Reviewers' Comments:

Reviewer #1 (Remarks to the Author)

In this manuscript, the authors present a path sampling algorithm based on a novel combination of
elastic Network model (ENM) with Brownian simulations. The method, called eBDIMS, is validated
with four very well documents cases. The paper is well written and it reads easily, I only have
some issues that I'm reporting hereafter.

Major:

- The method is tested on only four cases. The authors claim that they are "highly" diverse
systems. They are four different cases but I am wondering how representative are they? Ideally,
they should enrich the validation test with more test cases (at least all the examples used in [4]).
They could also explore the transitions observed in very long simulations (see J. Chem. Phys. 139,
121912 (2013))

- They compare they results with several linear methods such as NOMAD-Ref (2006) or MinActPath
(2007). However, there are more recent approximations based on similar principles many of them
available as web servers. Among others ANMPathway [2], iIMODS[21], and NSIM [46] can be easily
added to your comparison.

- Could you comment in more detail the pros and cons of eBDIMS respect to Climber?

- Just a curiosity, what happen when you start from an intermediate (e.g 1yz9 instead lyyo)? It
will follow the same open-close path?

Minor:

- The definition/characterization of a "real" intermediate is at least controversial. The authors
should add a comment on this.

- One of the strongest points of eBDIMS should be the efficiency. They report that is fast, but how
long it takes? Is it faster than climber?

- Why iENM and NOMAD-ref cannot track the transition in fig 4 C? Why the trajectories are so
jagged?

- Figure 1. The alignment of open-close trajectories is really hard to see.

- Figure 2. In panel A, it is the same structure.

- Some of the arrow representations are too dense and it is difficult to grasp the overall motion.
Could you reduce the number of arrows to improve the figures?

Reviewer #2 (Remarks to the Author)

A. The overall aim of this work is to predict and validate protein structures that lie between the
known endpoints of conformational transitions. To this end, the authors have performed Langevin
dynamics and compared the trajectories from their simulations against known structures in
between the end points. The figure showing this comparison has been placed in the supplemental
material, and yet this is one of the most important outcomes. Interestingly they have performed
simulations in the two different directions between the endpoints and importantly observe different
pathways in the two directions. The transitions from closed to open forms have always been more
difficult to achieve with such elastic models so this results showing transitions in that direction are
important.



B. The novelty of the work lies primarily in the Langevin simulations, and in using them to perform
simulations in two different directions. But they have not been sufficiently described, and it
remains unclear whether the parameters involved have been sufficiently tested and validated.

There are a number of important points, however, that the authors have not addressed in the
present manuscript:

C. and D. How reliable are the PC's? There is the important issue of whether the set of available
structures is sufficient for developing reliable PC's. Eleven and sixteen structures for two of the
structure sets used here are very small numbers. In our past experience such small sets can yield
significantly distorted views of the conformational space. A recent paper in J Chem Phys
investigated the convergence of PCs using different numbers of structures, which should be done
here. But, it also might be possible to devise weighting schemes for the structures.

The Langevin simulation parameters have not been sufficiently described. Replicas of the
simulations have not been performed to validate the trajectories.

E. The energetics have been completely ignored, with only geometry and entropy being
considered. If energies were considered the trajectories might be significantly distorted. The
authors could also have utilized atomic elastic models which would have a different set of potential
functions from the coarse-grained cases. This omission of energies raises serious questions about
the reliability of the results.

In general there must be some energy-entropy compensation along the trajectories since the
closed forms would be expected to have lower energies and the open forms higher entropies. In
fact these differences may account for why the trajectories differ in the two directions.

F. Summary of the problems with the paper. The PC's require some validation to justify the use of
such small numbers of structures. The work needs to describe in more detail the simulations and
how the parameters for them were chosen. Replicas of the simulations need to be performed to
observe their variabilities. Adding some evaluation of the energies is also critical to discern
whether these trajectories lie in two separate free energy troughs or how these particular
trajectories relate to the details of the free energies.

G. There are a number of additional references that could have been cited.
H. The paper is clearly written.
Reviewer #3 (Remarks to the Author)

The work by Orellana et al. contains two attractive approaches: first, for classifying multiple
structures of proteins (or protein complexes) within a single conformational landscape; second, for
determining probable transition pathways between distinct structural groups. As more and more
proteins are solved in different conformational states, these approaches will find many applications
and should help to understand the functional mechanisms of the proteins in question. The methods
that have been developed are clearly described and their application to four well-studied cases is
nicely documented and gives rise to some interesting results.

My main queries involve the automated application of these techniques to structural data,
particularly when little or nothing is known about the function of the proteins studied:

1. Why is it necessary to use an identified apo structure as the reference in the PCA analysis? I can
understand this choice in the case of elastic network models where the contact network of "closed"
structures makes closed-to-open transitions more difficult than the reverse, but what would
change if the PCA analysis used another structure as the reference? In the future, it is probable
that cases will arise where the apo/holo distinction is not known a priori.

2. How robust are the PC's to the removal of one or more structures within a given structural



group?

3. I did not understand the definition of the progress variable gamma. What is meant by the
"internal distances" dij and how do they direct the dynamics to the target structure?

4. Do any modifications have to be made to the eDIMS procedure for treating different protein
structures? For example, the number of unbiased steps "k".

Apart from these points, I think this contribution will interest both structural biologists and
modelers concerned with the functional behavior of proteins.



Reviewer #1 (Remarks to the Author):

In this manuscript, the authors present a path-sampling algorithm based on a novel
combination of elastic Network model (ENM) with Brownian simulations. The
method, called eBDIMS, is validated with four very well documents cases. The paper
is well written and it reads easily, | only have some issues that I'm reporting
hereafter.

We are very pleased with the reviewer’s positive response, and we have done our
best to address the issues raised. Below, we provide our answers point by point.

Major:

1.1 - The method is tested on only four cases. The authors claim that they are
"highly" diverse systems. They are four different cases but | am wondering how
representative are they? Ideally, they should enrich the validation test with more
test cases (at least all the examples used in [4]).

Although the selected proteins are diverse in function and shape, we certainly agree
that only four cases make a limited dataset. Nevertheless, the structural data
available for these four proteins is exceptional. The benchmark by Weiss and Levitt'
included five proteins that all have structural intermediates along a large
conformational change (5NT, RBP, RNaselll, myosin, and SERCA). We explored three
of them in our initial manuscript (5NT, RBP and RNaselll), including GLIC because of
our past experience with the system and its rich structural information. Upon
submission, we excluded SERCA and myosin for two different reasons:

1) The number of myosin structures is limited (only 12 near full-length), but
more importantly, they contain several large gaps of missing residues, some
located at hinge regions for the transition, which prevents its use for a
reliable PCA as well as for pathway sampling. We have now mentioned this in
the manuscript.

See: Methods - Model proteins, ensemble quality and intermediate definition

2) Upon elaboration of the original manuscript, we noticed that the SERCA
transition (1SU4 <> 1IWO) as well as the SERCA intermediate (1VFP)
suggested by Weiss & Levitt did not seem feasible considering the
progression along the catalytic cycle and specifically, its mapping onto the
PC1-2 subspace (Fig.5). Instead, our combined PCA-eBDIMS study of SERCA
identified the cluster of E1-free states around 4H1W (Fig.6) as well as the
4NAB structure, found when using eBDIMS for reconstruction (see Fig.S6A),
as possible intermediates. These “novel” intermediates are supported by
recent FRET data and MD simulations’ (Fig.9). We are currently preparing a
separate manuscript on further SERCA transitions, but to be consistent with
the benchmark in* we have decided to include again part of our findings in
the revised version of the manuscript.
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See: Results - Sarco-Endoplasmic Reticulum Ca®*-ATPase (SERCA), and related
figures (Fig.5, Fig.9, Fig.S1-4 and S6), and Discussion

If we oversee the condition that the ensemble proteins have transition states
characterized as such in the literature and extend the definition of intermediate (See
point 1. 6 in minor issues, where we discuss this) to any structure visited along a PC1-
2/eBDIMS pathway (trapped by mutations, ligands, etc), many further examples can
be found in the Protein Data Bank (PDB). We are developing a curated database of
such cases; we include five of them currently under study at the end of this letter
(Fig. A).

1.2 - They could also explore the transitions observed in very long simulations (see J.
Chem. Phys. 139, 121912 (2013))

We also appreciate the reviewer’s suggestion to include long-timescale simulations.
We have carefully studied the two examples with ms-long Anton trajectories in the
paper by the Bahar Lab’. Unfortunately, the carnitine transporter has only two
solved structures, which prevents the calculation of PCs to compare Anton
simulations and eBDIMS paths in an independent set of coordinates (at least three
structures are needed, see points 2.4 and 3.2). On the contrary, BPTI has a large
number of structures, but given the small size of the protein and reduced scale of
motions, the resulting PCs are not robust enough to neatly cluster the
conformations onto functional states, being extremely sensitive to minor changes in
ensemble composition, for example, when including/excluding NMR structures as
well as the clusters explored in the ms-Anton simulation” (see Fig.B attached at the
end of this letter). As we discuss in the paper, being a coarse-grained method,
eBDIMS is suited to address collective conformational changes and preferably large
systems, rather than small proteins where local side-chain fluctuations define
structural variance; in our opinion, MD simulations address these cases much better.

However, we totally agree with the referee that it is extremely interesting to show
how eBDIMS and long-timescale MD compare when sampling conformational
transitions, and we are actually doing it in our lab with several studies of ion
channels and pumps. To show the utility of combining the PC1-2 subspace with
eBDIMS to monitor MD simulations, we have now included comparisons with
microsecond-long trajectories for RBP, SERCA and GLIC. As can be seen, the eBDIMS
paths greatly overlap with the MD-explored transitions (Fig. 9); in fact, we have
found that the forward/reverse pathways seem to delimit the edges of low-energy
passages that connect end-conformations (See point 2.8 raised by Referee #2, where
we further elaborate on this).

See: Results - Sampling of intermediate states in atomistic free energy landscapes,
and related Figures (Fig.9), and Discussion

1.3 - They compare their results with several linear methods such as NOMAD-Ref
(2006) or MinActPath (2007). However, there are more recent approximations based
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on similar principles many of them available as web servers. Among others
ANMPathway [2], iIMODS [21], and NSIM [46] can be easily added to your
comparison.

We also agree with the referee that it is interesting to compare several methods,
especially if they are based on different physical assumptions (non-ENM or Langevin
based), although our goal was not to rate them but to show how they explore
transition pathways and how benchmarking against experimental data can help in
algorithm development and intermediate identification.

As suggested, we have now included NMSIM and iMODS in our comparison, finding
that they share the advantages (speed) and drawbacks (instability) of other
simplified methods (Figs. 2-8) and provide very similar results. It must be noticed
that the ANMPathway server only returned results for the smallest transition, GLIC.
We searched for additional servers but they cannot always deal with oligomeric
structures (this also includes our previous webservers, Go-dMD’ and MD-dMD°®) or
are apparently no longer maintained (for example, FRODA).

See: Results and related figures (Figs. 2-8), and Discussion

1.4 - Could you comment in more detail the pros and cons of eBDIMS respect to
Climber?

As mentioned above, all the tested methods are computationally very efficient and
extremely fast compared with MD. The clearest drawback of eBDIMS versus
Climber is that, in its current implementation, it excludes the atomistic sequence-
dependent details; while its greatest advantage is that it is an actual simulation,
which allows for a greater versatility and sampling width, for example:

* To provide simulation-like rather than linear trajectories between end-
points when decreasing the biasing rate: this option, although slower,
samples a much wider conformational space than any other of the examined
approaches (useful for model fitting to experimental data from SAXS, NMR
restraints, etc) (Figs. S10C, k=1000); in our lab, we are currently using eBDIMS
sampling to fit SAXS data for SERCA (Dr. Magnus Andersson)

* To work with a minimal distance restraint set from the target thanks to ED-
ENM coarse-graining, which allows reconstructing a conformer with missing
gaps from a full-length template (practical example for SERCA in Fig. S6A)

Besides these, the eBDIMS algorithm, which was developed from unbiased
Brownian Dynamics, can also perform all its simulation functions (as we reported

in’), for example:

i) Run unbiased trajectories along the initial linear pathways to provide

further sampling,
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ii) Approximate the directions of conformational change when the target is
unknown, due to the intrinsic sampling along the normal modes,

iii) Include biasing from short MD-simulations,

iv) Include other coarse-grained ligands/proteins (Dr. Carrillo, unpublished)

We are currently developing an improved version of the eBDIMS code for its
implementation in a web-server that will include more simulation-like features (See
also point 1.7, minor issues); use of finer-grained resolutions is also possible but as
discussed below (See point 2.7 raised by Referee #2) does not provide any
improvement. Regarding the efficiency of each method, please see the discussion
below in the section concerning minor issues (See point 1.7).

See: Methods and Figures S6 and S10

1.5 - Just a curiosity, what happen when you start from an intermediate (e.g 1yz9
instead 1yyo)? It will follow the same open-close path?

We consider this an excellent suggestion by the referee. Since the ENM force field is
topology-based, we expected that the trajectories should follow a very similar path.
We checked this for the easiest (RBP) and the most challenging (RNaselll) examples,
confirming that indeed, trajectories launched from/along different points of a path
or even between different end-states of the same cluster keep converging and thus
are very robust (see Fig. S10B).

See: Figure S10

Minor:
1.6 - The definition/characterization of a "real" intermediate is at least controversial.
The authors should add a comment on this.

The referee raises an important point. In the initial manuscript we assigned the
functional status (i.e. end-points and/or intermediates) by relying on the original
research papers concerning each protein. We call this a knowledge-based definition.
For example, for both GLIC and RBP, intermediate conformers were trapped
introducing Cys-bridges to lock the protein along its functional cycle. Interestingly,
we noticed that many structures not clearly identified as intermediates in the
literature appear distributed along the transition paths explored in the PC subspace
(for example, those identified for SERCA mentioned above, point 1.1), indicating a
non-described but topologically-feasible intermediate. It has been suggested that
different ligands or crystallization conditions can effectively trap intermediate states
for proteins. To account for this situation, we have also introduced a PC/eBDIMS
based definition of intermediate states in parallel to the knowledge-based one in the
Methods section (see some examples of the first in Fig.A).

See: Methods and Fig.A at the end of this letter
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1.7 - One of the strongest points of eBDIMS should be the efficiency. They report
that is fast, but how long it takes? Is it faster than climber?

Since we cannot fairly evaluate the speed of web-server calculations, we have not
included any time comparisons in the paper, but it should be noticed that all the
methods tested share an extreme computational efficiency, providing transition
paths in very short times (from a few minutes to hours in the most challenging case,
RNAselll); the major differences are found in how they sample the experimental
conformational space. In terms of speed, we were able to compare Climber and
eBDIMS executables and found that they perform similarly, with a slight advantage
of eBDIMS for large systems like GLIC (5 versus 6h), and of Climber for large-scale
motions like that of RNAselll (1 versus 2h), but neither of them rate among the
fastest codes such as iIMODS, that provides transition paths in few minutes. The
difference among them is mainly due to Climber running faster thanks to pulling
when the random fluctuations explored by eBDIMS become a computational
bottleneck, while eBDIMS outperforms Climber for large systems due to coarse-
graining. Both codes can increase speed by increasing biasing frequency, but at the
cost of approaching Cartesian-like straight paths (see Fig. S10C). In the present
manuscript, our goal was to explore accuracy in intermediate prediction and thus we
did not work on eBDIMS code speed optimization. We are currently developing an
improved version for its implementation in a web-server, that takes full advantage
of structure coarse-graining to accelerate calculations and will incorporate additional
simulation-like features, as mentioned above (point 1.4).

1.8 - Why iENM and NOMAD-ref cannot track the transition in fig 4 C? Why the
trajectories are so jagged?

We briefly commented on this question in the previous version of the paper. Our
results suggest that ENM-based methods may fail when choosing the biasing
normal mode, by i) following the one that better overlaps with the transition
vector instead of the one pointing to the next intermediate state (which can depart
from a straight interpolation between end-structures) or ii) just following one of the
lowest frequency ones (which at certain regions can point to orthogonal directions
in the conformational space, as seen for RNaselll and SERCA) (Fig.S3).

See: Fig.S3

1.9 - Figure 1. The alignment of open-close trajectories is really hard to see.
We have improved the image in the resubmitted manuscript.

1.10 - Figure 2. In panel A, it is the same structure.
We are very thankful for pointing out this mistake. It has been corrected.

1.11 - Some of the arrow representations are too dense and it is difficult to grasp the
overall motion. Could you reduce the number of arrows to improve the figures?
The arrow representations of the PCs have been improved in all figures.
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Reviewer #2 (Remarks to the Author):

We thank the reviewer for insightful comments and constructive criticism that, in
our opinion, has helped to significantly improve our manuscript and achieve more
solid conclusions.

A. The overall aim of this work is to predict and validate protein structures that lie
between the known endpoints of conformational transitions. To this end, the authors
have performed Langevin dynamics and compared the trajectories from their
simulations against known structures in between the end points.

2.1 - The figure showing this comparison has been placed in the supplemental
material, and yet this is one of the most important outcomes.

We understand the referee was referring to the Figure S1 in the original manuscript,
which showed the rMSD and PC1-2 distance evolution along the trajectories. We
have realized rMSD is a more general measure for structural distance between
conformers than PC1-2 distance (i.e., it does not need previous ensemble analysis)
and thus should be included in the main material to allow for direct comparison.
Accordingly, in the resubmitted manuscript we have included these graphs in the
main figures and have emphasized the difference in using PC1-2 distances versus
rMSD in the Methods sections.

See: Discussion and Methods, Figs. 2-5 and Fig.7 (panel D in all).

Interestingly they have performed simulations in the two different directions between
the endpoints and importantly observe different pathways in the two directions.

2.2 - The transitions from closed to open forms have always been more difficult to
achieve with such elastic models so this results showing transitions in that direction
are important.

A more thorough discussion of trajectory asymmetry and its relation to the free
energy landscapes has been added to the paper (see point 2.6 and 2.8 below); we
must note here however that the difference in the trajectories starting from closed
or open conformers is very small, specially when the structures can be hardly
defined as “open” or “closed” (5-NTase, GLIC) in terms of the R; (see Table 0 at the
end of this letter). We also noticed that the nomenclature used for GLIC, for
example, was misleading (the so called “open-pore” i.e. conducting channel has a
“closed” ECD). In order to avoid confusions we have included the Rg for all
structures and a better description of their features.

See: Supplementary Table 1

B. The novelty of the work lies primarily in the Langevin simulations, and in using
them to perform simulations in two different directions.

6 Scil ifeLab



2.3- But they have not been sufficiently described, and it remains unclear whether
the parameters involved have been sufficiently tested and validated.

We thank the reviewer for its appreciation of the Langevin simulations, and for
bringing this lack of clarity in method description and previous references to our
attention. We have included a detailed description of the choice for the different
eBDIMS parameters in the Methods section, and also included figures showing the
effect of the free variables (see point 2.5 below).

See: Methods, Fig.S10.

There are a number of important points, however, that the authors have not
addressed in the present manuscript:

2.4 - How reliable are the PC's? There is the important issue of whether the set of
available structures is sufficient for developing reliable PC's. Eleven and sixteen
structures for two of the structure sets used here are very small numbers. In our past
experience such small sets can yield significantly distorted views of the
conformational space. A recent paper in J Chem Phys investigated the convergence
of PCs using different numbers of structures, which should be done here.

We totally agree with the referee that the ensembles are reduced for some of the
proteins, but in our opinion, they truly represent the conformational space as can
be seen by their correlations with heuristic reaction coordinates defined in the
literature. As discussed above with Referee #1 (point 1.2), one can find in the Protein
Data Bank ensembles containing a great number of structures, but often they cannot
yield robust PCs because they do not have clear on-pathway intermediates.

During the manual curation process in search for transition intermediates, it became
apparent to us that the robustness of PCA and its clustering of functional states is
not as dependent on the number of structures as on their sampling of distinct
conformations distributed along a path. This is especially relevant for large-scale
changes such as those in the Weiss and Levitt’s benchmark® studied here, which in
spite of the small number of structures includes clear transition intermediates. For
that reason, we included structures with repaired gaps as long as they fall in the
same clusters defined by PCA of intact structures. The importance of the quality or
width of the sampling rather than the quantity of structures is clear considering
two extreme examples:

- As discussed with Referee #1, we have collected a high number of X-ray and
NMR structures for BPTI (near 200 structures), but they render ill-defined PCs
that are extremely sensible to ensemble composition; here, C-alpha PCA is of
no use to cluster functional states and benchmark transition pathways (see

l



- The ensemble for SERCA, which re-produces the PCA major axes with only
three-four structures belonging to different clusters compared to 65 near-
intact structures (see Supplementary Table 2).

To illustrate this point we report the dot products (Supplementary Table 2) between
the reference intact ensembles and “reduced” ensembles with a minimal number
of structures. As can be seen, the robustness of the first PCs is extremely high for
these ensembles that sample large conformational changes with true intermediates
trapped along a transition, and provides a similar clustering of the structures
(Supplementary Figure 1) and variance distribution. In fact, the less robust ensemble
is that of GLIC (which has the lowest rMSD) in spite of its rather large number of
structures (46). With just three structures (end-states plus an intermediate), all the
ensembles render PCs that overlap >70% with those from the full ensemble. This
supports the idea that few but widely distributed structures in the conformational
space render more robust PCs than a large number of redundant structures
sampling similar conformations.

See: Methods, Fig.S1 and Supplementary Table 2

2.5 - ...Langevin simulations have not been sufficiently described, and it remains
unclear whether the parameters involved have been sufficiently tested and
validated. The Langevin simulation parameters have not been sufficiently
described. Replicas of the simulations have not been performed to validate the
trajectories.

We appreciate that the referee points out this lack of detail in our description of the
method parameterization and validation. As mentioned above (point 1.4), eBDIMS
was developed from our previous algorithms for unbiased Brownian Dynamics (see
7191) and the ED-ENM force-field for NMA (see '*?), which were both carefully
parameterized against our MoDEL database™** (http://mmb.pcb.ub.es/MoDEL/) of
state-of-the-art MD simulations for the main protein metafolds, as well as against
experimental data from X-ray crystallography and NMR. The coupling parameters for
Langevin simulations as well as the ED-ENM Hamiltonian were thoroughly optimized
(point 3.4) to reproduce atomistic MD. For the topology-based ED-ENM potential
function, force constants were fitted multi-parametrically to reproduce the sampling
by state-of-the-art standard force fields (AMBER, GROMOS, OPLS and CHARMM) at
the C-alpha carbon level. The Langevin simulation thermostat, based on the
fluctuation-dissipation theorem, and implicit solvent representation given by the
friction term, were also fitted to MD simulations following a similar scheme.

We want to emphasize that the force-constants used here (ED-ENM) and the BD
parameters were refined to reproduce subtle anharmonic features of atomistic
simulations that are not well captured by standard ENM methods™, such as the
variance distribution of the eigenvalues given by Essential Dynamics (ED) analysis or
the coupling forces between C-alpha carbons. Other authors have applied our C-
alpha force field for advanced applications such as evaluating transition energies to
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score “ab initio” CASP predictions because of its agreement with MD *®; we also used
both algorithms in a recent study of beta-sheet correlated motions®’ published in
this journal.

As discussed also with Referee #1 and #3, using the default optimal parameters the
variability of the trajectories is minimal and they tend to converge even if started
from different structures along a path (Fig. S10A). However, by changing the
number of unbiased steps, k, it is possible to increase sampling width (Fig. S10C). We
have run several replicas for some of the examples to illustrate the effect of
changing these free variables (random seed and k).

See: Methods, Fig.S10

E. The energetics has been completely ignored, with only geometry and entropy
being considered.
2.6 - If energies were considered the trajectories might be significantly distorted.

As mentioned above, the Brownian Dynamics simulation and Elastic Network force
field were carefully calibrated using atomistic simulations. Thus, the energetics was
implicitly considered as long as we overlap with MD in 60-80% in directions,
amplitudes of motions and forces acting between C-alpha carbons; note that this
value is similar to that obtained when comparing standard MD force-fields among
them (as shown in our previous works”*?). Furthermore, the fluctuation-dissipation
relation assures thermal energy keeps stable throughout the BD simulation.
Nevertheless, one must keep in mind that we are using a simplified Hamiltonian
based on the minimum frustration principle, i.e. the pathway collected is that
leading from start to end structures with the minimum frustration of native contacts.
The method is by definition coarse-grained and thus not aimed to provide an
accurate evaluation of the free energies of transitions (a challenging task even for
MD). However, considering that

i) The sampled routes totally converge with those from Climber, based on the
fully-atomistic Molecular Mechanics Force Field ENCAD,

ii) They are populated by experimental intermediates, which presumably
correspond to meta-stable structures

Together indicates that the explored pathways, although based on a
topological/geometry-based potential, do correspond to feasible low-energy routes
in the conformational space. Precisely, the PCA framework is intended to provide
immediate validation of explored pathways taking advantage of the experimental
information available. Assuming that an intermediate crystal structure represents a
metastable state, one must conclude that the routes approaching them are
energetically possible, a notion supported by MD simulations (See below, point 2.8).

2.7 - The authors could also have utilized atomic elastic models, which would have a
different set of potential functions from the coarse-grained cases.
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Certainly, our method could be easily adapted to all-atom or finer-grained
representations; in fact, we have previously developed atomistic approaches for
transition path-sampling using discrete Molecular Dynamics (see our previous
works>®). In our experience, the increase in the frustration energy originated from
raising the number of contacts makes calculations less efficient without increasing
pathway accuracy. A number of works have compared geometric/topology-based
paths with those from atomistic simulations using TMD, umbrella sampling, etc, and
have demonstrated that “finding an all-atom pathway is primarily a problem of
geometry, and that a detailed force field in this case constitutes an unnecessary
extra layer of detail”*®. Similarly, it is well known that all-atom and C-alpha ENM
provide nearly equivalent representations of protein equilibrium dynamics
(demonstrated in the seminal paper by Tirion'®), and in our experience, coarse-
grained ENM is better suited than atomistic NMA to track large and collective
motions, as seen in structure pairs like those studied here. In our opinion,
considering that the trajectories sampled by eBDIMS and Climber are virtually
identical supports that path sampling is a “shape” (i.e. topological) problem
independent of atomistic details, and that introducing side-chain modeling would
contribute marginally to improve the method.

2.8 - This omission of energies raises serious questions about the reliability of the
results. In general there must be some energy-entropy compensation along the
trajectories since the closed forms would be expected to have lower energies and
the open forms higher entropies. In fact these differences may account for why the
trajectories differ in the two directions.... Adding some evaluation of the energies is
critical to discern whether these trajectories lie in two separate free energy troughs
or how these particular trajectories relate to the details of the free energies.

We thank the referee for bringing this important point to our attention. Although we
were aware of pathway asymmetry in the PC1-2 space, taking into account PCs
relative variance, it is in fact low for most of the examples studied; in the
resubmitted manuscript, a pathway asymmetry score has been introduced to
quantify such divergences in the PC1-2 space (See Methods and Fig.54). In principle,
an accurate evaluation of the free energies of the transitions was beyond the scope
of the present work, and in our opinion, of coarse-grained methods. We relied
instead on the comparison with crystallographic intermediates (which presumably
correspond to transitional states trapped along the free-energy troughs connecting
end-conformations) as immediate estimation of a pathway in energetic terms. The
total convergence with the results from the ENCAD*° atomistic force-field used by
Climber also supports that the explored pathways are energetically correct.

Although a role for pathway asymmetry has been suggested for some proteins (see
for example21), it can also arise from introducing a bias, which breaks the detailed
balance condition for equilibrium. Here, in spite of the entropy-energy
compensation of the Langevin thermostat, to drive a transition we use a Maxwell's
evil introducing information in the system, which means that de facto entropy
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changes as the trajectory advances and Boltzman's sampling is biased; similarly
happens with the pulling algorithm used by Climber. In principle, we considered
pathway asymmetries to be non-significant for most proteins when considering
the variance; further evaluation of heuristic variables suggested that, in general, the
paths were fairly reversible. However, as can be seen for the example of RNaselll,
crystallographic intermediates can appear in both directions. Considering that
these structures represent landmarks along minimal energy paths, pointed that the
observed asymmetries could be meaningful in some cases.

To further elaborate on this interesting question (i.e. the relation of pathway
asymmetries with lowest energy troughs), we have compared eBDIMS with the
atomistic free-energy landscapes from multi-microsecond MD (also following the
suggestion by Referee #1). Apparently, the biased trajectories from the closed state
(entropy-driven, as the referee points out) and the open state (energy-driven)
provide two alternative and valid solutions to the path. Our comparisons hint that
the forward/reverse pathways predicted by eBDIMS and Climber delimit, not a
linear route, but an area that corresponds to the lowest energy troughs connecting
the end-states sampled by MD, and that the crystallographic intermediates tend to
populate the boundaries of these regions rather than the explored minima that lie
within. Only for RNaselll (with the highest asymmetry) both MD and the distribution
of crystal structures suggest potentially different forward/reverse paths (Fig.S5C)

See: Results - Sampling of intermediate states in atomistic free energy landscapes,
and related Figures (Fig.9), and Discussion; Methods and Fig.54

F. Summary of the problems with the paper.
- The PC's require some validation to justify the use of such small numbers of
structures. Addressed above (Supplementary Table 2).

- The work needs to describe in more detail the simulations and how the
parameters for them were chosen. Corrected (Updated Methods)

- Replicas of the simulations need to be performed to observe their
variabilities.- Addressed above (Supplementary Fig. 10)

- Adding some evaluation of the energies is also critical to discern whether
these trajectories lie in two separate free energy troughs or how these
particular trajectories relate to the details of the free energies.- Addressed
above (Fig.9)

G. There are a number of additional references that could have been cited.

We have included a number of additional references, but could not find the one
suggested by the referee about PC robustness on J.Chem.Phys. We will be thankful
to check and include it if he/she can direct us to this citation/s.

i Scil ifcLab

H. The paper is clearly written.



Reviewer #3 (Remarks to the Author):

The work by Orellana et al. contains two attractive approaches: first, for classifying
multiple structures of proteins (or protein complexes) within a single conformational
landscape; second, for determining probable transition pathways between distinct
structural groups. As more and more proteins are solved in different conformational
states, these approaches will find many applications and should help to understand
the functional mechanisms of the proteins in question. The methods that have been
developed are clearly described and their application to four well-studied cases is
nicely documented and gives rise to some interesting results.

We thank the reviewer for the encouragement and support and are pleased that
(s)he finds the study of interest. We would like to note that a further example has
been added to the main material (Fig.5-6), and we are preparing a curated database
(some examples at the end of this letter, Fig.A) that will include cryo-EM and NMR
structures, to show the generality of the method for rationalizing and completing
experimental information on the conformational landscape.

My main queries involve the automated application of these techniques to structural
data, particularly when little or nothing is known about the function of the proteins
studied:

3.1 - Why is it necessary to use an identified apo structure as the reference in
the PCA analysis? | can understand this choice in the case of elastic network models
where the contact network of "closed" structures makes closed-to-open transitions
more difficult than the reverse, but what would change if the PCA analysis used
another structure as the reference? In the future, it is probable that cases will arise
where the apo/holo distinction is not known a priori.

The referee makes a very good point, and we realize that we have not clearly stated
the reasons for reference selection in the manuscript. As a matter of fact, the
reference structure has no influence on PCA clustering; any structure can be used
for that purpose and the only change is a displacement of the origin of
coordinates. Typically, the average of the ensemble is taken as reference for
alignment and projection, but these coordinates usually do not correspond to a real
structure but rather to the middle point of the clusters (which can be an
unpopulated area). In order to make it easier to interpret the PCs as deformations
from a real structure, we found it more natural to use the inactive/apo/resting
states as reference rather than a geometric average. Apart from that, since we are
running eBDIMS in both directions, any of the end-states (bound or unbound, closed
or open, apo or holo or any other pair) could work for comparisons. We have
improved the description of this issue in the Methods section.

See: Methods
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3.2 - How robust are the PC's to the removal of one or more structures within a
given structural group?

As discussed above with Referee #2 (see point 2.4), we have addressed this issue by
computing the PCs for a minimal number of structures and then calculating their
overlap with the full ensembles (Supplementary Table 2). For collective
conformational changes, the two major PCs are >70% identical for most proteins
with just three structures (one from each end-state plus an intermediate). The
variance distribution and clustering is also

See: Fig.S1. and Supplementary Table 2

3.3 - | did not understand the definition of the progress variable gamma. What is
meant by the "internal distances" dij and how do they direct the dynamics to the
target structure?

Thanks for pointing out this lack of clarity in the algorithm description. We have
improved the text describing eBDIMS and completely rephrased the description of
the progress variable in the Methods section. The progress variable gamma
measures the differences in pairwise distances between residues (d;) in the
starting and target structures, so that intermediate conformations that reduce this
difference are selected every certain number of iterations (k) (Fig.S9). As we now
explain with detail, the d; differences do not need to be known for all the residues,
and the method can actually work with a minimal set of distance restraints or even
when such restraints are lacking for large parts of the target structure (see practical
example Fig. S6A); the algorithm runs faster as more information from the target is
introduced. Speed can be increased also by reducing the number of unbiased steps
k, but this does affect the sampled pathways, which tend to progress too fast to
properly sample the intermediates (similarly observed for Climber'); reducing the
value of k has the opposite effect, allowing the algorithm to wander and generate
more random, MD-like trajectories (Fig. S10C).

See: Methods and Fig.S6, S9 and S10

3.4 - Do any modifications have to be made to the ebDIMS procedure for treating
different protein structures? For example, the number of unbiased steps "k".

As we highlight in the revised manuscript, the default values of both the BD
simulation (friction coefficient, temperature, etc) and the ENM potential (force
constant definition) were thoroughly parameterized based on a database of MD
simulations and are thus optimal to treat any protein (see also response to Referee
#2, point 2.5). However, for very large proteins or challenging conformational
changes it can be useful to increase the biasing frequency (k) in order to speed up
calculations keeping in mind that this tends to make trajectories closer to a straight
interpolation.

See: Methods
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Fig. A. Further examples of multi-state ensembles with possible on-pathway
intermediates (in red). For the HCV-helicase (A), PC1-2 projections distinguishes the
open structures crystallized together with the protease domain (1cul and others)
from those in which it has been removed (3kqu-like), detecting intermediates
already described in the literature (308c, 3kgh or 3kgk) and others not characterized
as such (mutant 2f55). Similarly happens with Calmodulin, the Catabolite Repressor
protein or Importin, with structures that appear as possible transient states between
end-conformations that have been stabilized upon binding to different ligands.
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Fig.B. Lack of robustness of BPTI ensembles for C-alpha PCA. The PCs of BPTI are
completely different when including/excluding NMR structures or to the removal of
a few structures of each group; furthermore, clustering is not related to functional
state (bound/unbound) or any other clear variable (i.e. experimental conditions etc).
Note that N- and C-termini were removed (2 residues each) to reduce noise from

their fluctuations.

Apo: 4PTI

Holo: 2PTC

rMSD Apo-Holo = 0.35 A

Overlap (2 PCs) = 0.04

Overlap (10 PCs)=0.14

5 X—I’ay+ NMR ol ¢ e °
Al rMSD=0.68+0.54 " L B2 X .
N rMSD‘H{U(: 3 * *
%\_) ’ o (199 Structures)_. 4l
R : rMSD=0.43%0.13
¢ . rMSD,
< a. . (129 structures)
b ‘ 10 |

-5 0 5 10 15

X-ray PC 1

-4 -3 2

X-ray PC 1

Table 0. Iteration Times with ebDIMS (rMSD to target in parenthesis, last column)

Name Statel State2 Transitions ebDIMS Iterations

RBP 1BA2(A) 2DRI Forward (closing) 26914 (1.0 A)
Open (21.4) Closed (19.8) Reverse (opening) 26062 (1.0 A) faster
Unbound Ribose-bound

5’-NTase 101D 1HPU Forward (opening) 44051 (2.0 A)
“Closed” (21.5) “Open” (21.6) Reverse (closing) 43884 (2.0 A) faster
Unbound Nucleotide-bound

RNaselll 1YYOo 1YYW Forward (opening) 91002 (4.0 A) faster
Closed (24.5) Open (26.6) Reverse (closing) 110632 (4.0 A)

dsRNA-bound
SERCA 2C9M

Open headpiece (38.6)

dsRNA-bound
1T5S

Closed headpiece (37.7)

Forward (closing)

Reverse (opening)

144483 (3.0 A)
112193 (3.0 A) faster

Ca**-bound Ca”**/Nucleotide-bound
GLIC 4NPQ 4HIF Forward (closing ECD) 27032 (1.0 A)
Open ECD (37.6) Closed ECD (37.2) Reverse (opening ECD) 26623 (1.0 A) faster
Closed pore Open pore
Resting Conducting
(pH=7.5) (pH=4)
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Reviewers' Comments:

Reviewer #1 (Remarks to the Author)

The authors addressed many of the suggestions raised by this referee. However, the work done
has been not fully incorporated in the present version, specifically:

R 1.1 Since we all agreed in the limitation of the dataset, please include the examples of Fig. A at
least as supplementary material. Definitively, the inclusion of more test cases will add more
strength to the validation of your approach.

R 1.2A In [3] the ANM collective modes define the pathways between the crystal structure and
several well defined PCA sub-states sampled in Anton simulations. My suggestion was in the
direction of reproducing these results and to explore how eBSIMS performs in transitions observed
by very long MD. I do not think coarseness is an issue here, in fact ANM is even more coarse that
eBDIMs. However, if eBDIMS is not suited to handle this collective but small changes this should
be comment in detail in the text.

R 1.2 B The free-energy landscapes plots are noteworthy results. It is nice to see how well the
pathways can delimited the low-energy routes. I also agree that path sampling is manly a shape
problem. For this reason, here, I also miss the comparison with NMA approaches that are the
paradigm of "shape" methods. By comparing the corresponding figures of RBP, SERCA and GLIC, it
is clear that the non-linear NMA method, iMODs, shown similar performance. Also iEMN seems to
walk by the lowest energy areas. Please, illustrate and comment this observation. Since you have
the 5-NTase MD simulation (Fig. S5), I am missing the corresponding energy landscape plot. Also
in this figure and for consistency, the initial SERCA structures of figure 5A and figure 9B should be
the same.

R1.3 The comparison with the state of the art methods is mandatory to illustrate the goodness and
limitations of the proposed approach. To this respect NMAD-ref and MinActpath are valuable but a
bit obsoleted (e.g. the servers are not updated since 2006-7) and it will be more fair the inclusion
of more recent approaches. Although, the scope of the paper is not a detailed comparison, few
comments about the relative performance in each case should be included. Right now, the authors
just added the pathways plots (panel C), but there are not practically any comments in the text.
This should be corrected. By the way, transition progress plot could be easily improved by using a
dash-line and continue line for forward and reverse pathways, respectively. Also,

in figures 3 and 4 iMODs seems to be under-sampled.

The word "instability" is too ambiguous and it is clear that different methods have different
behaviors and "instabilities". NOMAD-ref and iEMN clearly fail to reach the final structure in the
RNAase case. By the contrary, NMSIMS except in the RNAase case have an unexpected behavior
fluctuating around near final positions. This must be further investigated and commented. For
example, I run RNAse case in the iENM server and I notice that it got trapped in local minima in
where one of the binding domains collided. I also try to run the same case with NOMAD-ref, but I
always obtained quite distorted models. Again, this should be investigated and commented. In
sup. Figure S3 you are using a failed case (panel B) to illustrate the performance of NOMAD-ref
that is likely to be an artifact. Also, in this figure more recent methods were ignored.

It will be useful include a table with the minimum RMSDs of the different methods respect to the
end conformation, as well as, the minimal distance to the representative intermediate structures.
Ideally, you could include the transition frame plots (as panel D, fig 2-5) for all the tested
methods.



All these programs have different input parameters (iterations, cutoffs, number of modes, etc.)
please specify them to facilitate the reproducibility of your results.

The authors should stress more clearly the limitations of the propose approach, case by case:

-RBP. The reverse pathway of eBDIMS (also at a least extent climber) clearly stands out of the
lowest energy regions. Apparently, this is a type of transition in where NMA methods have similar,
if not better, results than climber and eBDIMS.

-5'-NTase. The reverse Climber and eBDIMS transitions followed a path not observed in MD.
-RNAsell. The closest conformation of eBDIMS to the catalytic, functional state is around 10 A.

-All the method seems to be capable to sample the GLIC and SERCA transitions, but will be
interesting to see the rMSDs differences.

Reviewer #2 (Remarks to the Author)

The authors have made an extraordinary effort to respond to the reviews, and have made the
paper significantly more interesting.

The missing reference that I should have provided is:
Sankar K, Liu J, Wang Y, Jernigan RL. Distributions of experimental protein structures on coarse-
grained free energy landscapes. J Chem Phys. 2015 28;143(24):243153.

One particularly interesting transition was one studied by X-ray where the changes in the
intermediates were more significant than the differences between the end point structures. This
could be the subject of a future work. See: Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J,
Olson JS, Phillips GN Jr,

Wulff M, Anfinrud PA. Watching a protein as it functions with 150-ps time-resolved x-ray
crystallography. Science. 2003 20;300(5627):1944-7.

Reviewer #3 (Remarks to the Author)
The authors have addressed all my queries. The addition of a new sample protein and also more

detail in describing the methodology certainly helps to improve the impact of this work. In my
opinion, the revised manuscript satisfies all the criteria for publication.
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Reviewer #1 (Remarks to the Author):

The authors addressed many of the suggestions raised by this referee. However, the
work done has been not fully incorporated in the present version.

Thanks to the referee for the additional suggestions to improve the manuscript. We
have tried to address the remaining points taking into account the strict limitations on
article length — which preclude more elaboration of some interesting topics such as
detailed comparisons between methods, etc —and on time for submission (3 weeks).

R 1.1 Since we all agreed in the limitation of the dataset, please include the examples
of Fig. A at least as supplementary material. Definitively, the inclusion of more test
cases will add more strength to the validation of your approach.

We have included as suggested these cases in the supplementary material
(Supplementary Figure 2 and Supplementary Table 3) just to show the detection of
possible on-pathway intermediates defined by eBDIMS and X-ray PCA; however, as
mentioned on the rebuttal letter they require further investigation on a case by case
basis to determine their possible significance as done for the presented model
proteins (literature search, MD simulations, etc), and thus we do not include them in
the main material.

R 1.2A In [3] the ANM collective modes define the pathways between the crystal
structure and several well-defined PCA sub-states sampled in Anton simulations. My
suggestion was in the direction of reproducing these results and to explore how eBDIMS
performs in transitions observed by very long MD. | do not think coarseness is an issue
here, in fact ANM is even more coarse that eBDIMs. However, if eBDIMS is not suited to
handle this collective but small changes this should be comment in detail in the text.

We feel here that there is some misunderstanding regarding the difficulties in dealing
with the example suggested by the referee.

We must note that the default potential used by ebDIMS is actually an elastic network
developed for ANM (See paper’), and thus the coarse-graining is identical (the only
difference is the friction/solvent term missing in NMA). As the referee indicates, ANM
can deal easily with conformational changes, and therefore, ebDIMS can as well. In fact,
small transitions such as these can be perfectly handled by ebDIMS, even at finer
grained resolutions. The problem for the discussed example is not due to ebDIMS, the
ANM potential or the level of coarse-graining, but to the experimental ensembile itself,
that prevents the calculation of robust PCs at least at the C-alpha carbon level.

Contrary to the other examples presented, the PCA results for BPTI change dramatically
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depending on the structures chosen (for example, when NMR structures are
included/excluded, etc), and there is no apparent pathway between end-states well
defined experimentally. Therefore, we cannot compare ANM, ebDIMS or MD in a
robust and independent PC-space to validate their relative performance with
experimental data: the BPTI ensemble PCs do not cluster neatly the solved structures
(for example, separating bound/unbound, etc), and this is a problem related to the
magnitude of the conformational change, which is extremely small at the C-alpha
carbon level — there are not clear collective motions such as hinge, twist, etc but rather
local backbone fluctuations. We already discussed this issue of PCA robustness in the
previous rebuttal letter and incorporated in the manuscript.

R 1.2 B The free energy landscapes plots are noteworthy results. It is nice to see how
well the pathways can delimit the low-energy routes. | also agree that path sampling is
manly a shape problem. For this reason, here, | also miss the comparison with NMA
approaches that are the paradigm of "shape" methods. By comparing the corresponding
figures of RBP, SERCA and GLIC, it is clear that the non-linear NMA method, iMODs,
shows similar performance. Also iIEMN seems to walk by the lowest energy areas.
Please, illustrate and comment this observation.

We have commented with more detail as suggested the differences between methods
(Supplementary Discussion). The referee is right that all methods are capable of finding
one of the lowest energy “boundaries” (the most populated one in MD) but only for
examples with low pathway asymmetry. However, for RNAselll, in which both
pathways are clearly distinct, most classical approaches fail to provide a stable path,
and only MinActionPath, which also uses Langevin dynamics, provides a smooth
pathway, although only in one direction.

Since you have the 5-NTase MD simulations (Fig. S5), | am missing the corresponding
energy landscape plot.

In principle, we did not aimed to get a FEL for all the proteins because not all examples
have been studied previously and besides that, they contain ligands of different
complexity (an entire dsRNA for RNaselll). We preferred to focus on those cases which
have been well characterized computationally and experimentally and are known to
transition without the ligand: RBP, SERCA and GLIC. Regarding our simulations of
5’NTase (never studied computationally), we can only conclude that partial closing
seems spontaneous in the absence of ligand and samples most of the area defined by
eBDIMS/Climber as seen in our MD simulations. However, these simulations from
unbound intermediates and end-states are not fully transitioning (the area between
the two basins, 1HPU and 10I8 is undersampled) and thus do not overlap (as also
happens for RNaselll), preventing the calculation of a meaningful FEL.
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Also in this figure and for consistency, the initial SERCA structures of figure 5A and figure
9B should be the same.

For all examples, we preferred to use already published data so that the readers can
find a detailed analysis of the corresponding MD simulations in the literature. For
SERCA, the only reported simulations that transition spontaneously between the open
and the closed state start from the 1SU4 structure. This structure and the one we used
initially as seed (2C9M) are known to belong exactly to the same functional state and
as can be seen, they populate the same area in the PC1-2 subspace, which corresponds
to the E1-2Ca** state. This Calcium-bound open headpiece conformation is known to be
extremely flexible, hence the wide distribution of this cluster, but as discussed in the
Robia paper, the open Calcium-bound SERCA (which samples all the area of 1SU4 and
2C9M structures) is known to transition to the closed intermediates as determined
experimentally. Running eBDIMS from any of the open structures (1SU4 or 2C9M chains
A or B), the pathways visit the intermediates suggested by the PC analysis. Note that we
already added the forward/reverse transitions from 1SU4 in the FEL for consistency, as
suggested.

R1.3 The comparison with the state of the art methods is mandatory to illustrate the
goodness and limitations of the proposed approach. To this respect NOMAD-ref and
MinActionPath are valuable but a bit obsoleted (e.g. the servers are not updated since
2006-7) and it will be more fair the inclusion of more recent approaches. Although, the
scope of the paper is not a detailed comparison, few comments about the relative
performance in each case should be included. Right now, the authors just added the
pathways plots (panel C), but there are not practically any comments in the text. This
should be corrected.

We do not agree fully with the referee on this point: in our experience, algorithm quality
is not related with its novelty (at least as seen from projections onto experimental PCs)
but rather to the physics behind. As can be seen, in spite of being an “old” method,
MinActionPath (2007) is not obsolete but actually the best ANM-based linear
algorithm, showing smooth trajectories close to Climber and ebDIMS for all the
examples studied. Notably, it also uses a Langevin simulation.

On the contrary, a more recent and complex approach such as NMSIMS (2012), which
includes three levels of structure modeling, or iMODS (2014), based on an intricate
internal coordinates NMA interpolation, show rather “jagged” trajectories in the PC1-2
subspace for the challenging RNaselll transition.

To our knowledge, we have included all the most recently developed methods (iMODS,
NMSIMS) as suggested by the referee. The only exception is AMPathway (2014), and
the reason is that the server only returned results for GLIC. The projection of this
transition shows a similar behavior as the other pure ANM-based methods. We also
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excluded our own recent approaches based on dMD*? because they cannot deal with
multichain structures.

In summary, method exclusion or inclusion has been solely based on the capacity of
servers and programs to deal with the examples examined, and it is clear that their
relative performance is only related to their physics, with old methods such as
MinActionPath working better than more complex/recent ones such as NMSIMS (which
have other advantages, such as dealing with RNA, or being extremely fast as iMODS).

By the way, transition progress plot could be easily improved by using a dash-line and
continue line for forward and reverse pathways, respectively.

In our opinion, this way the plots where other methods are included would appear
even more crowded; note that we added “forward” and “reverse labels” to the eBDIMS
plots, and the gray gradient also allows to identify transition direction.

Also, in figures 3 and 4 iMODS seems to be under-sampled.
The data for iMODS was obtained using defaults from the server, for each one of the
cases studied. The default is set to 1A for each step, so that for a smaller the transition,
there are less steps (See updated Supplementary Methods).

The word "instability" is too ambiguous and it is clear that different methods have
different behaviors and "instabilities". NOMAD-ref and iEMN clearly fail to reach the
final structure in the RNAase case. By the contrary, NMSIMS except in the RNAase case
have an unexpected behavior fluctuating around near final positions. This must be
further investigated and commented. For example, | run RNAse case in the iENM server
and | notice that it got trapped in local minima where one of the binding domains
collided. | also try to run the same case with NOMAD-ref, but | always obtained quite
distorted models. Again, this should be investigated and commented.

As we pointed throughout response letter, we did not aim to rate methods or analyze
the weaknesses of each algorithm, just to use experimental data as a framework to
evaluate how they sample transitions. By instabilities we refer to the “jaggedness” of
the trajectories projected in the PC1-2 space, and not to their causes, which can be
clearly related to the differences in the algorithms and should require a detailed
examination of the codes (not accessible in many cases) clearly beyond the scope of
this work.

However, it seemed clear that a very common and understandable problem for ANM
methods is to pick up the right biasing mode at each step, and we illustrate that with

NOMAD-Ref because it was developed by ourselves and clearly fails in several examples.

In sup. Figure S3 you are using a failed case (panel B) to illustrate the performance of
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NOMAD-ref that is likely to be an artifact. Also, in this figure more recent methods were
ignored.

The goal of Fig.S3 was to illustrate the reason for NOMAD-Ref failing to find a stable
path, not to show its performance that is clearly bad in the cases presented. There is no
point in including recent methods that perform well (they are already included in the
main material), since we aimed to show why an ANM method such as NOMAD-Ref
fails when selecting the wrong normal modes to deform a structure.

It will be useful include a table with the minimum RMSDs of the different methods
respect to the end conformation, as well as, the minimal distance to the
representative intermediate structures. Ideally, you could include the transition frame
plots (as panel D, fig 2-5) for all the tested methods.

As suggested, we have included RMSD and PC-distance comparisons for all the examples
(Supplementary Table 5); however, note that the distance to crystal intermediates has
little relation with methods defining smoothly the wider area sampled by MD, and
thus is a poor indicator of method performance (jagged trajectories can reach very low
rMSDs to intermediates but are not physically feasible).

All these programs have different input parameters (iterations, cutoffs, number of
modes, etc.) please specify them to facilitate the reproducibility of your results.

Default values set in the webservers or the provided executables (Climber) were used
for all programs to assure reproducibility. We include links to all webservers for all the
methods (Supplementary Table 4) and report the values of the main parameters
according to original papers (Supplementary Methods). Note that in many webservers
there is no option to select any parameter at all (iENM, for example).

The authors should stress more clearly the limitations of the proposed approach, case
by case:

-RBP. The reverse pathway of eBDIMS (also at a least extent climber) clearly stands out
of the lowest energy regions. Apparently, this is a type of transition in where NMA
methods have similar, if not better, results than climber and eBDIMS.

We do not agree with the referee interpretation. Linear methods only show one of the
boundaries of the region sampled by MD, while Climber and eBDIMS delimit both of
them. The reverse pathway from the closed 2DRI structure sampled by ebDIMS and
Climber is covered by MD in most of its extension, and approaches significantly the
bottom of the two minima populated in the atomistic simulation. Actually, it delimits
rather clearly the lower boundary of the 1BA2 minima on the left. Note also that this is
only the closing pathway in the absence of ligand; the opening or closing transitions in
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the presence of ribose could populate the undersampled area.

-5'-NTase. The reverse Climber and eBDIMS transitions followed a path not observed in
MD.

Again, the transition here is not complete and MD only shows the sampling from the
unbound end (1HPU) and intermediate (10I8) states; still, MD populates half of the
area delimited by the forward/reverse paths. Running the simulation in the presence
of the ligand (a nucleotide) in the “closing” direction could extend the sampling to the
undersampled area.

-RNAselll. The closest conformation of eBDIMS to the catalytic, functional state is
around 10 A.

As discussed in the text, the catalytic state requires the presence of Mg2+ (and the RNA
ligand), so it is driven electrostatically. Still, it is clear that there is a clear deviation in
the reverse path approaching the area of the Mg-bound structures, and that is seen
visually in the PC1-2 space and mathematically as an inflection point in both rMSD and
PC1-2 distance profiles (Fig.4D).

-All the method seems to be capable to sample the GLIC and SERCA transitions, but will
be interesting to see the rMSDs differences.

We provide rMSD as suggested (see above), but as as can be seen, rMSDs are very
similar for all methods and do not relate with the “stability” of the paths projected
onto the experimental PC1-2 subspace. Note also that crystallographic intermediates
are not the true minima in MD, so the isolated rMSD to these intermediates is not an
ideal metric to rate the different approaches. We have added a brief discussion
regarding methods performance in the Supplementary material.
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