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I. FISHER’S GEOMETRIC MODEL

A. Model description

Fisher’s geometric model (FGM) is a phenotypic fitness landscape model where the organism is described by an
n-dimensional phenotype ~x = (x1, x2, · · · , xn) in the real Euclidean vector space Rn and fitness is defined as a smooth,
single-peaked function f(~x) of ~x [1, 2]. The dimension n is often referred to as phenotypic complexity and can be
interpreted as the number of ‘optimized’ traits that contribute to fitness [3]. By translational invariance, the optimal
phenotype may be placed at the origin.

As the function f(~x) is assumed to be smooth, there exists a region around the optimum where it can be well
approximated by a parabola. Since a living organism is believed to be well-adapted, we assume that the wild-type
phenotype lies inside this region. Furthermore, if each trait determines the fitness equally strongly and independently,
we may additionally assume that f is isotropic. In fact, it was recently shown in [3] that the isotropic FGM emerges
from first principles based on random matrix theory under fairly general conditions. Summing up all the assumptions,
the fitness is given by

f(~x) = f0 − Λ|~x|2 = −Λ|~x|2, (1)

where |.| is the Euclidean norm and Λ determines the curvature of the fitness function around the origin. Here, f0

is set to zero since an overall additive constant does not affect any statistical properties. Note that, in contrast to
many previous studies of FGM [2], we adopt a Malthusian rather than a Wrightian fitness concept. Consistency with
previous results can however always be achieved by interpreting f as the logarithm of a Wrightian fitness function W .

The fixation of a mutation i in the population corresponds to a jump from the wildtype phenotype ~x0 to the mutant

phenotype ~xi and is thus described by a displacement vector ~∆xi ≡ ~xi − ~x0. A basic assumption in the applications
of FGM to the study of epistasis [2, 4, 5] is the absence of epistatic interactions on the level of the phenotype, which
implies that the induced phenotypic change due to a given mutation i is independent of the wildtype phenotype ~x0.
Thus the statistical properties of mutations are described by the distribution of displacement vectors, which is usually
assumed to be an n-dimensional Gaussian distribution,

M( ~∆x) =
e−

~|∆x|
2
/2σ2√

(2πσ2)n
, (2)
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where the standard deviation σ quantifies the typical size of the phenotypic displacements. The specific form (2) can
be justified using central limit arguments if the number of optimized traits is much smaller than the total number of
phenotypic traits affected by mutations [3].

From the description of the model, we have two basic phenotypic scales: the distance r0 = |~x0| of the wildtype from
the optimum and the typical size σ of mutational displacements. Their ratio will be denoted by ρ = r0/σ (see Fig. 1

A of the main text). Rescaling the phenotype by r0 we introduce ~λ = ~x/r0 as dimensionless coordinates. Moreover,
since the fitness function f is isotropic, the wildtype position can be taken to lie on the first coordinate axis, i.e.,

~x0 = r0ê1 and ~λ0 = ê1 ≡ (1, 0, 0, · · · , 0). In the new variables, the distribution of phenotypes of a single mutant is
given by

Q(~λ) =
ρn

(2π)
n/2

exp

(
−ρ

2

2
[(λ1 − 1)2 + λ2

2 + · · ·+ λ2
n]

)
(3)

or, in spherical coordinates (λ = |~λ|, θ),

Q(λ, θ) =
Sn−2

(2π)
n/2

ρ(ρλ)n−1(sin θ)n−2 exp

(
−ρ2

2
(λ2 − 2λ cos θ + 1)

)
, (4)

where Sn is the surface area of the unit n-sphere. Integrating further over θ, the marginal distribution of the radial
distance is given by

Q̄(λ) = λn/2ρ2 exp

(
−ρ

2(1 + λ2)

2

)
In−2

2

(
ρ2λ
)
, (5)

where Ik(x) is a modified Bessel function of the first kind.
Similarly, the fitness function (1) is rescaled as above to give

f(λ) = −λ2s0 (6)

where we introduce another parameter s0 = Λr2
0 describing the selection strength of the optimum or the largest single

mutational effect that can be achieved from the wild type (Fig. 1A). The (Malthusian) selection coefficient s is then
related to λ as

s ≡ f(λ)− f(λ = 1) = (1− λ2)s0. (7)

Using (7), the distribution (5) can be written in terms of s, yielding the expression

Qsel(s) =
1

2
ρ2s
−n4−

1
2

0 (s0 − s)
n−2

4 e
ρ2(s−2s0)

2s0 In−2
2

(
ρ2

√
s0 − s
s0

)
, (8)

which was also reported in [2].

B. Epistasis

1. Definition

In the following, we investigate the statistical properties of the pair-wise epistasis ε, a measure quantifying the
fitness correlation between a pair of mutations. To define this quantity, suppose we have two mutants corresponding

to phenotypic displacements ~∆x1 = r0
~∆λ1 and ~∆x2 = r0

~∆λ2. Then the dimensionless phenotypes of the mutants

are given by ~λi = ~λ0 + ~∆λi, where ~λ0 = ê1 ≡ (1, 0, 0, · · · , 0) in the rescaled space. Because there are no epistatic

interactions on the level of phenotypes, the position of the double mutant is similarly written as ~λ12 = ~λ0+ ~∆λ1+ ~∆λ2 =
~λ1 +~λ2−~λ0 (see Fig. 1B). As a measure for mutational interaction defined in [4], the pairwise epistasis quantifies the
deviation of the double mutational effect from the additive null model, i.e.,

ε ≡
[
f(|~λ12|)− f(|~λ0|)

]
−
[
f(|~λ1|)− f(|~λ0|)

]
−
[
f(|~λ2|)− f(|~λ0|)

]
= f(|~λ12|)− f(|~λ1|)− f(|~λ2|) + f(|~λ0|)

= −2s0(~λ1 − ê1) · (~λ2 − ê1) = −2s0
~∆λ1 · ~∆λ2. (9)
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Since the phenotype displacement is a random variable in this model, the pairwise epistasis (9) is random as well. In
our experimental setting, we are mostly interested in the situation where two mutants share the same single effect
s or equivalently λ. Under this condition, we want to understand the statistical properties of ε. Obviously, to fully
characterize the behavior of ε, its distribution Pλ(ε) conditioned on λ would be needed. However, finding the full
distribution seems to be quite challenging mathematically. Instead, we shall focus on obtaining the first two cumulants,
i.e., the mean and the variance of Pλ(ε).

2. Moments of epistasis and Gaussian approximation

As mentioned above, the epistasis defined in (9) inherits its randomness from the mutational displacements which
are distributed according to the distribution Q(λ, θ). To distinguish the two averages involved, it is convenient
to introduce distinct notations for them. For the averages with respect to the displacement distribution Q(λ, θ)
conditioned on fixed λ, we use angular brackets such that

〈· · ·〉λ ≡
1

Zλ

∫
dθ (· · · )Q(λ, θ) (10)

where Zλ is the normalization constant defined by

Zλ ≡
∫
dθ Q(λ, θ). (11)

Similarly, Eλ is used for the expectation with respect to Pλ(ε). Using these notations, the following expressions can
be derived for the first two moments of ε,

Eλ(−ε/2s0) = 〈λ cos θ − 1〉2λ (12)

and

Eλ(ε2/4s2
0) =

〈
(λ cos θ − 1)2

〉2

λ
+

1

n− 1

〈
(λ sin θ)2

〉2

λ
, (13)

for n ≥ 2. As an immediate consequence of (12) it is seen that the mean epistasis is always negative. A similar result
was obtained in [5] for beneficial mutations of unconstrained effect size.

After evaluating the expressions (12) and (13) by integrating the distribution (4) over θ one finds

Eλ(−ε/2s0) =

(
λIn

2

(
λρ2
)

In−2
2

(λρ2)
− 1

)2

(14)

and

Eλ(ε2/4s2
0) =

λ2(n− 1)In
2

(
λρ2
)

2

ρ4In−2
2

(λρ2) 2

+


λ2

(
In

2
(λρ2)
λρ2 + In+2

2

(
λρ2
))

In−2
2

(λρ2)
−

2λIn
2

(
λρ2
)

In−2
2

(λρ2)
+ 1


2

, (15)

for n ≥ 1 [6]. The limiting behaviors of Eλ(−ε/2s0) in the two limits ρ→ 0 and ρ→∞ are

Eλ(−ε/2s0) =

 1 +O(ρ) for ρ→ 0(
1− λ+ n

2ρ2 +O(ρ−2)
)2

for ρ→∞. (16)

This suggests that n and ρ enter the expression for the mean epistasis only in the combination z =
√
n/ρ. Even

though all the results have been derived in terms of λ for the sake of simplicity, one can always replace λ by the
selection coefficient s via the relation (7), which will be more useful when analyzing experimental data. The predicted
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FIG. S1. A comparison between the exact distribution Pλ(ε) of epistasis, obtained using simulations, and its Gaussian ap-
proximation for different selection coefficients. The other two parameters n and ρ are chosen such that they are close to the
parameters estimated from the data. The vertical dotted line indicates the onset of sign epistasis which is given by −s. Then,
the probability of sign epistasis is determined by the integral of Pλ(ε) over the interval (−∞,−s) [panel (d)].

dependence of mean epistasis on the selection coefficient is illustrated in Fig. 1C of the main text. Numerical results
for this dependence were also reported in [5].

Although the full distribution Pλ(ε) of epistasis cannot be obtained in a closed form, it can be approximated by
a Gaussian distribution using the expressions (14) and (15) for the first two cumulants. As shown in Fig. S1, this
approximation works well in the parameter range of interest here. However, readers should be warned that it is no
longer valid for small n as can be easily checked from the n = 1 case where the distribution becomes discrete with
three possible values.

3. Sign epistasis

As was explained in the main text, sign epistasis, where a given mutation can be beneficial or deleterious depending
on the genetic background [7], takes a particularly simple form in the present setting. When both single mutants have
the same positive selection coefficient s, sign epistasis occurs whenever the fitness of the double mutant is lower than
that of the single mutants, which according to the definition (9) amounts to

ε < −s. (17)

Because the fitness effects of the single mutants are identical, sign epistasis is always reciprocal in this case [8].
The propensity for sign epistasis can be qualitatively inferred from the shape of the mean epistasis curve in Fig. 1C

of the main text. Consider first the situation where the wildtype phenotype is far from the optimum (large ρ). Then
the mean epistasis curve lies mostly above the line ε = −s and sign epistasis is rare. As ρ decreases the curve
straightens and becomes more negative, indicating the increased ‘ruggedness’ of the genotype landscape closer to the
phenotypic optimum. Finally, for ρ→ 0, Eλ(ε)→ −2s0 which is below the line ε = −s for all s (recall that s ≤ s0 by
construction).
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FIG. S2. (a) Plot of mean epistasis between two mutants carrying different numbers of mutations; S stands for single mutant,
D for double mutant, and the FGM parameters are n = 19 and ρ = 7. The introduction of multiple mutations effectively
changes the length scale ρ (compare to Fig.1C in the main text where the variation of mean epistasis with ρ is displayed). (b)
Comparison of mean epistasis in the S-D case with the S-S expression evaluated for an effective parameter ρeff = 1

2
(ρ+ ρ/

√
2).

Interestingly, the concave shape of the function (14) suggests that, as ρ decreases, the regions where Eλ(ε) < −s
appear at small and large s. This tendency is further amplified by the behavior of the variance of ε. Over the range of s
(0 < s < s0), one can show that the variance (15) is smallest at an intermediate point si (0 < si < s0) and increases as
s deviates from that point in the parameter ranges of our interest. The nonmonotonic variation of the probability for
sign epistasis as a function of s is indeed confirmed by the direct evaluation of this quantity in Fig. S1(d). It accounts
for two distinct mechanisms by which (reciprocal) sign epistasis may arise in FGM: For mutations of large effect it
occurs by overshooting the optimum, while for mutations of small effect the underlying mechanism is antagonistic
pleiotropy [5].

4. Multiple mutations in one strain

In the analysis of the data reported in the main text it is assumed that all strains that were crossed to generate
double mutants each carry a single mutation on the background of the wild type. As explained in the Experimental
Methods section, however, the probability that strains may harbor more than one mutation was estimated to be small
but not entirely negligible. In the following we show that the intepretation of the data within the framework of FGM
is only weakly affected by the occurrence of multiple mutations in one strain.

In FGM, mutations are described by Gaussian random displacements. Hence, when two mutations occur, we can
effectively replace the combined effect by a single displacement but with a size differing by a factor of

√
2 (recall that

the sum of two Gaussian random variables is again a Gaussian random variable with twice the variance). Following
a calculation similar to the one performed to obtain (14), we can derive the mean epistasis between mutations that
consist of different numbers of elementary mutational displacements. Specifically,

ED−Dλ (−ε/2s0) =

 λIn
2

(
λρ2

2

)
In−2

2

(
λρ2

2

) − 1


2

(18)

for the case where both mutant strains carry two mutations each and

ES−Dλ (−ε/2s0) =

(
λIn

2

(
λρ2
)

In−2
2

(λρ2)
− 1

)
×

 λIn
2

(
λρ2

2

)
In−2

2

(
λρ2

2

) − 1

 (19)

for the case where one strain carries two mutations while the other carries one. As shown in Fig. S2, this variation
introduces a slight rescaling of ρ but does not change the overall behavior significantly. This implies that, in the
presence of multiple mutations, the estimate of ρ from the data should be considered as an effective parameter value
that is slightly smaller than the true one [see Fig. S2(b)].
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C. Data analysis

1. Inferring model parameters

In order to test our analytical predictions (14) and (15), the following analysis was performed on the data collected
from the experiment with Aspergillus nidulans described in the main text. First, among the beneficial mutations, we
selected pairs of single mutants having similar effects (fA ' fB). Exploiting the sexual cycle of the fungus for each
pair of mutations, a fruiting mass was formed that contains all four possible genotypes (W , A, B, AB). Subsequently,
we performed a growth assay in which the most fit among the four genotypes is expected to dominate the population.

As we initially picked two beneficial mutations satisfying fA ' fB > fW , the dominating population will be either
the double mutant AB or one of the single mutants. In other words, the genotype AB will dominate the population
unless sign epistasis occurs, i.e, provided that max{fA, fB} < fAB . Otherwise, there are two possible scenarios that
can emerge: i) one of the single mutants will dominate and the fitness of the double mutant (and hence the value of
ε) is not observable or ii) the double mutant will dominate despite being of lower fitness because of a tradeoff between
fast germination and slow growth, see the Methods section in the main text.

To account for this experimental situation, it is convenient to define the pseudo-epistasis

ε′ = max{fAB , fA, fB} − fA − fB + fW . (20)

It can be checked that ε′ = −fA + fW = −s for the case that one of the single mutants dominates while it is equal to
the true epistasis ε otherwise, that is,

ε′ = max{ε,−s}. (21)

Additionally, we introduce the probability q that the double mutant is observed when the true sign epistasis occurs
, which is possible only if the double mutant germinates fast and prevents growth of the single mutants. In this
case the measured epistasis is the true epistasis (plus the measurement error) instead of the pseudo epistasis. The
measurement errors are modeled by a Gaussian distribution with mean zero and variance σ2

Error. The variance σ2
Error

is determined to be the average of the unbiased estimators of variance, each calculated from up to six replicates of
the corresponding data point. Hence, its probability density function Pe(ξ) is given by

Pe(ξ) =
e
− ξ2

2σ2
Error

√
2πσError

(22)

and each measured epistasis value m is modeled as the sum ξ+ ε with probability q and ξ−s with probability (1−q).
As a consequence of the measurement error, the data points corresponding to pairs which display sign epistasis are
seen to be mildly scattered around the line ε = −s in Fig. 3B of the main text, whereas those cases where the data
points are located significantly below this line are attributed to fast germination.

The inference of the FGM parameters n, ρ and s0 from the pairwise epistasis data requires a suitable choice of a
log-likelihood function L. To construct this function, one should first calculate the probability density function (PDF)
Ptot(m|s,P) of the measured epistasis m conditioned on s and on the model parameters P. Here, P = {n, ρ, s0, q}
is the set of the model parameters of FGM. Since the measured epistasis is modeled as the sum of two independent
random variables, one arising from the intrinsic stochasticity of FGM and the other from measurement error, the
resulting PDF Ptot(m) is written as the convolution of both variables, i.e.,

Ptot(m|s,P) = (PFGM ∗ Pe)(m|s,P) ≡
∫ ∞
−∞

PFGM(m− ξ|s,P)Pe(ξ) dξ, (23)

where PFGM(ε|s,P) is the PDF of the FGM part. Clearly, for q = 1, PFGM(ε|s,P) = Pλ(ε) with λ calculated from
equation (7).

For general values of q, the effect of pseudo epistasis should be carefully addressed. Specifically, in the case of sign
epistasis, the epistasis is replaced by −s with probability 1− q. This condition is succinctly encoded by the following
equation:

PFGM(ε|s,P) = (1− q)δ(s+ ε)

∫ −s
−∞

Pλ(z) dz + qθ(−s− ε)Pλ(ε) + θ(s+ ε)Pλ(ε), (24)

where δ(x) and θ(x) are the Dirac delta function and the Heaviside step function, respectively. This type of construc-
tion is in general called survival analysis of left-truncated data [9]. In this expression, the Heaviside step function is
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used to combine both types of data points separated by the line ε = −s and the Dirac delta function is introduced to
localize the probability at ε = −s when such replacements occur. By adopting the Gaussian approximation for the
distribution Pλ(ε) of epistasis, PFGM(ε|s,P) is explicitly written as

PFGM(ε|s,P) =q × 1

2
erfc

 Eλ(ε) + s√
2
[
Eλ(ε2)− Eλ(ε)2

]
 δ(s+ ε)

+ (1− q)θ(−s− ε)e
− (ε−Eλ(m))2

2[Eλ(ε2)−Eλ(ε)2]√
2π
[
Eλ(ε2)− Eλ(ε)2

] +
θ(s+ ε)e

− (ε−Eλ(ε))2

2[Eλ(ε2)−Eλ(ε)2]√
2π
[
Eλ(ε2)− Eλ(ε)2

] , (25)

where the dependencies on the model parameters n, ρ and s0 implicitly enter via the equations (14) and (15). Finally,
the function L is constructed from the set of all data points D of the form {s,m} as follows:

L(P) =
∑

{s,m}∈D

lnPtot(m|s,P). (26)

Even though the explicit functional form of Ptot(m|s,P) can be expressed in terms of error functions using (23), it is
omitted here as it does not provide further intuition.

Once L(P) is defined, the remaining task is to find the parameters (ρ∗, n∗, s∗0, q
∗) that minimize L(P). For each

medium, the standard deviations σError of the measurement error are given to be 0.04 × sm for CM and 0.03 × sm
for MM, where the sm’s are defined as the largest single mutant selection coefficients observed in the respective data
sets (sm = 49mm and sm = 40mm, respectively). Additionally, the Hessian matrix around the point (ρ∗, n∗, s∗0, q

∗)
yields the 95% confidence intervals for these parameters. For our data sets, the estimated parameters were found
to be n∗ = 19.3 ± 4.15, ρ∗ = 6.89 ± 0.72, s∗0/sm = 1.41 ± 0.25 and q∗ = 0.21 ± 0.49 for CM and n∗ = 34.8 ± 7.35,
ρ∗ = 9.81± 0.97, s∗0/sm = 1.62± 0.33 and q∗ = 1− 0.90 for MM. Since the estimated q∗ for MM hits the boundary
of the valid range q ∈ (0, 1), the confidence interval is obtained by the profile method rather than from the Hessian
matrix. Here, the estimate s∗0/sm = 1.41 means that the fitness of the phenotypic optimum exceeds the largest
observed fitness mutant fitness by a factor 1.41. As expected, we obtained a small value of q∗ in CM owing to the
large number of data points located near the −s-line while we obtained q∗ = 1 in MM since there are only two
data points below −s and one of them is far below the line and hence must be attributed to fast germination. The
estimated mean epistasis curves are drawn together with the experimental data in Fig. 3B of the main text.

Furthermore, it is natural to ask whether our estimated FGM parameters also match the experimental single effect
size distributions. In Fig. 2B of the main text, we display histograms of the single effect data in comparison to the
analytical probability density function (8) evaluated with our estimated parameters. It is shown that they are in a
good agreement for s > 0. The noticeable deviation in the regime s < 0 is not surprising as deleterious mutations
were not targeted by the experimental selection assay.

2. Estimating the frequency of sign epistasis

As a consistency check, we calculated the distribution of the number of instances of sign epistasis from FGM using
the model parameters estimated from the previous analysis. For a given selection coefficient s in the presence of
measurement error, the probability of having sign epistasis Psign(s) is given by

Psign(s,m) =

∫m+s

−∞ PFGM(m− ξ|s,P)Pe(ξ) dξ∫∞
−∞ PFGM(m− ξ|s,P)Pe(ξ) dξ

. (27)

In other words, the indicator Xs,m of having sign epistasis is a Bernoulli random variable that is unity with probability
Psign(s,m). The total number of instances of sign epistasis Nsign is then written as a sum of the indicators, i.e.,

Nsign =
∑

{s,m}∈D

Xs,m. (28)

The resulting distribution is called a Poisson binomial distribution and its probability densities for both media are
shown in Fig. 3C of the main text. The observed number of instances of sign epistasis (Nsign = 16.2 for CM and
Nsign = 2.0 for MM) are shown to be consistent with the distribution. Here, the observed frequencies were obtained
by summing all the weights that account for the probability that the measured epistasis originates from sign epistasis.
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FIG. S3. Epistasis as a function of mean relative selection coefficient for CM (left) and MM (right). The blue line in each
panel is the best linear fit predicted from the maximum likelihood method and the shaded region is the 99% variability induced
by measurement error.

3. Comparison with a linear model

As a minimal description of diminishing returns epistasis, one can perform a similar analysis using a linear model.
Unlike FGM which defines a full distribution of epistasis for any s, the linear model only specifies the mean behavior
without inherent variability. As will be shown below, a linear model that accounts for variability only in the form
of measurement error, thus assuming that epistasis is a deterministic, linear function of s, cannot explain the large
deviation observed in our data. Hence, such an intrinsic variability (with unknown source) is added to the model as
an additional model parameter.

To be precise, we assume that the pairwise epistasis satisfies the linear relation ε(s) = a + bs + ξ where ξ is a
Gaussian random variable with standard deviation Σ. Following the same procedure as for FGM, the corresponding
PDF for the measured epistasis is constructed as

PLinear(m|s,Q) =q × 1

2
erfc

(
a+ bs+ s√

2Σ

)
δ(s+m)

+ (1− q)θ(−s−m)e−
(m−(a+bs))2

2Σ2

√
2πΣ

+
θ(s+m)e−

(m−(a+bs))2

2Σ2

√
2πΣ

, (29)

where Q is the set of model parameters, i.e., Q = {a, b,Σ, q}. Then the full distribution and the log-likelihood function
are obtained similarly to (23) and (26). Subsequently, the parameters minimizing the function are determined for
both media. The estimated parameters are found to be (a, b,Σ, q) = (0.07, -1.00, 0.18, 0.77) for CM and (0.11, -1.04,
0.14, 0) for MM. In both cases the slope of the linear model is close to -1.

In order to select the best model among several possible candidates one generally compares their scores in terms
of the Bayesian Information Criterion (BIC) [10]. In our case, the difference in BIC’s between the two models,
∆BIC ≡ BICLinear − BICFGM, is found to be ∆BIC = (−32.47)− (−32.29) = −0.18 for CM and ∆BIC = (−3.76)−
(−3.45) = −0.30 for MM. Hence, these values suggest that the linear model is favored for both media. However, the
relatively small absolute values of ∆BIC (|∆BIC| < 6) imply that no clear preference for one of the models can be
inferred from this analysis [10].

It is also interesting to check the BIC’s for the linear model with Σ = 0, where we do not allow for any intrinsic
variability. Not surprisingly, the BIC’s become much worse ( 392.3 for CM and 270.7 for MM) without changing the
estimates of a and b within the significant digits. This shows that the inherent variability is an essential feature of
the epistasis data analyzed in this work. As shown in Fig. S3, a large fraction of data points lie outside the shaded
99% variability region, implying that the observed variability cannot be attributed only to the measurement error.

4. Parameter estimation from single effect distribution

An alternative approach to estimating the parameters of FGM would be to fit the predicted distribution (8) to the
observed single mutational effects. This approach might seem more natural and facilitates the analysis by removing
the issue of survival analysis. However, as shown in Fig. S4, we find that the log-likelihood functions constructed from
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CM MM

FIG. S4. The log-likelihood of the predicted single effect distribution (8) for CM and MM. The parameters n (upper panels) and
s0 (lower panels) are fixed to the optimal value obtained from the epistasis analysis. It is found that the resulting log-likelihood
function forms a plateau in the parameter space. The blue dots represent the optimal point that was estimated by pair-wise
epistasis. As expected, they are located inside or at least near the plateau.

(8) for both media are slowly varying in the parameter space of FGM. This results in large confidence intervals for each
parameter which in turn makes the inference highly ambiguous. In Fig. 2B of the main text, we added a predicted
single effect distribution by using an arbitrary set of parameters inside the plateau to show the resemblance of the
curves in the observable interval s > 0. Specifically, we used n = 19, ρ = 20, s0 = 3 for CM and n = 34, ρ = 20, s0 = 3
for MM. In the figure, both curves predict the histogram rather well in the beneficial regime s > 0 but differ strongly
for s < 0.

5. A correction to the Pearson correlation coefficient due to measurement error

In [11], the authors pointed out that observations of diminishing returns epistasis in terms of the Pearson correlation
coefficient between epistasis and single effect size can be biased due to measurement error. Following the approach
outlined in [11], we corrected for the measurement error in our data and found a rather strong negative correlation
that even becomes more pronounced after the correction, decreasing from -0.849844 to -0.867583 for CM and from
-0.826546 to -0.836044 for MM. It can be seen from Fig. 1 of [11] that the correction indeed enhances the negative
correlation for sufficiently negative values of the correlation coefficient. From this analysis, we can conclude that the
measurement error in our data is rather weak compared to the trend of diminishing returns.
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FIG. S5. The epistasis curves (solid) with the estimated parameters for the HoC model. Both curves fail to capture the overall
trend of the data. The auxiliary curve ε = −s (dashed) is drawn to show the region where sign epistasis occurs.

II. HOUSE OF CARDS MODEL

Another simple statistical model of epistasis is the House-of-Cards (HoC) or Mutational Landscape model, where the
fitness values of different genotypes are independent random variables drawn from a common probability distribution
[12–14]. In this model a negative correlation between epistasis and selection strength arises from a rather trivial
mechanism, which is an extreme case of the effect of regression to the mean described in [11]. Indeed, if the fitness of
the double mutant is a random variable uncorrelated with the single mutant selection coefficients and the latter are
conditioned to be equal to s, it follows immediately from the definition (9) that the mean epistasis is

E(ε) = s̄− 2s (30)

where s̄ denotes the mean selection coefficient.
To provide some perspective on the comparison of the experimental data to the predictions of FGM, we performed

a similar data analysis for the HoC model. For the distribution of fitness effect we chose the exponential distribution

M(s) =
1

a
e
sc−s
a , (31)

for s ∈ (sc,∞), giving rise to a two-parameter model specified by a and sc. The mean selection coefficient is s̄ = sc+a.
Within the HoC model, the distribution of epistasis conditioned on the two single mutations having the same effect

size s reads

PHoC(m|s,H) =q ×
(

1− e
sc−s
a

)
δ(s+m)

+ (1− q)e
−m−2s+sc

a θ(m+ 2s− sc)
a

θ(−s−m) +
e

−m−2s+sc
a

a
θ(s+m), (32)

where H = {a, sc, q}. From this expression, the log-likelihood function is constructed analogously to (23) and (26).
By minimizing LHoC(H), the three parameters (a, sc, q) were determined as a∗ = 0.37, s∗c = 0.02 and q = 0.89 for
CM and a∗ = 0.41, s∗c = 0.35 and q = 0.47 for MM. In contrast to FGM, the epistasis curves with the estimated
parameters are not in good agreement with the data, see Fig. S5. Specifically, the BIC values for the two models are
-32.29 (FGM), -7.30 (HoC) for CM and -3.45 (FGM), 11.28 (HoC) for MM. For both media, the BIC suggests that
FGM is a much better model than HoC.
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