

Supplementary Figure 1: Analysis of monocyte subsets and lineage relationships. (a) Gating strategy for definition of MDP and cMoP populations in BM of $Cx3cr1^{GFP/+}$ mice related to Fig. 1a. MDP was defined as CD11c⁻MHC-II⁻ cells from live CD45⁺Lin⁻CD11b⁻CD115⁺GFP⁺ population. For cMoP Ly6C⁺CD11c⁻MHC-II⁻ subset was gated from live CD45⁺Lin⁻CD11b⁻CD11b⁻CD117⁺CD115⁺GFP⁺ population. (Lin: CD3, CD45R/B220, CD19, NK1.1, Ly6G, CD49b). (b) Gating strategy for identification of monocyte and GC (top) or MDP and cMoP (bottom) subpopulations in wild-type ($Cx3cr1^{+/+}$) mice.

Supplementary Figure 2: Validation of gating strategy in *Nr4a1-GFP* mice and adoptive transfer experiments. (a) Flow cytometry plot depicting validation of CX_3CR1 based gating strategy (corresponding to gating in $Cx3cr1^{GFP/+}$ mice, in **Fig. 1a**) precisely identifies Nr4a1-GFP⁺CD43⁺Ly6C^{lo/-} monocytes in bone marrow. (b) Flow cytometry plot depicting validation of CX_3CR1 independent gating strategy (corresponding to gating in wild type mice, in **Supplementary Fig 1b**) precisely defines Nr4a1-GFP⁺CD43⁺Ly6C^{lo/-} monocytes.

Supplementary Figure 3: Ly6C^{hi} monocyte adoptive transfer experiments. (a) Sorting strategy for adoptive transfer of CD11b⁺GFP⁺Ly6C^{hi} monocytes. (b) Schematic illustration of adoptive transfer and multicolor flow cytometry analysis of Ly6C^{hi} monocytes from GFP⁺CD45.2⁺ mice into CD45.1⁺ recipients. (c) 4th and 5th rows of flow cytometry plots from **Fig. 1d** are shown. Donor CD45.2⁺CD11b⁺GFP⁺ cells are black. For comparison CD45.1⁺CD11b⁺Ly6C^{10/-}F4/80¹⁰ recipient monocytes are depicted in blue (representative of two experiments).

Supplementary Figure 4: Specificity and efficiency of *Cre* **expression and** *Notch2* **targeting.** (a) Flow cytometry plot showing gradual expression of *LysM-eGFP* in myeloid cell subpopulations from cMoP to Ly6C^{lo} monocytes. (b) Flow cytometry plot showing YFP expression in bone marrow of *LysM*^{Cre}*Rosa*^{YFP} or control *Rosa*^{YFP} mice. *LysM*^{Cre} is strongly active in monocytes (Ly6C^{hi} and Ly6C^{lo}) and granulocytes but not in other cell populations. (c) Quantitative RT-PCR in sorted bone marrow cells from *GFP*⁺*Notch2*^{ΔMy} mice showing highest expression of *Cre* in N2⁻Ly6C^{hi} and subsequent reduction in Ly6C^{lo} monocytes (n=6). * *P*<0.05, ** *P*<0.01, *** *P*<0.001; 1way ANOVA with Bonferroni's multiple comparison test. Error bars represent s.e.m. (d) Notch2 expression in Ly6C^{hi} and Ly6C^{lo} monocyte subpopulations isolated from BM of *Notch2*^{ΔCD11c} mice (representative of two experiments). Littermate controls are shown for comparison.

Supplementary Figure 5: Myeloid cell populations in *Notch2* **deficient mice.** (a) Monocyte subpopulation analysis based on CD115⁺ gating strategy reveals reduction of Ly6C^{lo} but not Ly6C^{hi} monocytes in *GFP*⁺*Notch2*^{ΔMy} mice. Data are pooled from three experiments (n=8/11). (b) Absolute or relative numbers of granulocytes in *GFP*⁺*Notch2*^{ΔMy} mice. Data are pooled from three experiments (n=8/10). (c) Relative frequency of monocytes by flow cytometry in *Notch2*^{ΔMy} with wild-type *Cx3cr1* locus. Data are pooled from three experiments (n=9/11). (d) Myeloid cell populations in *LysM*^{Cre}*Notch2*^{+/+} and *LysM*^{+/+}*Notch2*^{+/+} littermate control mice. Data are from three experiments (n=7/8). (e) Myeloid cell population analysis in *N1*^{ΔMy} mice (n=8/9). Data are pooled from three experiments (n=5/6). (a-f) * *P*<0.05, ** *P*<0.01, *** *P*<0.001; Student's t test. Error bars represent s.e.m.

Supplementary Figure 6: Notch2 deficient BM Ly6C^{hi} monocytes show impaired conversion potential *in vivo*. (a, b) Flow cytometry (a) and corresponding fluorescence minus one controls (FMO ctrls) (b) 4 days after adoptive transfer of Ly6C^{hi} monocytes (corresponding to Fig. 4c) from control or Notch2 deficient CD45.2⁺GFP⁺ donors into CD45.1⁺ congenic recipients. (a) Transferred cells are shown in black and for comparison, recipient CD45.1⁺ (1st row), CD45.1⁺CD11b⁺ (2nd row), CD45.1⁺CD11b⁺Ly6C^{hi} (3rd row) cells or CD45.1⁺CD11b⁺Ly6C^{hi}F4/80^{lo} monocytes (4th and 5th rows) are depicted in blue.

Supplementary Figure 7: Notch2 deficient peripheral Ly6C^{hi} monocytes show impaired conversion potential in vivo. (a) Flow cytometry plots 4 days after adoptive transfer of pooled splenic and peripheral blood Ly6C^{hi} monocytes from control or Notch2 deficient CD45.2⁺GFP⁺ donors into CD45.1⁺ congenic recipients. Transferred cells are shown in black and for comparison, recipient CD45.1⁺ (2nd CD45.1⁺CD11b⁺Ly6C^{hi} (3rd (1st row), $CD45.1^{+}CD11b^{+}$ row), row) cells or CD45.1⁺CD11b⁺Ly6C^{hi}F4/80^{lo} monocytes (4th to 5th rows) are depicted in blue (representative of two experiments).

Supplementary Figure 8: Notch ligand DLL1 mediates monocyte conversion *in vitro*. (a) Gating strategy for definition and quantification of Ly6C^{lo} monocyte-like cells *in vitro*. Ly6C^{lo} monocyte-like cells (CD11b⁺GFP⁺Ly6C^{lo/-}CD11c^{lo}CD43⁺MHC-II^{lo/-}) are calculated as a percentage of live CD11b⁺GFP⁺ cells. (b) Flow cytometry plot showing expression of CD115 and upregulation of GFP on *in vitro* converted Ly6C^{lo} monocyte-like cells. *Ex vivo* isolated GFP⁺Ly6C^{hi} BM monocytes served as a staining control.

Supplementary Figure 9: *In vivo* targeting of endothelial cells in mice. b(c) Specific β-galactosidase activity in capillaries and large vessels of peripheral muscle (top) and in aortic EC (en face preparations (bottom)) after treatment of $lacZ^{iEC}$ or control mice with tamoxifen; scale bar 100µm. Image is a representative of two (muscle) or three (aorta) experiments. (d) PCR for floxed or recombined locus of *Dll1* from heart (left), lung (middle) and peripheral muscle (right). Results are from one experiment representative of 4 experiments. (e) Quantitative RT-PCR analysis of *Dll1* expression in sorted ECs from control or *Dll1^{iΔEC}* mice. Pooled from three experiments (n=3). (f) Myeloid cell population analysis in *Dll1^{+/+}* or *CreERT2 Dll1^{+/+}* mice after tamoxifen treatment showing no influence of tamoxifen on Ly6C^{lo} monocyte development. Data are pooled from three experiments (n=6/7). (g) Cell population analysis in *Cdh5(PAC)-CreERT2 Dll1^{tff}* mice showing no influence of *Cdh5(PAC)-CreERT2* expression on Ly6C^{lo} monocyte development. Data are pooled from three experiments (n=6/8). (e-g) * *P*<0.05, ** *P*<0.01, *** *P*<0.001; Student's t test. Error bars represent s.e.m.

Supplementary Figure 10: *In vivo* **targeting of arterial endothelial cells in mice.** (a) β -galactosidase staining demonstrates specific staining in central arteries of splenic follicles, arteries of peripheral muscle and aorta in *lacZ^{iaEC}* mice. Scale bars 100µm. Results are from one experiment representative of two independent experiments. (b) PCR for floxed or recombined *Dll1* locus ($\Delta Dll1$) from aortas (n=2).

Supplementary Table 1: Surface phenotype signatures for identification of

distinct myeloid populations in vivo

Population	Phenotype			
MDP	Lin ⁻ CD117 ⁺ CD11b ⁻ CD115 ⁺ CX₃CR1 ⁺ Ly6C ⁻ F4/80 ⁻ CD11c ⁻ MHC-II ⁻			
	or			
	Lin ⁻ CD117 ⁺ CD11b ⁻ CD115 ⁺ Ly6C ⁻ F4/80 ⁻ CD11c ⁻ MHC-II ⁻			
cMoP	Lin ⁻ CD117 ⁺ CD11b ⁻ CD115 ⁺ CX ₃ CR1 ⁺ Ly6C ^{hi} F4/80 ⁻ CD11c ⁻ MHC-II ⁻			
	or			
	Lin ⁻ CD117 ⁺ CD11b ⁻ CD115 ⁺ Ly6C ^{hi} F4/80 ⁻ CD11c ⁻ MHC-II ⁻			
Ly6C ^{hi}	Lin ⁻ CD117 ⁻ CD11b ⁺ CX ₃ CR1 ^{lo} Ly6C ^{hi} F4/80 ^{lo/-} CD11c ⁻ MHC-II ^{lo/-} CD43 ⁻			
	or			
	Lin ⁻ CD117 ⁻ CD11b ⁺ Ly6C ^h F4/80 ^{lo/-} CD11c ⁻ MHC-II ^{lo/-} CD43 ⁻			
Ly6C ^{lo}	Lin ⁻ CD117 ⁻ CD11b ⁺ CX ₃ CR1 ^{hi} Ly6C ^{lo/-} F4/80 ^{lo} CD11c ^{lo} MHC-II ^{lo/-} CD43 ⁺			
	or			
	Lin ⁻ CD117 ⁻ CD11b ⁺ Ly6C ^{lo/-} F4/80 ^{lo} CD11c ^{lo} MHC-II ^{lo/-} CD43 ⁺			
GC	Lin ⁺ CD11b ⁺ CX₃CR1 ⁻ Ly6C ^{lo}			
	or			
	Lin ⁺ CD11b ⁺ Ly6C ^{Io}			
Atypical cells	Lin ⁻ CD117 ⁻ CD11b ⁺ CX ₃ CR1 ^{hi} Ly6C ^{lo/-} F4/80 ^{lo} CD11c ⁻ MHC-II ^{hi} CD43 ⁻			
(Ly6C ^{lo})	or			
	Lin ⁻ CD117 ⁻ CD11b ⁺ Ly6C ^{lo/-} F4/80 ^{lo} CD11c ⁻ MHC-II ^{hi} CD43 ⁻			

Lin: CD3, CD45R/B220, CD19, NK1.1, Ly6G, CD49b

Supplementary Table 2: Mouse models used in the study

Abbreviations	Mouse description	Mouse background
CD45.1 ⁺	B6.SJL- <i>Ptprc^aPepc^b/</i> BoyJ	B6
GFP ⁺ ctrl	LysM ^{+/+} Notch2 ^{lox/lox} Cx3cr1 ^{GFP/+}	B6
GFP⁺ N2 ^{∆My}	LysM ^{Cre} Notch2 ^{lox/lox} Cx3cr1 ^{GFP/+}	<i>B</i> 6
Ctrl	LysM ^{+/+} Notch2 ^{lox/lox}	<i>B</i> 6
$N2^{\Delta My}$	LysM ^{Cre} Notch2 ^{lox/lox}	<i>B</i> 6
Ctrl	LysM ^{+/+} Notch1 ^{lox/lox}	B6
$N1^{\Delta My}$	LysM ^{Cre} Notch1 ^{lox/lox}	<i>B</i> 6
Ctrl	LysM ^{+/+} Notch1 ^{lox/lox} Notch2 ^{lox/lox}	<i>B</i> 6
N1N2 ^{∆My}	LysM ^{Cre} Notch1 ^{lox/lox} Notch2 ^{lox/lox}	<i>B</i> 6
wt	DII1 ^{+/+}	129
DII1 ^{+/lacZ}	DII1 ^{+/lacZ}	129
Ctrl	Gt(ROSA)26Sor	B6
lacZ ^{iEC}	Cdh5(PAC)-CreERT2	<i>B</i> 6
	Gt(RÓSA)26Sor	
lacZ ^{iaEC}	Bmx(PAC)-CreERT2	<i>B</i> 6
	Gt(ROSA)26Sor	
Ctrl	DII1 ^{lox/lox}	Mixed, B6;129
DII1 ^{i∆EC}	Cdh5(PAC)-CreERT2 Dll1 ^{lox/lox}	Mixed, B6;129
DII1 ^{i∆aEC}	Bmx(PAC)-CreERT2 DII1 ^{lox/lox}	Mixed, B6;129
Ctrl	DII4 ^{lox/lox}	Mixed, B6;CD1
DII4 ^{i∆EC}	Cdh5(PAC)-CreERT2 DII4 ^{lox/lox}	Mixed, B6;CD1
DII1 ^{+/+}	DII1 ^{+/+}	Mixed, B6;129
CreERT2 DII1 ^{+/+}	Cdh5(PAC)-CreERT2 Dll1 ^{+/+}	Mixed, B6;129
Ctrl	LysM ^{+/+} Notch2 ^{+/+}	<i>B</i> 6
LysM ^{Cre}	LysM ^{Cre} Notch2 ^{+/+}	<i>B</i> 6
Nr4a1-GFP	Nr4a1-EGFP/Cre	<i>B</i> 6
LysM-eGFP	LysM-EGFP	<i>B</i> 6
Rosa ^{YFP}	LysM ^{+/+} Gt(ROSA)YFP26Sor	<i>B</i> 6
LysM ^{Cre} ;Rosa ^{YFP}	LysM ^{Cre} Gt(ROSA)YFP26Sor	<i>B</i> 6
GFP ⁺ ctrl	CD11c ^{Cre} Notch1 ^{lox/+} Notch2 ^{lox/+}	B6
	Cx3cr1 ^{GFP/+}	
GFP ⁺ N1N2 ^{∆CD11c}	CD11c ^{Cre} Notch1 ^{lox/lox} Notch2 ^{lox/lox}	<i>B</i> 6
	Cx3cr1 ^{GFP/+}	
Ctrl	CD11c ^{+/+} Notch2 ^{lox/lox}	B6
N2 ^{∆CD11c}	CD11c ^{Cre} Notch2 ^{lox/lox}	B6

Supplementary Table 3: Antibodies and fluorescence dyes for flow cytometry and immunofluorescence used in the study

Antibody/dye	Clone	Dilution	Company
Anti-CD3ɛ	145-2C11	1:100	BioLegend
Anti-CD49b	DX5	1:400	BioLegend
Anti-CD45R/B220	RA3-6B2	1:400	BioLegend
Anti-Ly6G	1A8	1:400	BioLegend
Anti-CD19	1D3	1:400	BD Pharmingen
Anti-NK1.1	PK136	1:400	BioLegend
Anti-CD117	2B8	1:100	BioLegend
Anti-CD115	AFS98	1:100	BioLegend
Anti-CD11b	M1/70	1:400	BioLegend
Anti-Ly6C	HK1.4	1:2800	BioLegend
Anti-F4/80	BM8	1:100	BioLegend
Anti-CD11c	N418	1:400	BioLegend
Anti-I-A/I-E	M5/114.15.2	1:400	BioLegend
Anti-CD43	S7	1:400	BD Pharmingen
Anti-CD45	30-F11	1:200	BioLegend
Anti-CD45.1	A20	1:100	BioLegend
Anti-CD45.2	104	1:200	BioLegend
Anti-CD144	11D4.1	1:100	BD Pharmingen
Anti-CX₃CR1	SA011F11	1:200	BioLegend
Anti-CD11a	M17/4	1:200	BioLegend
Anti-CCR2	475301	1:100	R&D
Anti-Notch2	HMN2-35	1:100	BioLegend
Anti-CD16/CD32	93	1:200	BioLegend
Anti-CD31	Mec13.3	1:400	BD Pharmingen
Streptavidin		1:400	BioLegend
PE-Dazzle594			
Annexin V		1:50	BioLegend
7AAD		1:100	BioLegend
Propidium lodide		1:12000	Sigma
Anti-GFP		1:300	Acris
Anti-DLL1	HMD1-3	1:100	BioLegend
Streptavidin Cy3		1:400	BioLegend
Anti-rabbit IgG-FITC		1:200	Jackson ImmunoResearch
DAPI		1:5000	Invitrogen

Supplementary Table 4: Primers for QRT-PCR

Gene	Primers
Notch2	Forward: AGTGTCAGAGGCCAGCAAGAAGAA
	Reverse: TGATTGTCGTCCATCAGAGCACCA
Notch1	Forward: TGGAGGTCTCAGTGGCTATAA
	Reverse: ATTCTGGCATGGGTTAGAAAGA
Hey2	Forward: TGAAGCGCCCTTGTGAGGAA
-	Reverse: TTGTAGCGTGCCCAGGGTAA
Hes1	Forward: CCGGACAAACCAAAGACGGC
	Reverse: GGAATGCCGGGAGCTATCTTTCT
DII1	Forward: TCCGATTCCCCTTCGGCTTC
	Reverse: TGGGTTTTCTGTTGCGAGGT
Nr4a1	Forward: AGCTTGGGTGTTGATGTTCC
	Reverse: AATGCGATTCTGCAGCTCTT
Pparg	Forward: AGGGCGATCTTGACAGGAA
	Reverse: CACCTCTTTGCTCTGCTCCT
Pou2f2	Forward: TGCACATGGAGAAGGAAGTG
	Reverse: AGCTTGGGACAATGGTAAGG
Slfn5	Forward: AGGTCGAACGATTCTGCTGT
	Reverse: TCTGAGGGAAACTGGAAAGG
Ccr2	Forward: CCTTGGGAATGAGTAACTGTGTGAT
	Reverse: ATGGAGAGATACCTTCGGAACTTCT
Cx3cr1	Forward: GCAGAAGTTCCCTTCCCATC
	Reverse: GGACAGGAAGATGGTTCCAA