
1 Supplementary Figures
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Supplementary figure 1: Experimental setup. Picture of the experimental set-up and of an impeller.

The notations for the two forcing conditions are defined along with the angle α characterizing the

curvature of the blades.
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Supplementary figure 2: Imaging Setup. Schematics of the PIV set-up viewed from above. A

laser lights micrometer sized particles in a meridional plane, while two cameras take successive

snapshots of the flow. This allows us to get the three components of the velocity field in the lit

meridional plane.
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Supplementary figure 3: Mean flow and fluctuations. Maps of the instantaneous (top panels) and

mean (middle panels) flows along with the standard deviation (bottom panels) at each measurement

points (same flow as in Fig. 1-4). Left column: V x. Middle column: V y. Right column: V z. We

see that the instantaneous flow is highly disordered, while the mean flow and the standard deviation

have well defined structures. Mesurements made at Re ≈ 3× 105.
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Supplementary figure 4: Mean injected kinetic power. Global dimensionless injected power per

unit mass ε (blue dots) in the stationary symmetric regime as a function of the Reynolds number

Re. The dotted line represents the fit ε ∝ Re−1. This figure has been adapted from Fig. 3 in 5. The

point at Re ≈ 107 was measured using normal liquid helium in the SHREK experiment while all

the other points have been obtained using water or glycerol.
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Supplementary figure 5: Variation of inertial energy dissipation with lenght-scale. Maps of the in-

stantaneous dimensionless coarse-grained inertial energy dissipation D`(u) as a function of scale

` for a flow at Re ≈ 3 × 105. a) Maps of D`(u) at three different scales. b) Maps of D`(u) at

different scales, along a line going through a peak in inertial dissipation. The colors code D`(u).

The scale is expressed in units of the grid step: 0.25mm.
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Supplementary figure 6: Inertial energy dissipation at different resolutions. Maps of the instanta-

neous dimensionless coarse-grained inertial energy dissipationD`(u) at three different resolutions

(2δx): a) 4 mm (PIV window 128×128), b) 1 mm (PIV window 32×32) and c) 0.5 mm (PIV win-

dow 16×16). Figure d) shows D`(u) as a function of scale `, at the "center" of the strong event

identified by the white dot on the maps: blue: computed at the resolution 4 mm , green: computed

at the resolution 1 mm; red: computed at the resolution 0.5 mm. The area inside the black square

in figure c) is magnified in Fig. 7.
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Supplementary figure 7: Local velocity around a strong event. Local in-plane velocity around a

strong inertial dissipation event. The colors code the instantaneous dimensionless coarse-grained

inertial energy dissipation D`(u), the arrows code the in-plane velocity. The region showed here

corresponds to the area inside the black square of Fig. 6c). The white dot is at the same position as

in Fig. 6. An abrupt change in the x-component of the velocity at this location can be observed.
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Supplementary figure 8: Simulated cusps. (Color online) inertial dissipation near singularity

generated by a vorticity cusp. Panel a: isocontour of vorticity showing the cusp at the origin.

Panel b: velocity in the plane Z = 0 in the vicinity of the cusp. The white line is the location of

maximum vorticity in that plane. The color code the out-of-plane velocity. The arrow codes the in-

plane velocity. Panel c: inertial dissipation computed using the velocity field of Panel b. The color

codes de inertial dissipation, while the arrow code the local in plane velocity. Units are arbitrary.
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2 Supplementary Notes

Supplementary Note 1: The experimental set-up Our von Kármán flow is generated by two

counter-rotating impellers in a vertical cylinder (see Fig. 1). The radius of the cylinder is R =

100mm and its height is H = 240mm. The impellers used in this paper are flat disks of diameter

185 mm, seperated by a distance h = 180 mm and fitted with 8 curved, radial blades of height

hb = 20mm. The curvature of the blades is characterized by an angle |α| = 72◦.

The impellers are driven by two independent motors which can rotate at frequencies up to

typically 10 Hz. In our study, the motor frequencies have been set equal in order to get exact

counter-rotating regime. The curvature of the blades allows to choose between two different forcing

conditions in order to generate flows with different statistical properties. Here, we choose to rotate

the impeller in the (-) direction defined on Fig. 1, to get α = −72◦

Our experimental set-up allows for both global and local flow diagnostics. Local velocity

measurements are performed using Stereoscopic Particle Image Velocimetry (SPIV) in the station-

ary regime (see Fig. 2). The particles we have used have a size of a few tens of micrometers and

their density is 1.4. A laser of wavelength 532 nm is used to light a meridional plane while two

cameras of resolution 1600x1200 pixels, set at 45◦ with respect to that plane, take successive snap-

shots of the flow. Then, the velocity field is reconstructed using peak correlation performed over

50% overlapping windows of size 16 to 32 pixels. As a result, we get instantaneous snapshots of

the three components of the velocity field on a grid of approximate size 90× 70 (see Fig. 3).
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Typical maps of the instantaneous (top panels) and time averaged (middle panels) velocity

fields for the global experiments are provided on Fig. 3, along with maps of the standard deviation

(bottom panels) of the three components of the velocity at each grid points at Re ≈ 3 × 105. The

statistics for these maps have been obtained from 3×104 instantaneous snapshots. We observe that

the instantaneous velocity fields are highly disordered contrary to the mean flow and the standard

deviation which have well defined structures.

Along with local measurements, global diagnostics can be obtained. The torque applied to

the top and bottom shafts are monitored using SCAIME technology, which allows us to measure the

total power injected by the impellers into the flow (see Fig. 4). The calibration procedure, along

with several other details on the experimental set-up may be found in 2, 3 and references therein.

Fig. 4 presents the global injected power per unit mass ε as a function of the Reynolds number

Re (blue rhombi). It can be seen that at low Reynolds numbers (i.e Re < 200), ε decreases as

Re−1 (dotted line). However, when Re becomes greater than 200, the flow becomes chaotic and

a discrepancy between the experimental measurements and the Re−1 law appears. For very large

Reynolds number, Re > 105, dissipation rate, ε, becomes constant 4 (ε ≈ 0.046).

Supplementary Note 2: Examples of measured inertial dissipation fields. An example of vari-

ation of D`(u) as a function of the scale ` and position x is provided in Fig. 5 for an instantaneous

velocity field at Re ≈ 3× 105. As the scale ` is decreased, the D2D(u) does not vanish, but instead

points towards localized points which we identify as strong inertial dissipation event with h ≤ 1/3.
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For this computation, we have used a spherically symmetric function of x given by:

G`(r) =
1

N
exp(−1/(1− (r/(2`)2)), (1)

where N is a normalization constant such that
∫
d3rG`(r) = 1. According to 1, the results should

not depend on the choice of this function, in the limit `→ 0.

To estimate the scaling range of the extreme event, we have performed the computation of

D`(u) at different resolutions, using different averaging windows to reconstruct the velocity flow

from the same image. An example is provided in Fig. 6. One sees that, as the resolution is

increased, the region of elevated D`(u) becomes sharper and sharper, but globally remains at the

same location (emphasized by the white dot). On the other hand, the plot of D`(u) at this location

(Fig. 6d) as a function of ` shows that there is a continuity between the measurements. For this

event, D`(u) is slowly varying at large scale, suggestive of a flow sturture with h ≈ 1/3 and then

increases at the smallest scales. This is corroborated by a local plot of the in-plane velocity field

around the event (Fig. 3). One clearly observes a front-like structure of the velocity field at this

location.

This study is however only performed at scales larger than about 10 times the dissipative

scale. Similar structures at the resolution scale is provided in the main part of this paper.

Supplementary Note 3: Simulation of dissipation around a cusp singularity We have sim-

ulated an artificial vorticity line with a cusp ω(x) on a 643 grid (Fig. 8-a). and computed the

associated velocity field vBS using Biot-Savart law. To obtain a non-zero velocity along the vortex
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line, we then consider the velocity v = vBS + αω (where α is the helicity). Its structure near the

cusp in a plane parallel to the vortex line is provided in Fig. 8-b. We then computed the function

Dδx(u) in the same plane, which is provided in Fig. 8-c. This singularity map is also similar to the

singularity map we observe in our experiment.
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