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Supplementary Methods  

Clustering  

Given a set of 𝐷-dimensional data points, {𝐱𝑖}𝑖=1𝑁  (e.g., clinical or neuroimaging measures), 

clustering algorithms aim to partition the data into a specified number (𝐾) of clusters such that the 

samples in each cluster are more similar to one another than to those in the other clusters. One of 

the simplest and most widely used approaches for clustering is the ‘K-means’ algorithm, which is an 

iterative approach involving two steps: (i) for each data point, find the closest cluster center 

according to the squared Euclidean distance, 𝑑�𝐱𝑖 , 𝐱𝑗� = �𝐱𝑖 − 𝐱𝑗�
2

, then (ii) replace each center 

with the coordinate wise mean of all points assigned to it. These steps are iterated until the cluster 

assignments do not change. 

 

Finite Mixture Modeling 

Conventionally, FMMs are specified using a linear superposition of component distributions: 

 
𝑝(𝐱) = �𝜋𝑘𝑝𝑘(𝐱|𝛉𝑘)

𝐾

𝑘=1

  

Where 𝐾 denotes the number of components (model order), 𝑝𝑘(𝐱|𝛉𝑘) is the distribution for each 

component (parameterized by 𝛉𝑘) and 𝜋𝑘  are mixing coefficients specifying the proportion each 

component contributes to the mixture, such that 0 < 𝜋𝑘 < 1 and ∑ 𝜋𝑘  𝑘 = 1. For a GMM, each 

component is Gaussian with 𝛉𝑘 specifying a mean and covariance. Gaussian mixture models are 

related to K-means (1) but provide soft cluster assignments, determined by the covariance of the 

component distributions. This can be beneficial in the case of noisy or overlapping clusters (see 

Figure S1, below), but necessitates estimating parameters to characterize each component. There 
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are a range of approaches for fitting FMMs but maximum likelihood estimation using the 

expectation-maximization algorithm is most common (1, 2). 

Latent class cluster analysis is a widely used FMM approach that accommodates many 

different data types. In its simplest form, LCCA assumes independence between variables, i.e.: 

 
𝑝(𝐱) = �𝜋𝑘�𝑝𝑘(𝑥𝑑|𝛉𝑑𝑘)

𝐷

𝑑=1

𝐾

𝑘=1

  

Here, the components, 𝑝𝑘(𝑥𝑑|𝛉𝑑𝑘), are Gaussian, binomial, multinomial, ordered multinomial or 

Poisson distributions depending on the data type (continuous, categorical, ordinal or count). There 

are also many generalizations: for example, the independence assumption can be relaxed (e.g., to 

model clinical variables that may be correlated) and covariates can be introduced to help predict 

class membership (3-5). Many classical FMM techniques can be seen as generalizations of LCCA (see 

main text).  

 

Didactic Example of Clustering Methods 

We show a toy dataset (Figure S1A) to illustrate the behavior of K-means (Figure S1B) and a GMM 

(Figure S1C). The data were generated from four Gaussian distributions chosen deliberately so that 

two of the classes are relatively distinct but the remaining two classes overlap. This illustrates: (i) the 

partitioning of the input space induced by K-means (a ‘Voronoi tessellation’) and (ii) the soft 

assignment performed by the GMM along with its underlying probability contours. Note that neither 

approach faithfully represents the true model: K-means performs a hard partitioning of the data and 

cannot accommodate class overlap, whereas the GMM does not learn the correct distribution for 

the overlapping classes. Moreover, two common measures to select model order (6, 7) favor a 

simpler model having only three clusters relative to the true model (Figure S1D). Thus, more data are 

required to identify the overlapping classes. 
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Figure S1. A didactic example illustrating the operation of k-means clustering and a Gaussian mixture model. 
(A) A two-dimensional dataset was generated from four Gaussian distributions, each containing 100 data 
points. These are shown in different colors with the elliptical contours denoting 2 standard deviations. The 
mean and covariance of these distributions were chosen such that two clusters are relatively easily to 
discriminate (black and green) while two clusters are more difficult to discriminate because they overlap 
substantially (red and blue). (B) The results of the K-means clustering algorithm estimated using good practice 
(e.g., 10 random restarts). Cluster centers are denoted by gray crosses and the borders between each class by 
lines. (C) The results of applying a Gaussian mixture model with 4 components to the same data. Each point is 
colored according to a mixture of the posterior probabilities of belonging to each class (see 1). (D) The results 
of applying two common approaches to select the model order, the Akaike information criterion (AIC; 7) and 
the Bayesian information criterion (BIC; 6). Both measures favor a simpler three cluster model over the true 
data generating model (i.e., with four clusters). See text for further details.  
 

Clustering in High Dimensions 

Clustering is well-known to be a notoriously difficult problem in high dimensional spaces (8, 9) for 

many reasons: conventional distance measures are typically not meaningful in high dimensions; the 

presence of many noisy features or correlations between features strongly influences the derived 
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clusters; different features may be relevant for identifying different clusters, or different clusters 

may lie on different subspaces. Moreover, most conventional feature selection or dimensionality 

reduction techniques (e.g., principal components analysis) act globally in that they generate a single 

subspace for all the data, so they have limited value in alleviating this problem. 

High-dimensional clustering is a large field in machine learning, and the fact that there is no 

universal measure of clustering success has led to a heavy proliferation of different approaches (see 

(10) and the main text). Therefore, only a very brief introduction will be given here (see (8) for a 

more extensive treatment). Briefly however, the clustering algorithm must solve two separate 

problems in high dimensions. First, it must find the relevant subspaces that best explain the data and 

then must identify what the final clusters in these subspaces are (akin to the main problem that 

must be solved in low dimensions). These are both extremely difficult problems and all existing 

algorithms invoke heuristics for both. For example, methods to find relevant subspaces for the data 

might assume that they have a simple structure (e.g., being axis aligned), they might project the data 

onto multiple subspaces or might not try to assign each data point uniquely to a single cluster at all 

(referred to as ‘hybrid’ algorithms (8)). A particularly popular approach in biostatistics is 

‘biclustering’ (11) which aims to cluster both the features and samples simultaneously. To date none 

of these approaches have been employed to stratify psychiatric disorders. 

 

Alternatives to Clustering: Normative Modeling 

Normative modeling differs from clustering in that it aims to learn mappings between clinically 

relevant variables and quantitative biological variables across the full range of variation. This allows 

disease effects to be detected in individual subjects either: (i) as outliers from the normative model 

(i.e., having patterns of variation that are distinct from the normative cohort) or (ii) by being towards 

the extreme end of a normal axis of variation but still well-explained by the normative model (see 

below). The approach is highly generic and is suitable for high dimensional data (e.g., whole-brain 

voxel-wise data (12, 13)) and also to multi-modal data. The first step is to fit a normative distribution 
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that links clinically relevant variables with quantitative biological variables using a large cohort (e.g. 

consisting of healthy subjects). This has been achieved in different ways and using different 

multivariate regression techniques: Erus and colleagues (12) used support vector regression (14) to 

predict chronological age from a set of structural neuroimaging measurements in a ‘decoding’ model 

(15), yielding a ‘brain developmental index’. They then identified outliers as subjects who were 

beyond the 90% confidence interval band from a linear regression between this measure and true 

chronological age. Marquand and colleagues (13) adopted an alternative ‘encoding’ model, where 

they used a probabilistic regression method (Gaussian process regression; 16) to predict regional 

brain activity from clinically relevant covariates. An advantage of Gaussian process regression is that 

it automatically provides measures of predictive confidence that quantify where each subject lies in 

the normal range for each of the biological response variables, which means that a second linear 

regression step is not necessary. Under this encoding approach, a separate normative model is 

estimated for each brain region which together quantify an individual participant’s response pattern, 

given their clinical or behavioral covariates and provide a natural approach for mapping brain 

regions that differ from the normative cohort at the individual subject level (17). In the case of a 

multivariate response (e.g., having thousands of brain locations) this can be considered as a 

multivariate measure of deviation. For subject-specific decision-making it is necessary to summarize 

the degree of abnormality by estimating the total magnitude of deviation for each subject with 

respect to the normative model. This can be achieved using extreme value statistics, which model 

the behavior of random variables in the tail of their distribution (18, 19). Briefly, an extreme value 

distribution can be fit to the multivariate response patterns across subjects to derive a subject-level 

abnormality score.  

In a second step, the normative model can be applied to new subjects; which can be: (i) a 

withheld part of the original cohort (e.g., under cross-validation); (ii) a second cohort containing 

healthy subjects, or (iii) a subset of subjects that express symptoms. This allows disease effects in 

the target population to be assessed with respect to the normative distribution. These effects may 
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manifest as outliers within the distribution, but not necessarily so. It is possible that the normative 

distribution covers a sufficiently wide amount of variation that it also explains the range of 

functioning that drives symptom expression. In such cases, the normative model can be interrogated 

to determine which ranges of the clinical predictor variables give the most important contribution to 

symptom expression. Finally, the fit of each individual subject to the normative model can be used 

as input to a clustering algorithm to define subtypes. This provides two potential advantages over 

clustering the data directly: (i) the mapping between biology and behavior may be more informative 

than either individually for separating subtypes and (ii) the subtypes are defined with respect to a 

healthy pattern of functioning, and are therefore potentially more interpretable. See (13) for further 

details on normative modeling. 
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