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1 MATHEMATICAL EXPLANATION
Here we give a more detailed mathematical explanation of the Empi-
rical Brown’s Method. We begin by explaining Brown’s Method
(Brown, 1975) in more detail largely following Kost and McDer-
mott (2002). Consider k normally distributed random variables with
means 0 and covariance matrix Σ,

X = N(0,Σ), (1)

where N(0,Σ) is an k-dimensional normal distribution. P-values
can be derived fromX with with a cumulative distribution function,

Pi = 1 − Φ(Xi), (2)

where Pi denotes the ith P-value, Xi denotes the ith component
of X , and Φ denotes the cumulative distribution function. Note
that this follows because the marginals of a multivariate normal
distribution do not depend on the covariance. We now consider the
distribution of

Ψ =

k∑
i=1

−2 logPi, (3)

which we assume is proportional to a χ2 distribution with 2f
degrees of freedom, Ψ ∼ cχ2

2f . Brown showed that

f =
E[Ψ]2

var[Ψ]
(4)

and

c =
var[Ψ]

2E[Ψ]
=
k

f
. (5)

Assuming a χ2 distribution, E[Ψ] = 2k. Furthermore, define a new
random variable Wi = −2 logPi = −2 log(1 − Φ(Xi)). Brown
showed that,

var[Ψ] = 4k + 2
∑
i<j

cov(Wi,Wj). (6)

This expression can be evaluated for each i and j via numerical
integration, where

cov(Wi,Wj) = E[WiWj ] − 4, (7)

E[WiWj ] =

∫ ∞
0

∫ ∞
0

wiwjfWi,Wj (wi, wj)dwidwj , (8)

and fWi,Wj denotes the joint distribution between Wi and Wj .
Computationally, this numerical integration is slow and not suitable
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for large datasets (see Supplementary Information 4). This inspi-
red Brown and Kost (Brown, 1975; Kost and McDermott, 2002)
to find polynomial fits to calculate the covariance. While these fits
work very well on low-noise normal data, we found them to be less
than ideal on more realistic datasets. This led us to take a non-
parametric approach and attempted to approximate cov(Wi,Wj)
directly from the data. Let ~xi be a sample drawn from Xi. We can
approximate a sample, ~wi, from Wi by transforming the raw data
using the right-sided empirical cumulative distribution function F ,

~wi = −2 log(1 − F (~xi)). (9)

The covariance between two variables Wi and Wj can then estima-
ted from the raw data using the well known definition of covariance,

cov(Wi,Wj) ≈ E[(~wi − E[~wi])(~wj − E[~wj ])]. (10)

2 EBM CONVERGENCE AS A FUNCTION OF
SAMPLE SIZE

We generated data from a normal distribution with µ = 0 and

Σ =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

 . (11)

No noise was added to this data, i.e. ξ = 0. We chose this covaria-
nce matrix because it has exactly 2 degrees of freedom (equivalent
to 4 degrees of freedom for the χ2 distribution.) We found that,
given n > 100 samples per data vector ~xi, our implementation pro-
duces relatively little variation for the values of 2f and c (Supp.
Fig. 1). We performed many additional tests by generating sample
data from numerous other covariance matrices with known degrees
of freedom. These tests demonstrated the same general convergence
pattern (results not shown).

3 RUNTIMES
We note here that EBM is fast enough for use on large omics data-
sets. Let N be the number of P-values to be combined and S the
number of samples (data points) used to generate each P-value.
Our method runs in O(N2S + NS logS) time, where the first
term comes from the pairwise covariance calculations between N
P-values and the second term comes from the empirical cumulative
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Supp. Fig. 2. Left: Runtime scaling with number of P-values being combined N . Sample size = 100. Error bars are the standard deviation across 50 trials
from different randomly generated sets of data. Right: Runtime scaling with sample size S. N = 100. Error bars are the standard deviation across 50 trials
from different randomly generated sets of data.

Supp. Fig. 1. Convergence of EBM as a function of the sample size n
when calculating c and 2f . A 5-by-5 covariance matrix with 2 degrees of
freedom (Ψ ∼ χ2

4) was used in this example. Error bars show standard
deviation across 25 different trials.

distribution function calculations for each of theN random variable
with S samples. For comparison, Kost’s Method runs in O(N2S)
time, as it doesn’t use the ECDF function. Using our randomly gene-
rated data, we combined P-values for varying values of N and S
(Supp. Fig. 2); both methods can combine hundreds of P-values
based on data with thousands of samples in seconds. In comparison,
direct numerical integration takes many orders of magnitude lon-
ger and is not therefore not practical for P-value combination tasks
encountered in high-throughput biology data. See Supp. Table 1 for
a benchmark of running times.
Because the implementation is fast, users can empirically compute

N S EBM Kost Numerical
5 100 0.057 ± 0.027 0.0011 ± 0.0004 105.79 ± 30.01

10 100 0.086 ± 0.052 0.00347 ± 0.0013 357.05 ± 116.96
20 100 0.123 ± 0.059 0.0103 ± 0.0035 1134.24 ± 350.66

5 100 0.057 ± 0.027 0.0011 ± 0.0004 105.79 ± 30.01
5 500 0.331 ± 0.016 0.0008 ± 0.0002 73.01 ± 14.08
5 1000 1.124 ± 0.047 0.0009 ± 0.0002 74.29 ± 15.67

Supp. Table 1: Running Time Benchmarks Times shown are in
seconds averaged over 50 trials generated from different sets of ran-
dom data using the values ofN and S indicated on the left. Numbers
after the ± indicate standard deviations across the trials.

confidence intervals of the combined P-values using a bootstrap
procedure if interested.

4 SOFTWARE IMPLEMENTATION
The implementation of EBM in Python uses the scipy, numpy,
and statsmodels libraries. Specifically, numpy’s covariance function
(numpy.cov) is used to calculate the covariance and stat-
smodels’ ECDF function is used to calculate the empirical
cumulative distribution (statsmodels.distributions.empirical distri-
bution.ECDF). This implementation is efficient and is easily appli-
cable to large scale genomics data. Below, we describe in some
detail the various components that are part of the implementation.

• Let there be k data vectors denoted ~X1... ~Xk each with n sam-
ples. Our function takes as input a matrix of these data vectors
and a vector of k P-values, denoted P1...Pk, to be combined.

• Z-Transform of the data - mean of 0 and unit variance - ~Zi =
( ~Xi − E[ ~Xi])/var( ~Xi).

• Calculate the empirical cumulative distribution function (F )
over the data using the statsmodel package.
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• Approximate the -2 log cumulative distribution vector, for each
data vector; ~wi = −2 log(1 − F (Zi)).

• For each pair of indices (i, j) calculate the covariance
cov(~wi, ~wj).

• Sum covariances to calculate var[Ψ], f and c.

• Calculate the combined statistic x = −2
∑k

i=1 logPi.

• Compute a meta P-value using Brown’s re-scaled distribution:
Pcombined = 1−Φ(χ2

2f (x/c)), where Φ denotes the cumulative
distribution function.

Additionally, for flexibility each component of our code can be
called individually. This allows for the covariance matrix to be pre-
computed and Brown’s Method to be applied on arbitrary subsets of
the data (which is how we carried out the TCGA analysis, see main

text). Finally, we have included Kost’s Method and Fisher’s Method
within our code for increased functionality and comparisons.

An efficient implementation is also available in R
and Matlab. See https://github.com/IlyaLab/
CombiningDependentPvaluesUsingEBM. The R
code is also available as a Bioconductor package at
https://www.bioconductor.org/packages/devel/
bioc/html/EmpiricalBrownsMethod.html.
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