Supplementary Information

Understanding the Solvent Molecules Induced Spontaneous Growth of Uncapped Tellurium Nanoparticles

Jun Liu¹, Changhao Liang*^{1,2}, Xiaoguang Zhu¹, Yue Lin², Hao Zhang² and Shouliang Wu¹

¹Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China

²Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China Correspondence and requests for materials should be address to C. H. L (<u>chliang@issp.ac.cn</u>)

Figure S1 TEM images of uncapped Te nanoparticles generated in H₂O (A), CH₃OH (B), CH₃CH₂OH (C), CH₃COCH₃ (D) and CH₂Cl₂ (E), respectively

Figure S2 Size distribution histograms of uncapped Te nanoparticles (A₁-E₁), nanochains (A₂-E₂), agglomerates (A₃-E₃) and microspheres (A₄-E₄) generated in H₂O, CH₃OH, CH₃CH₂OH, CH₃COCH₃ and CH₂Cl₂, respectively.

Figure S3 XRD patterns of Te nanochains formed in H₂O, CH₃OH, CH₃CH₂OH, CH₃COCH₃ and CH₂Cl₂. Red dots marked peaks indexed to TeO₂.

Figure S4 Low- and high magnification SEM images of Te nanocubes formed in CH₂Cl₂.

Figure S5 XRD patterns of Te microspheres generated in H₂O, CH₃OH, CH₃CH₂OH, CH₃COCH₃ and CH₂Cl₂. Red dots marked peaks indexed to TeO₂.

Figure S6 Zeta potential of Te nanochains colloidal solution in various solvents: H₂O (A), CH₃OH (B), CH₃CH₂OH (C), CH₃COCH₃ (D) and CH₂Cl₂ (E) in sequence.

Figure S7 EDX spectra of Pt located Te nanoparticles and Pt-Te hybrid structures.

Table S1* Concentration of initial Te nanoparticles colloidal solution in five kinds of solvents, which was performed by Inductively Coupled Plasma Mass Spectrometer (ICP).

Concentration of Te nanoparticles colloidal solution (mg/L)

Solvents	1	2	3	Average value	Standard Deviation
H ₂ O	24.11	24.11	24.22	24.15	0.052
CH₃OH	24.93	25.00	25.22	25.05	0.123
CH ₃ CH ₂ OH	26.00	25.14	25.91	25.68	0.386
CH ₃ COCH ₃	25.67	25.69	25.81	25.72	0.062
CH ₂ Cl ₂	24.20	24.90	24.71	24.60	0.296

*Note: Laser ablation in liquids is a special method for preparing colloidal solution, the concentration of colloidal solution is strongly correlated with laser parameters, including wavelength of pulse laser, pulse laser energy (or fluence), ablation time, volume of liquids. In our experiment, the Te target was immersed in 15 mL of solvents and ablated using a 1064 nm Nd: YAG pulse laser with a pulse duration of 10 ns and pulse energy of 30 mJ to obtain Te nanoparticles. Under room temperature and pressure, the Te nanoparticles in various solvents obtained with same ablation time show the same initial concentrations.

Table S2 *Average size and standard deviation (σ) of uncapped Te nanoparticles, nanochains, agglomerates and microspheres generated in H₂O, CH₃OH, CH₃CH₂OH, CH₃COCH₃ and CH₂Cl₂.

solvents	nanoparticles		nanchains		agglomerates		microspheres	
	average size	σ	average size	σ	average size	σ	average size	σ
H ₂ O	1.79	0.50	12.97	4.34	34.16	11.19	190.07	58.51
CH ₃ OH	1.78	0.38	8.24	2.23	20.53	3.33	840.14	254.83
CH ₃ CH ₂ OH	2.31	0.86	6.67	2.81	20.29	4.49	1006.35	332.94
CH ₃ COCH ₃	2.00	0.66	4.48	1.05	17.31	3.82	990.37	409.06
CH_2Cl_2	2.00	0.70	9.08	1.98	320.00	51.69	885.60	419.89

*Note: The average size and standard deviation of different Te nanostructures was collected on the basis of the calculation and fitting of over hundreds of Te nanostructures from dozens of TEM or SEM images. The unit of average size and standard deviation are both nanometers (nm).

Table S3 Growth rate of Te nanchains, agglomerated and microspheres in various solvents. Formation of Te nanochains by OA mechanism was designed as Stage 1, generation of Te agglomerates and microspheres was designed as Stage 2 and Stage 3, respectively. The corresponding growth rate of different Stage (GS) was calculated by Δ average size/ Δ time (nm/hour) and defined as GS₁, GS₂ and GS₃, respectively. To make convenient comparison, the value of GS₁ and GS₃ was both took the natural logarithm. For drawing related column bar graph, the value of GS₂ multiplies by 100 and then took the natural logarithm.

solvents	ln(GS1)	ln(GS ₂)	$ln(GS_2 \times 100)$	ln(GS ₃)
H ₂ O	8.52	3.06	7.66	1.91
CH ₃ OH	4.87	-0.67	3.94	1.74
CH ₃ CH ₂ OH	3.49	-1.95	2.65	1.41
CH ₃ COCH ₃	3.92	-2.57	2.03	1.06
CH ₂ Cl ₂	3.35	4.16	8.77	0.54

solvents	polarity	dielectric constant	dipole moment (Debye)	viscosity (cp 20°C)
H ₂ O	10.2	80	1.85	1.0
CH ₃ OH	6.6	33	1.7	0.6
CH ₃ CH ₂ OH	4.3	24.3	1.69	1.2
CH ₃ COCH ₃	5.4	20.7	2.88	0.32
CH ₂ Cl ₂	3.4	9.08	1.6	0.44

Table S4 Fundamental physicochemical properties of different solvents, including H₂O, CH₃OH, CH₃CH₂OH, CH₃COCH₃ and CH₂Cl₂.