (France)	0.11	0.82	Very high
Romania	0.03	0.78	High
Russian Federation	0.30	0.78	High
Saint Helena (UK)	6.88	0.65	Medium
Saint Kitts & Nevis	0.12	0.75	High
Saint Lucia	0.20	0.71	High
Saint Vincent & the Grenadines	2.80	0.72	High
Samoa	3.17	0.69	Medium
Sao Tome & Principe	14.93	0.56	Medium
Saudi Arabia	0.04	0.84	Very high
Senegal	13.54	0.49	Low
Seychelles	7.34	0.76	High
Sierra Leone	2.97	0.37	Low
Singapore	0.00	0.90	Very high
Slovenia	0.04	0.87	Very high
Solomon Isl.	16.00	0.49	Low
Somalia	6.57	0.27	Low
South Africa	0.41	0.66	Medium
South Cyprus	0.07	0.85	Very high
Spain	0.53	0.87	Very high
Sri Lanka	0.18	0.75	High
Sudan	0.00	0.47	Low
Suriname	0.67	0.70	High
Sweden	0.07	0.90	Very high
Syrian Arab Republic	0.01	0.66	Medium
Taiwan	0.98	0.88	Very high
Tanzania	0.16	0.49	Low
Thailand	1.06	0.72	High
Timor Leste	0.03	0.62	Medium
Togo	1.19	0.47	Low
Tokelau (New Zealand)	42.48	0.53	Low
Tonga	0.95	0.70	High
Trinidad & Tobago	0.07	0.77	High

Country	% of economic	HDI	HDI Level
	impact to GDP		
Tunisia	0.42	0.72	High
Turkey	0.22	0.76	High
Turks & Caicos Isl. (UK)	1.55	0.75	High
Tuvalu	70.25	0.55	Low
Ukraine	0.45	0.73	High
United Arab Emirates	0.03	0.83	Very high
United Kingdom	0.36	0.89	Very high
Uruguay	0.67	0.79	High
US Virgin Isl.	0.09	0.78	High
USA	0.24	0.91	Very high
Vanuatu	38.29	0.62	Medium
Venezuela	0.12	0.76	High
Viet Nam	0.31	0.64	Medium
Wallis & Futuna Isl. (France)	2.66	0.68	Medium
Yemen	0.52	0.50	Low

252 References

- Dunne, J. P. *et al.* GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I:
 Physical formulation and baseline simulation characteristics. *Journal of Climate* 25, 6646-6665
 (2012).
- 2562Dufresne, J.-L. *et al.* Climate change projections using the IPSL-CM5 Earth System Model: from257CMIP3 to CMIP5. *Climate Dynamics* **40**, 2123-2165 (2013).
- Giorgetta, M. A. *et al.* Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM
 simulations for the Coupled Model Intercomparison Project phase 5. *Journal of Advances in Modeling Earth Systems* 5, 572-597 (2013).
- Van Vuuren, D. P. *et al.* The representative concentration pathways: an overview. *Climatic Change* 109, 5-31 (2011).
- Close C, C. W., Hodgson S, Lam V, Watson R, Pauly D. Distribution ranges of commercial fishes
 and invertebrates. *Fishes in Databases and Ecosystems. Fisheries Centre Research Reports* 14,
 27–37 (2006).
- 2666Cheung, W. W., Lam, V. W. & Pauly, D. Modelling present and climate-shifted distribution of267marine fishes and invertebrates. (2008).
- 2687Pauly, D. The relationships between gill surface area and growth performance in fish: a269generalization of von Bertalanffy's theory of growth. *Meeresforschung* 28, 251-282 (1981).
- Pauly, D. & Kinne, O. *Gasping fish and panting squids: oxygen, temperature and the growth of water-breathing animals*. Vol. 22 (International Ecology Institute, 2010).
- Pörtner, H.-O. Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating
 climate-related stressor effects in marine ecosystems. *The Journal of experimental biology* 213,
 881-893 (2010).
- 275 10 Cheung, W. W. *et al.* Projecting global marine biodiversity impacts under climate change
 276 scenarios. *Fish Fish* **10**, 235-251 (2009).
- 277 11 Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch.
 278 Nature 497, 365-368 (2013).
- Cheung, W. W., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton
 dynamics into projected maximum fisheries catch potential under climate change in the
 Northeast Atlantic. *ICES J Mar Sci*, doi:10.1093/icesjms/fsr012 (2011).
- 28213Zeller, D. *et al.* Still catching attention: Sea Around Us reconstructed global catch data, their283spatial expression and public accessibility. *Marine Policy* **70**, 145-152 (2016).
- 28414Jones, M. C. & Cheung, W. W. Multi-model ensemble projections of climate change effects on285global marine biodiversity. *ICES Journal of Marine Science: Journal du Conseil*, fsu172 (2014).
- 28615Cheung, W. W. L. *et al.* Structural uncertainty in projecting global fisheries catches under climate287change. *Ecol. Model.* **325**, 57 66 (2016).
- Sumaila, U. R., Marsden, A. D., Watson, R. & Pauly, D. A global ex-vessel fish price database:
 construction and applications. *J. Bioecon.* 9, 39-51 (2007).
- Swartz, W., Sumaila, R. & Watson, R. Global Ex-vessel Fish Price Database Revisited: A New
 Approach for Estimating 'Missing' Prices. *Environ. Resour. Econ.*, 1-14, doi:10.1007/s10640-012 9611-1 (2012).
- 29318Murawski, S. A. & Serchuk, F. M. Mechanized shellfish harvesting and its management: the294offshore clam fishery of the eastern United States. Marine invertebrate fisheries: their295assessment and management. Wiley, New York, 479-506 (1989).

296 297	19	Division, D. F. & Fisheries, D. C. f. <i>Towards sustainable fisheries: economic aspects of the management of living marine resources</i> . Vol. 1 (OECD, 1997).
298	20	Asche, F., Bremnes, H. & Wessells, C. R. Product aggregation, market integration, and
299		relationships between prices: an application to world salmon markets. American Journal of
300		Agricultural Economics 81 , 568-581 (1999).
301	21	Hannesson, R. Globalisation of seafood prices: some examples. ACP-EU Fisheries Research
302		Report 5 , 15-16 (1999).
303	22	Pinnegar, J. K., Hutton, T. P. & Placenti, V. What relative seafood prices can tell us about the
304		status of stocks. Fish and Fisheries 7, 219-226 (2006).
305	23	Alexandratos, N. World agriculture: towards 2010: an FAO study. (Food & Agriculture Org.,
306		1995).
307	24	Sverdrup-Jensen, S. Fish demand and supply projections. Naga, the ICLARM Quarterly 20, 77-78
308		(1997).
309	25	Delgado, C. L. & Courbois, C. Changing fish trade and demand patterns in developing countries
310		and their significance for policy research. (International Food Policy Research Institute (IFPRI),
311		1997).
312	26	Delgado, C. L. Fish to 2020: Supply and demand in changing global markets. Vol. 62 (WorldFish,
313		2003).
314	27	Pontecorvo, G., Wilkinson, M., Anderson, R. & Holdowsky, M. Contribution of the ocean sector
315		to the United States economy. Science 208, 1000-1006 (1980).
316	28	Arnason, R. Climate change and fisheries: assessing the economic impact in Iceland and
317		Greenland. Natural Resource Modeling 20, 163-197 (2007).
318	29	Dyck, A. J. & Sumaila, U. R. Economic impact of ocean fish populations in the global fishery. J.
319		Bioecon. 12 , 227-243 (2010).