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Supplementary Table S1

Table 1: DMRs detected by IMA. The number of regions and the corresponding number of sites has been
given. Note that apart from other methods, IMA reports overlapping regions. Therefore, an indicative
number of ”unique” results has been shown. The latter were obtained by manual merging of overlapping
regions, and the interpretation of the merged regions is questionable.

IMA results modified IMA (unique results)
TP FP TP FP

0.0 0 (0) 0 (0) 0 (0) 0 (0)
0.025 1747 (6288) 45 (223) 1096 (4251) 38 (207)
0.050 5847 (23959) 161 (949) 2981 (14199) 131 (770)
0.075 8380 (36279) 215 (1285) 3896 (19643) 172 (1086)
0.10 9882 (42627) 276 (1463) 4388 (22440) 228 (1280)
0.15 11315 (49299) 310 (1794) 4638 (24943) 248 (1486)
0.20 11822 (50032) 321 (1798) 4816 (25271) 255 (1543)

Supplementary Table S2

Table 2: The average computation time for each method, obtained from the simulation study. As bumphunter
and seqlm can be parallelized, also the time on 10 parallel cores has been shown.

Computation time in seconds
single core 10 parallel cores

bumphunter 60400 7400
Aclust 8200 –
seqlm 2020 310
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Supplementary for MDL expressions

Here, we derive the expression L(M) +L(D|M) for the segmentwise model introduced in the article. Let D
be the methylation data matrix with p sites and n samples.

Let S be a fixed segmentation which consists of k segments {[s1, e1], . . . , [sk, ek]}. Let li denote the length
of i-th region, i.e. li := ei − si + 1. For a fixed segmentation, we have

L(M) = k · log p+

k∑
i=1

(li + 2) · γ

where

• k · log p represents the number of bits needed to code the segmentation. That is because it is sufficient
to know the starting points of all segments and there are a total number of k starting points. Coding
integers from the set {1, . . . , p} takes log p bits each.

• (li +2) ·γ represents the number of bits needed to code the parameters for the linear model on segment
i. Here γ represents the number of bits needed to code the real number with sufficient precision. This
linear model has a baseline value for each site (there are li of those), the parameter β and the variance
of residual errors σ2. Altogether, there are li + 1 + 1 parameters.

• γ represents the number of bits needed to code the real number. Theoretical results [?] indicate that
precision 1/

√
m is sufficient for discretizing the parameter which was estimated on m observations.

The corresponding code length is − log 1√
m

or 0.5 logm. In our case, m = n · li. As we want to code

the parameters for all segments with equal precision, we will define γ as the maximum of 0.5 log(nli)
over i = 1, . . . , k.

We note that L(M) can be expressed as the sum over description lengths of the models for each segment
separately, i.e.

L(M) =

k∑
i=1

(log p+ (li + 2) · γ)

So the description length function is additive.
Now, for L(D|M) it was already mentioned that it can be expressed as the negative log-likelihood

L(D|M) = − logL(D|M). It can be expressed as following

− logL(D|M) = − log

k∏
i=1

L(D(si, ei)|Mi) = −
k∑

i=1

logL(D(si, ei)|Mi)

where D(si, ei) denotes the columns si, . . . , ei of the data matrix D. So also the L(D|M) can be calculated
for all segments separately and then summed together.

The expression for L(D(si, ei)|Mi) is given by the gaussian density

L(D(si, ei)|Mi) =

n∏
k=1

ei∏
j=si

1√
2πσ2

exp

(
− 1

2σ2
(ykj − µj − βxk)2

)
so

logL(D(si, ei)|Mi) =

n∑
k=1

ei∑
j=si

(
−1

2
log(2πσ2)− 1

2σ2 ln 2
(ykj − µj − βxk)2

)
Finally, the description length for a segment [si, ei] can be calculated as following

L(Mi) + L(D(si, ei)|Mi) = L(Mi)− logL(D(si, ei)|Mi)

= (log p+ (li + 2) · γ) +

n∑
k=1

ei∑
j=si

(
1

2
log(2πσ2) +

1

2σ2 ln 2
(ykj − µj − βxk)2

)
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Supplementary for Dynamic Programming

Here, we present the dynamic programming algorithm for identifying the optimal segmentation. As an input,
an upper triangular matrix A with description lengths is needed.

Let D be the methylation data matrix with p sites and n samples. Suppose we have calculated the
description lengths for all segments [i, j] separately, according to the formulae given in the Supplementary
for MDL expressions. Then, we fill the obtained values in the upper triangular matrix A = (aij) such that
element aij denotes the description length of the model for segment [i, j]. The following algorithm identifies
the segmentation with the smallest total description length.

Algorithm 1 Dynamic programming for identifying the optimal segmentation

1: Input: Matrix A = (aij) with description lengths
2: L0 ← 0
3: for all j ∈ {1, ..., p} do . p is the total number of sites
4: Lj ← +∞
5: for all i ∈ {1, ..., j} do
6: if Lj > Li−1 + aij then
7: Ij ← i− 1
8: Lj ← Li−1 + aij
9: end if

10: end for
11: end for
12: . Restoring the best segmentation S
13: k ← p
14: S ← ∅
15: while k > 0 do
16: S ← {[Ik + 1, k],S}
17: k ← Ik
18: end while
19: return S
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