- 1 Stochastic assembly in a subtropical forest chronosequence: evidence from contrasting changes
- 2 of species, phylogenetic and functional dissimilarity over succession
- 3 Xiangcheng Mi, Nathan G. Swenson, Qi Jia, Mide Rao, Gang Feng, Haibao Ren, Daniel P. Bebber,
- 4 Keping Ma
- 5
- 6 Appendix A. Study area and basic description of the plots
- 7 Figure A1

9 Figure A1. Locations of study area and Gutianshan National Nature Reserve (NNR). a) Zhejiang
10 Province with Gutianshan NNR in China; b) Gutianshan NNR in Zhejiang Province; c) Gutianshan
11 NNR with nine 1-ha plots. The purple lines in b and c are the boundary of Gutianshan NNR. Twice-cut
12 forest: plots 1-3 have been naturally restored forests after clear-cutting 50 years ago and selective

- 13 cutting for forest tending 20 years ago. Once-cut forest: plots 4-6 have been naturally restored forests
- 14 after clear-cutting 50 years ago. Old growth forest: plots 7-9 are old-growth forests without human
- 15 disturbance more than 100 years (figure created from ASTER global digital elevation model owned by
- 16 METI and NASA: http://www.jspacesystems.or.jp/ersdac/GDEM/E/4.html and authors' data with
- 17 ArcGiS 10.0 (ESRI): www.esri.com/software/arcgis/).

18 Fig. A2

19

Figure A2. Topography map of 9 1-ha plots along a disturbance gradient in Gutianshan Nature Reserve.
1) twice-cut forest: plots 1-3; 2) once-cut forest: plots 4-6; 3) old growth forest: plots 7-9.

23 Fig. A3

Fig. A3. Photos of forest types in this study. Each photo was used to illustrate the forest physiognomy

- 26 and structure difference among a) twice-cut forest, b) once-cut forest, c) old growth forest.
- 27 Photo Credit: Xiangcheng Mi

Plot	Successional	Elevation	Maximum	Species	Tree density
	stage	range (m)	elevation	richness	(individuals/ha)
			difference (m)		
1		338.9-	(1.4		
	Ι	400.3	61.4	100	11,611
2		356.1-			
	Ι	425.5	69.4	95	10,467
3		312.9 -			
	Ι	372.6	59.7	85	8,323
4	II	377.5-451.3	73.8	105	5,303
5	II	396.7-472.0	75.3	123	5,501
6		468.2-	_/_		
	II	544.9	76.7	87	5,138
7	III	556.9-643.0	86.1	114	4,678
8	III	713.8-772.9	59.1	89	6,724
9	III	575.8-652.1	76.3	118	4,381

Table A1. The description of diversity, elevation range, maximum elevation difference in each plot anddensity of 9 1-ha forest plots

34 Appendix B Phylogenetic signal analysis of available functional traits

I raits	K value	P value
Specific leaf area (SLA)	0.108	0.049
Leaf area	0.105	0.154
Leaf phosphor content	0.160	0.004
Leaf nitrogen content	0.255	0.001
Maximum height	0.441	0.001
Wood density	0.214	0.001
Axis 1 of PCA	0.270	0.007
Axis 2 of PCA	0.342	0.001

36 Table B1 The phylogenetic signal analysis of available functional traits

39 Appendix C Spatial Correlograms of residuals of linear mixed models

Figure C1. The spatial correlogram of residuals of linear mixed models for within-plot and
between-plot beta diversity against distance classes at a scale of 20×20 m. a) is spatial
correlogram of residuals of linear mixed model of species beta diversity, b) for phylogenetic beta
diversity, c) for functional beta diversity of all traits at within-plot level, while d) is spatial
correlogram of residuals of linear mixed model of species beta diversity, e) for phylogenetic beta
diversity, f) for functional beta diversity of all traits at between-plot level. All of Mantel r in the
figure is not significant (p >0.05).

Appendix D. The within-plot and between-plot functional beta diversity of individual traits at

51 Figure D1. The within-plot (a-f) and between-plot (g-l) functional beta diversity of individual traits for all pairs of quadrats (black square, mean \pm SE) within disturbance regime at a scale of 10×10 52 m. Different letters indicate significant differences (P<0.05) between the effect among disturbance 53 54 regimes, and the significance of difference between disturbance regimes was calculated by multiple 55 comparison. The grey-shaded area represent the 95%-confidence interval for the τ_{st} values from the 999 random communities. τ_{st} values inside the interval indicate phylogenetic or functional randomness, and 56 τ_{st} values outside the interval indicate the significant phylogenetic or functional clustering or dispersion. 57 58 SLA = specific leaf area, LA = leaf area, WD = wood density, LPC = leaf phosphorus content, LNC = 59 leaf nitrogen content, MH = maximum height. Disturbance regimes: 1. twice-cut forest: clear-cutting 60 50 years ago and selective cutting 20 years ago, 2. once-cut forest: clear-cutting 50 years ago, 3. old 61 growth forest: without human disturbance more than 100 years.

63 Appendix E Species, phylogenetic and functional beta diversity of different disturbance regimes at

64 within-plot and between-plot levels and at different scales

66	Fig. E1. Within-plot and between-plot species, phylogenetic and functional beta diversity for all pairs of
67	quadrats (black square, mean \pm SE) within different disturbance regimes at a scale of 20×20 m. Different
68	letters indicate significant differences (P<0.05) between disturbance regimes, and the significance of
69	difference between disturbance regimes was calculated by multiple comparison. The grey-shaded area
70	represent the 95%-confidence interval for τ_{st} and B_{st} values from the 999 random communities. τ_{st} and
71	B_{st} values inside the interval indicate phylogenetic or functional randomness, and τ_{st} and B_{st} values
72	outside the interval indicate the significant phylogenetic or functional clustering or dispersion. The
73	right, middle and left panels showed phylogenetic beta diversity for cohorts with 1-5 cm dbh, 5-10 cm
74	dbh, and larger than 10 cm. Disturbance regimes: 1.twice-cut forest: clear-cutting 50 years ago and
75	selective cutting 20 years ago, 2. once-cut forest: clear-cutting 50 years ago, 3. old growth forest:
76	without human disturbance more than 100 years.

81	Fig. E2 Within-plot (a-i) and between-plot (j-r) species, phylogenetic and functional beta diversity for
82	all pairs of quadrats (black square, mean±SE) in different disturbance regimes at a scale of 10×10 m.
83	Different letters indicate significant differences (P<0.05) between disturbance regimes, and the
84	significance of difference between disturbance regimes was calculated by multiple comparison. The
85	grey-shaded area represent the 95%-confidence interval for the τ_{st} and B_{st} values from the 999 random
86	communities. τ_{st} and B_{st} values inside the interval indicate phylogenetic or functional randomness, and
87	τ_{st} and B_{st} values outside the interval indicate the significant phylogenetic or functional clustering or
88	dispersion. The right, middle and left panels showed functional beta diversity for cohorts with 1-5 cm
89	dbh, 5-10 cm dbh, and larger than 10 cm. Disturbance regimes: 1.twice-cut forest: clear-cutting 50
90	years ago and selective cutting 20 years ago, 2. once-cut forest: clear-cutting 50 years ago, 3. old
91	growth forest: without human disturbance more than 100 years.

95 Appendix F Effect of disturbance regime and other significant factors on species, phylogenetic and

- 96 functional beta diversity
- 97 Table F1. Effect of disturbance regimes and other significant factors on species and phylogenetic
- 98 beta diversity at within-plot and between-plot levels and at scale of 20×20m

Beta diversity type		Statistics				
		Predicting variables	DF1	DF2	F	Р
	Chao-Jaccard	Disturbance regime	2.0	6.5 2686 4	0.79	0.491 < 001
Within-plot beta	dissimilarity	Disturbance regime×habitat	3.0	2687.8	7.13	<.001
diversity	Bst	Disturbance regime habitat distance	2 1	6.0 2665.4	0.17 12.71	0.845 <0.01
	$ au_{st}$	Disturbance regime Disturbance regime ×habitat distance	2.0 3.0	6.85 2659.2	0.584 10.50	0.583 <.001
	Chao-Jaccard	Disturbance regime	2	6.4	6.47	0.029
	dissimilarity	Habitat distance Disturbance regime ×habitat distance	1 2	5614.1 5614.0	11.00 28.78	0.001 <.001
Between-plot beta diversity	Bst	Disturbance regime Habitat distance Spatial distance Disturbance regime	2 1 1 2	2.2 5566.6 19.2 5562	0.092 33.26 15.99 18.02	0.915 <.001 <0.001 <.001
	$ au_{st}$	×habitat distance Disturbance regime Habitat distance Disturbance regime ×habitat distance	2 1 2	6.4 5587.4 5587.3	0.424 75.96 25.08	0.671 <.001 <.001

99

100

102 Table F2. Effect of disturbance regimes and other significant factors on species and phylogenetic

103 beta diversity at within-plot and between-plot levels and at scale of 10×10m

Beta diversity type		Statistics					
	5 51	Predicting variables	DF1	DF2	F	Р	
		Disturbance regime	2.0	6.0	1.22	0.359	
	Chao-Jaccard	Habitat distance	1.0	44519	663.45	<.001	
		Spatial distance	1.0	44516	1692.10	<.001	
	dissimilarity	Disturbance					
Within-plot beta		regime×habitat distance	3.0	44519	51.96	<.001	
divorsity		Disturbance regime	2	6.0	0.23	0.800	
uiversity	Ret	Habitat distance	1	44291	147.85	<.001	
	DSI	Disturbance					
		regime×habitat distance	2	44291	16.74	<.001	
	$ au_{st}$	Disturbance regime	2.0	6.0	0.020	0.981	
		Habitat distance	1.0	44380	22.15	<.001	
	Chao-Jaccard	Disturbance regime	2	9.0	0.90	0.438	
	Chao-Jaccara	Habitat distance	2 1	89952	738.95	<.001	
	dissimilarity	Spatial distance	1	5669	178.52	<.001	
	dissimilarity	Disturbance regime ×habitat distance	2	89951	86.19	<.001	
Ratwaan_nlat hata		Disturbance regime	2	5	0.05	0.950	
Detween-plot beta		Habitat distance	1	89564	262.98	<.001	
diversity	Rst	Spatial distance	1	701	62.61	<.001	
uiversity	DSt	Disturbance regime ×habitat distance	$\begin{array}{c} 2.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 3.0 \\ 2 \\ 1 \\ 2 \\ 2.0 \\ 1.0 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \end{array}$	89561	46.73	<.001	
		Disturbance regime	2	4	0.168	0.851	
	τ	Habitat distance	1	89702	154.01	<.001	
	<i>L</i> _{St}	Spatial distance	1	217	38.42	<.001	
		Disturbance regime ×habitat distance	2	89702	45.33	<.001	