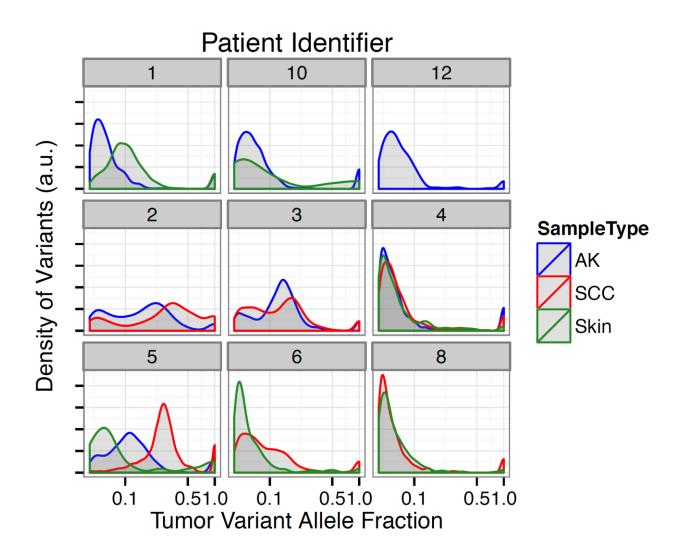
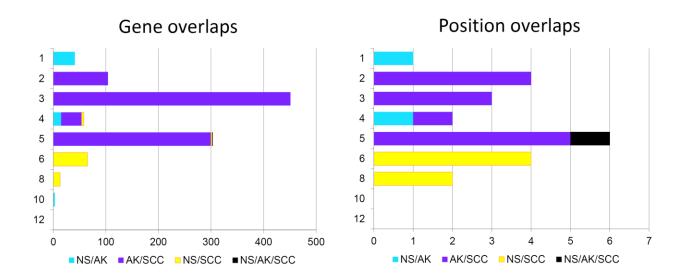
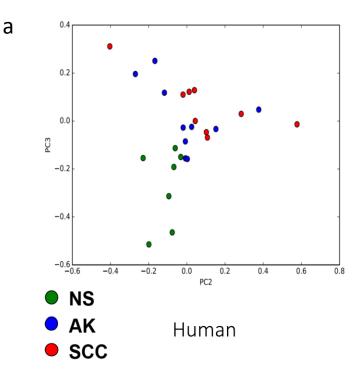

Supplementary Figures

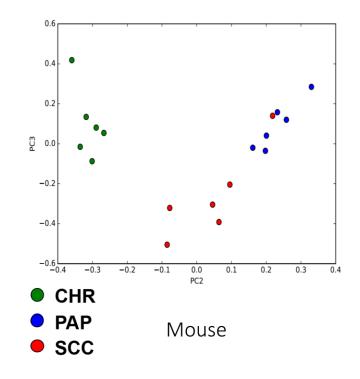

Dinucleotide variant proportions

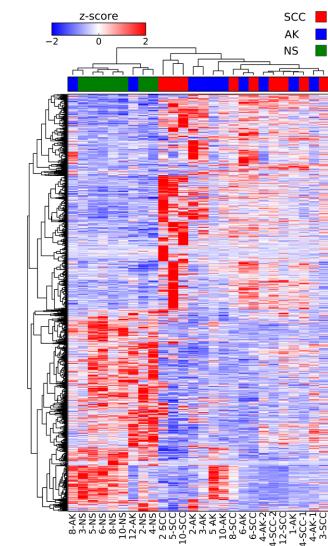
Supplementary Figure 1. Dinucleotide variant proportions. These are described and quantitated for each lesion type.

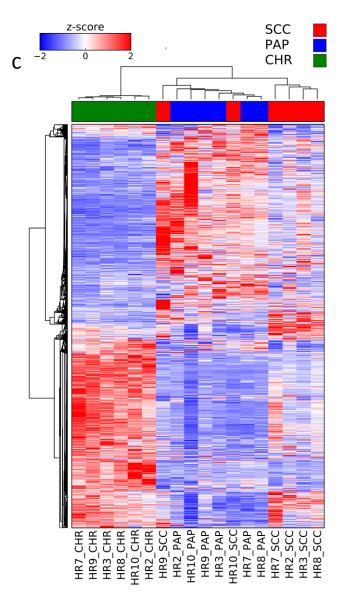


Supplementary Figure 2. Non-negative matrix factorization-derived orthogonal mutational profiles. (a) Heatmap of NMF-derived orthogonal mutational profiles derived from over 6,000 human cancers for the human exome samples. The scale bar refers to the proportion of mutations attributable to a given signature. The clustering confirms a strong enrichment for CpG-associated C \rightarrow T transitions classically associated with UVB-exposure (signature 14), particularly for AK and cuSCC, with segregation of most of the NS samples away from AK and cuSCC, with the exception of 1-NS, which has the highest mutational load in that class. Two other profiles dominated by C \rightarrow T transitions are significantly represented in the mutational data and relatively enriched in NS (signatures 10, 15), including one first described in the context of temozolamide exposure (signature 15). (b) Table of NMF Cluster Definitions. Our strategy employed non-smooth NMF, a variant which approximates the data using the basis and

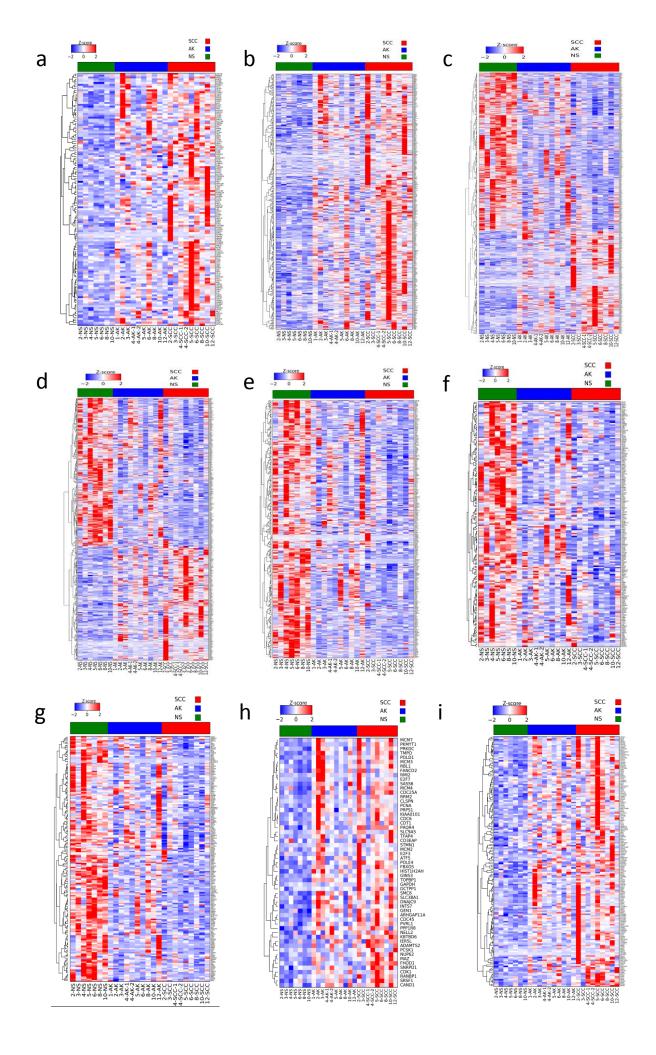

coefficient matrices as above with the addition of a third smoothing matrix which serves to absorb noise within the data, thus driving the coefficient and basis matrices to increase sparseness. The resulting basis matrix generated k=21 signatures from a diverse set of over 6000 cancers³⁹, reducing correlations between signatures originally derived by Alexandrov et al.⁷² thereby increasing orthogonality.

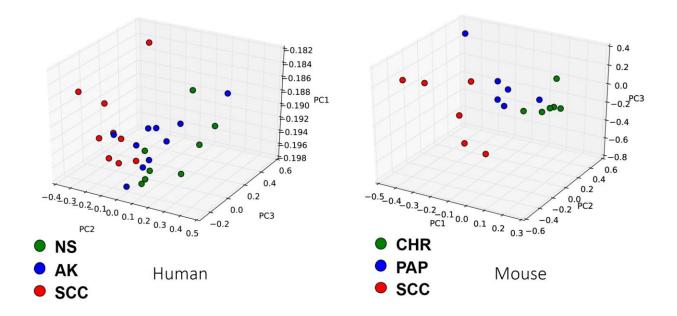



Supplementary Figure 3. Histograms of variant allele frequencies of samples grouped by patient.

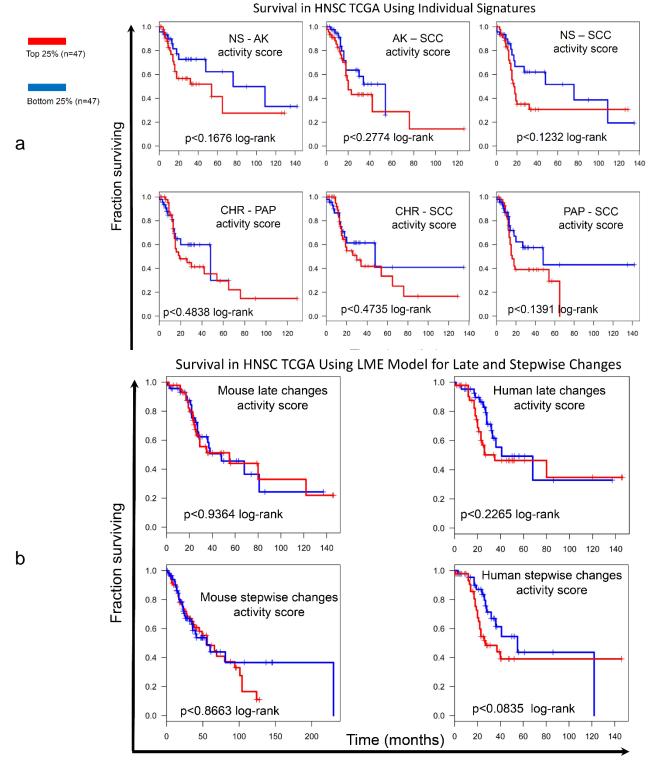


Supplementary Figure 4. Enumeration of overlaps between mutated genes and variant positions within mutated genes within samples. Overlaps in non-silent SNVs at the gene and position level are enumerated here.





b


Supplementary Figure 5. Analysis of mRNA expression in human and mouse lesions. (a) Principal component analysis of unsupervised mRNA expression. Using principal component analysis across three dimensions as an alternative means of organizing the transcriptional profiles, the results of the unsupervised clustering are largely recapitulated: cuSCC and AK/PAP segregate away from NS most prominently. (b) Clustering of recurrently differentially expressed human genes in at least 2 of 3 possible pairwise comparisons between NS, AK, and cuSCC shows that AKs cluster predominantly with cuSCC, consistent with the notion that they are largely transcriptomically more similar to cuSCC. (c) Clustering of recurrently differentially expressed mouse genes in at least 2 of 3 possible pairwise comparisons between CHR, PAP, and cuSCC shows that PAP cluster predominantly with cuSCC, consistent with the notion that they are largely transcriptomically more similar to cuSCC.

Supplementary Figure 6. TRANSFAC based analysis of transcription factor regulators. (a) ETS2 targets and (b) SP1 target are upregulated across the continuum of samples. (c) TCF3 targets that are overall downregulated have greater significance across the continuum than those that are upregulated in the late stage transition (AK/PAP to cuSCC). (d) LEF1 targets also exhibit a similar mixed pattern, with one subset of target genes with significant downregulation early (NS/CHR to AK/PAP) and a distinct subset showing upregulation late (AK/PAP to cuSCC). The majority of NFAT targets (e) also exhibit downregulation early. (f) AP1 and (g) FREAC2 (FOXF2) targets are downregulated across the continuum of cuSCC development. Targets of (h) E2F and (i) NFY are significantly upregulated early (NS to AK/PAP) and these were also highlighted in the linear mixed-effects (LME) model of progression which are highlighted in red in panel (Fig. 5a).

Supplementary Figure 7. Principal component analysis of unsupervised microRNA expression. Using principal component analysis across three dimensions as an alternative means of organizing the microRNA profiles, the results of the unsupervised clustering are largely recapitulated: while NS/CHR are very distinctly separated from cuSCC, segregation of AK/PAP as a distinct group is more clearly seen here as compared to the principal component analysis of mRNA profiles, particularly in mouse.

Supplementary Figure 8. Survival analysis for head & neck squamous cell carcinoma. (a) All of the individual signatures for all significant pairwise comparisons in human and mouse were probed for their ability to predict survival in *TP53*-mutant HNSCC in the top and bottom 25% of ranked signatures; none was significant. (b) The remaining late transition and stepwise (both

early and late) signatures from the LME model data were probed for their ability to predict survival in HNSCC; none was significant.

Supplementary Tables

Gene	#	Patients	Removed as common false	ositive genes:	
GPR98	 4	PT1,PT2,PT3,PT4	Gene	#	Patients
MYO7B	4	PT1,PT3,PT4,PT5	TTN	7	PT1,PT2,PT3,PT4,PT5,PT6,PT8
RELN	4	PT1,PT3,PT4,PT5	MUC16	6	PT1,PT2,PT3,PT4,PT5,PT6
TP53	4	PT1,PT3,PT4,PT5	CSMD3	3	PT2,PT3,PT5
CRB1	3	PT2,PT3,PT6	DNAH6	3	PT2,PT3,PT6
FAT1	3	PT3,PT4,PT5	DNAH7	3	PT3,PT5,PT6
FSIP2	3	PT2,PT3,PT5	HYDIN	3	PT3,PT5,PT6
IGFN1	3	PT2,PT3,PT5	LRP1B	3	PT1,PT3,PT5
MLL3	3	PT2,PT5,PT6	MUC4	3	PT2,PT3,PT5
RYR1	3	PT2,PT4,PT5	SYNE1	3	PT3,PT4,PT5
VWDE	3	PT2,PT3,PT5	ADAMTS20	2	PT2,PT4
ADAM29	2	PT3,PT4	CSMD1	2	PT3,PT5
ADGB	2	PT2,PT3	CTTNBP2	2	PT5,PT6
ANKRD31	2	PT3,PT6	DNAH10	2	PT1,PT5
ATP8A1	2	PT3,PT5	DNAH14	2	PT3,PT5
BTBD9	2	PT3,PT5	DNAH5	2	PT2,PT4
C16orf62	2	PT3,PT4	DNAH8	2	PT3,PT5
C2orf16	2	PT4,PT5	KALRN	2	PT3,PT5
CCDC168 CHD8	2 2	PT3,PT5 PT1,PT4	OR4K17 PCLO	2	PT3,PT5
CLTCL1	2	PT3,PT6	PCLO	2	PT1,PT5
CMYA5	2	PT4,PT5			
COL11A1	2	PT4,PT5			
COL1A2	2	PT3,PT5			
COL24A1	2	PT3,PT5			
COL27A1	2	PT4,PT5			
COL4A2	2	PT2,PT3			
COL4A3	2	PT3,PT4			
COL6A5	2	PT3,PT5			
COL6A6	2	PT2,PT5			
CSF3R	2	PT3,PT5			
CXorf22	2	PT3,PT4			
DDX60L	2	PT3,PT4			
DENND4A	2	PT4,PT5			
DGKH	2	PT4,PT5			
DNHD1	2	PT2,PT5			
DPP3	2	PT5,PT6			
DYNC111	2	PT3,PT5			
ENPP3	2	PT2,PT5			
FAM135A	2	PT5,PT8			
FER1L6	2	PT3,PT5			
FGA	2	PT3,PT5			
FREM3	2 2	PT3,PT5 PT3,PT5			
FRY GLDN	2	PT5,PT6			
HMCN1	2	PT3,PT5			
KIAA1324L	2	PT3,PT5			
KIAA1549	2	PT2,PT3			
LAMA1	2	PT3,PT4			
LAMC3	2	PT3,PT6			
LGI1	2	PT1,PT3			
LRP2	2	PT3,PT5			
MLL2	2	PT2,PT5			
MYH2	2	PT3,PT5			
MYH4	2	PT3,PT5			
MYO18B	2	PT3,PT4			
NAV3	2	PT2,PT5			
NHSL2	2	PT3,PT5			
NPAP1	2	PT3,PT5			
PALM2-AKAP2	2	PT2,PT3			
PAPPA2	2	PT3,PT5			
POLR3A	2	PT4,PT5			
PRB4 PRDM9	2	PT1,PT5			
PRDM9 PREX1	2 2	PT4,PT5 PT2,PT4			
PREA1 PRKD1	2	PT2,PT4 PT3,PT4			
PRR16	2	PT3,PT5			
PRRC2A	2	PT5,PT6			
PRUNE2	2	PT2,PT3			
PTPRQ	2	PT3,PT5			
ROS1	2	PT3,PT5			
RP1	2	PT3,PT5			
SCAND3	2	PT3,PT6			
SLC12A3	2	PT2,PT5			
SLC26A7	2	PT4,PT6			
SPAG17	2	PT3,PT5			
STARD9	2	PT1,PT3			
TCF20	2	PT5,PT6			
THSD7A	2	PT2,PT4			
TMEM131	2	PT2,PT5			
TRDN	2	PT1,PT3			
TRIM58	2	PT3,PT4			
TRIM66	2	PT2,PT4			
TTC40	2	PT3,PT6			
USH2A	2	PT2,PT6			
VWF	2	PT3,PT5			
WBP2NL WBSCR17	2 2	PT3,PT4 PT3,PT5			
WBSCR17 WDR87	2	PT3,PT5 PT3,PT4			
XIRP2	2	PT3,PT4 PT2,PT3			
ZFHX4	2	PT2,PT3 PT2,PT3			
2111/14	-				

Supplementary Table 1. Table of overlapping mutated genes across patients.

MOUSE

Top Canonical Pathways				
Name	p-value			
Mitotic Roles of Polo-Like Kinase	1.92E-09			
Cell Cycle Control of Chromosomal Replication	3.15E-09			
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	5.77E-06			
Hereditary Breast Cancer Signaling	7.97E-06			
Role of BRCA1 in DNA Damage Response	4.48E-05			

Top Upstream Regulators					
Upstream Regulator	p-value of overlap				
E2F4	1.00E-31				
RABL6	2.58E-25				
ERBB2	1.42E-18				
TP53	1.16E-15				
E2F1	1.99 E -15				

HUMAN

Top Canonical Pathways					
Name	p-value				
Cell Cycle Control of Chromosomal Replication	3.19E-09				
Mitotic Roles of Polo-Like Kinase	1.42E-08				
Hereditary Breast Cancer Signaling	2.85E-05				
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	3.45E-05				
Role of BRCA1 in DNA Damage Response	4.53E-05				

Top Upstream Regulators				
Upstream Regulator	p-value of overlap			
E2F4	1.06E-31			
RABL6	5.21E-24			
ERBB2	9.64E-18			
TP53	4.02E-15			
CDK4	4.09E-15			

Supplementary Table 2. Ingenuity Pathway Analysis of differentially expressed genes in the early (NS/CHR to AK/PAP) transition. Using the significantly differentially expressed genes in the early transition from NS/CHR to AK/PAP in the linear mixed effects model, IPA analysis was conducted separately for human and mouse genes. There is striking similarity in the key canonical pathways and upstream regulators identified.