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Appendix A Latin Hypercube Sampling

Introduced by McKay et al. (1979), LHS has been widely used in the electrophysiology litera-
ture for investigating the between-subject variability that exists in experimental observations
(Marder and Taylor, 2011; Britton et al., 2013; Dutta et al., 2013). LHS is designed to generate
parameter combinations such that good coverage of the parameter space is achieved.

Latin squares are commonly used in experimental design (Hinkelmann and Kempthorne, 2008)
for allocating treatments, for instance, to experimental units, allowing only one occurrence
of each treatment type per experiment. In this work, we consider a Latin square (two-
dimensional parameter space) to be one in which no more than one sample is taken from each
row and column (or division) for a given parameter combination. Note that a Latin hypercube
is the extension of this to higher dimensions. It is possible to form multiple Latin squares
by sampling more than once in each division, and this situation is shown in Fig. 1, where
three Latin squares are formed by taking three samples per division. Furthermore, it shows
that multiple configurations can be formed (represented by each colour), which are essentially
new LHS runs. However, Fig. 1 shows an idealised situation in which there is no overlap
in the divisions across multiple configurations. In reality, this may not occur as there is no
information passed from one configuration to the next. They can be considered as separate
instances of LHS.

Typically, LHS is performed using only a single sample per division and a single configuration,
and this method will be the focus of this work. The process required for LHS can be described
as follows.

Given a d dimensional parameter space, we first specify lower and upper bounds for each
component θj of θ, such that, lbj < θj < ubj , j = 1, . . . , d. We divide the range for each
θj into M equally probable subdivisions and randomly sample each subdivision exactly once.
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Figure 1: Representation of a two-parameter LHS approach. Each colour represents a different
configuration of LHS.

We then build a d×M matrix P in which each row corresponds to a different component of
θ and contains a random permutation of the M sampled values for that particular θj . The
M parameters θ1, . . . ,θM generated by the LHS strategy are simply given by the M columns
of the matrix P . The model is then simulated at these values of θ.

As discussed in the main paper, the model outputs are then compared to the observed data
by way of summary statistics. If the set of appropriate constraints are satisfied, then the
parameter combination is accepted as giving a ‘match’ to the data.

For the case study in the main paper, we perform two separate cases of LHS: firstly, with 5000
divisions per parameter range, one sample per division and one configuration; and secondly,
with 10000 divisions per parameter range, one sample per division and one configuration. We
choose to implement LHS in this way as it is the way commonly discussed in the literature.
It is unclear at this stage whether more divisions and fewer samples is the most effective
approach of implementing LHS.

Appendix B SMC Algorithm

The SMC algorithm developed for the main paper is shown in Algorithm 1.

Appendix C Complete description of the BR model

The Beeler–Reuter (BR) cell model is defined as a system of eight ordinary differential equa-
tions governing the temporal evolution of the transmembrane potential v of a single ventricular
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Algorithm 1 SMC algorithm with an MCMC kernel for sampling from the sequence of
POM probability distributions defined in (2) of the main paper. We present the algorithm
as sampling over the space of θ however we actually sample over the transformed space of φ.
Samples from the θ space can be easily recovered by back-transformation.

1: for i = 1, . . . , N do
2: Simulate θi ∼ p(·) and generate the vector of summary statistics from the model Sθ

i

3: end for
4: for c = 1, . . . ,K do
5: Set Na = N/2
6: Determine the set Amax

c which is the smallest possible range so that all particles satisfy

the constraint 1(Sθ
i

c ∈ Amax
c ) for i = 1, . . . , N

7: while Amax
c ⊃ Ac do

8: Determine the set Anext
c which is the largest possible range so that Na particles satisfy

the constraint 1(Sθ
i

c ∈ Anext
c )

9: If Anext
c ⊂ Ac then set Anext

c ≡ Ac and adjust the value of Na appropriately
10: for i = Na + 1 to N (note if Na = N then this loop is not required) do
11: Re-sample θi ∼ {θj}Na

j=1

12: for r = 1 to R do
13: Propose move θ∗ ∼ q(·|θi)
14: Compute acceptance ratio MH = min

(
1, p(θ

∗)q(θi|θ∗)
p(θi)q(θ∗|θi)

)
15: if U(0, 1) > MH then
16: Reject θ∗ without simulating data and go to next iteration of the for loop
17: end if
18: Generate the vector of summary statistics from the model Sθ

∗

19: if Sθ
∗

s ∈ As for s = 1, . . . , c− 1 and Sθ
∗

c ∈ Anext
c then

20: Set θi = θ∗

21: end if
22: end for
23: end for
24: Determine the set Amax

c which is the largest possible range so that all particles satisfy

the constraint 1(Sθ
i

c ∈ Amax
c ) for i = 1, . . . , N

25: end while
26: end for
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cell and the evolution of a vector of secondary variables z = (m,h, j, d, f, x, c)T , used in the
description of the dynamics of the various ion channels present in the cellular membrane. The
six variables m,h, j, d, f, x are typically called gating variables, while c = 107[Ca] represents
the intracellular calcium concentration and has been scaled to simplify the notation. The
equation for the transmembrane potential is

Cm
dv

dt
+ Iion = Istim. (1)

In equation (1), Cm is the cell membrane capacitance per unit area, Iion is the ionic current
defined as the sum of all transmembrane currents generated by the opening and closing of
the ion channels in the cell membrane, and Istim represents an externally applied electrical
stimulus.

In the BR model, the ionic current is the sum of four components and can be written as
follows:

Iion = INa + IK + Ix + Is, (2)

where INa is the current carried by sodium

INa = (gInam
3hj + 0.003)(v − 50),

IK and Ix are potassium currents, defined respectively by

IK = gIk

{
4(exp(0.04(v + 85))− 1)

exp(0.08(v + 53)) + exp(0.04(v + 53))
+

0.2(v + 23)

1− exp(−0.04(v + 23))

}
,

Ix = gIx x
exp(0.04(v + 77))− 1

exp(0.04(v + 35))
,

and Is is the calcium current given by

Is = gIs d f (v + 82.3 + 13.0287 ln(10−7c)).

In the equations above, Cm is in µF·cm−2, all currents are in µA·cm−2, v is in mV, the six
gating variables are dimensionless, [Ca] is in moles per litre (mole·L−1), and time is expressed
in ms. The parameters gIna, gIk, gIx, and gIs represent the four maximal current densities of
the system and have been used in this work for the comparison of the POM methods. In the
original formulation of the model, Beeler and Reuter (1977) specify these four parameters as
gIna = 4 mS·cm−2, gIk = 0.35µA·cm−2, gIx = 0.8µA·cm−2 and gIs = 0.09 mS·cm−2.

In order to complete the formulation of the BR cell model, we provide here the analytic
expression of the seven ODEs governing the secondary variables of the model, as given in the
original work by Beeler and Reuter (1977).

Let q represent any of the six gating variables of the model. The corresponding ODE of the
BR cell model can be written as follows:

dq

dt
= αq(v)(1− q)− βq(v) q, (3)
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C1 C2 C3 C4 C5 C6 C7

ms−1 ms−1 mV−1 mV mV−1 ·ms−1 mV mV−1 –

αm 0 0 47 -1 47 -0.1 -1
βm 40 -0.056 72 0 0 0 0
αh 0.126 -0.25 77 0 0 0 0
βh 1.7 0 22.5 0 0 -0.082 1
αj 0.055 -0.25 78 0 0 -0.2 1
βj 0.3 0 32 0 0 -0.1 1
αd 0.095 -0.01 -5 0 0 -0.72 1
βd 0.07 -0.017 44 0 0 0.05 1
αf 0.012 -0.008 28 0 0 0.15 1
βf 0.0065 -0.02 30 0 0 -0.2 1
αx 0.0005 0.083 50 0 0 0.057 1
βx 0.0013 -0.06 20 0 0 -0.04 1

Table 1: Parameter values for the BR model as given in Beeler and Reuter (1977).

where αq and βq are the channel opening and closing rates associated to the particular q (3) is
referring to. For all gating variables, both rates are functions of the transmembrane potential
v and have the following form:

C1 exp(C2(v + C3)) + C4(v + C5)

exp(C6(v + C3)) + C7
. (4)

The values and the units of the constants involved in the expression (4) according to the
original formulation of the model are specified as in Table 1.

Finally, the evolution in time of the scaled intracellular calcium concentration c = 107[Ca] is
governed by the following differential equation:

dc

dt
= 0.07(1− c)− Is, (5)

where Is is the calcium current defined above.

C.1 Initial condition

The initial condition for the eight variables involved in the system is as follows: we assume
that the transmembrane potential is initially set equal to v = −85 mV and for the vector of
secondary variables we define z = (0, 1, 1, 0, 1, 0, 1). We let the simulation run for a certain
time interval without the application of any external current, that is, we specify Istim = 0 for
t ∈ [0, t1], so that all variables in the system are allowed to reach the corresponding steady
state.

C.2 Stimulation protocol

We stimulate the cell with a train of five current pulses of 2 ms duration, delivered at a cycle
length of 1000 ms, that is, at ti = t1 + (i− 1)× 1000 for i = 1, . . . , 5. The amplitude of all five
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stimuli is set equal to twice the diastolic threshold of the model at the considered cycle length
(Istim = 28µA·cm−2). The diastolic threshold is measured by following the action potential
duration definition proposed by Monasterio et al. (2014) for their single-cell simulations.

C.3 Implementation of the solution

The solution of the system of differential equations is computed with the MATLABr ODE
solver ode15s with default error tolerances on the interval [0, tf ] (for a suitable tf > t5 so
that the entire action potential triggered by the fifth electrical stimulus could be visualised).

For the comparison of the solution obtained with different parameters, we focus on the last
action potential generated by the electrical stimuli, that is, we consider the solution profile
of the variable v on the temporal interval [t5, tf ]. In all the model simulations run for the
manuscript we choose t1 = 500 ms and tf = 5500 ms.

C.4 Characterisation of the solution

In order to characterise the data produced by a given simulation, we compute a set of four
biomarkers as explained in Section 2.3 of the main paper. We also consider the value of the
solution at a set of unevenly spaced time points, with a higher concentration where the action
potential presents rapid variations in order to more accurately capture critical features of the
solution profile. Letting t = 0 represent the initial time point of the temporal interval of
interest (i.e. t5), we consider the following vector of 28 time points (in ms): (0.1, 0.3, 0.6, 1,
1.10, 1.25, 1.35, 1.5, 1.75, 2, 2.75, 3.5, 4.25, 5, 10, 15, 20, 25, 35, 50, 75, 100, 125, 150, 200,
250, 300, 350). This choice clearly depends on the solution behaviour produced by a given
stimulation protocol. However, the same idea can be easily implemented for any other choice
of simulation parameters and stimulation protocol by simply identifying regions of rapid/slow
change in the generated action potential.
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Appendix D Beeler-Reuter Summary statistic data

Shown are the sample mean and standard deviation (Table 2), and the sample minimum and
maximum (Table 3) of all the summary statistics considered for parameter sets 1-4.
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Table 2: Means and standard deviations for each of the summary statistics.
parameter set 1 parameter set 2 parameter set 3 parameter set 4

Summary Statistic mean (sd) mean (sd) mean (sd) mean (sd)

t1 0.1 (ms) -81.25 (0.05) -81.35 (0.25) -81.13 (0.31) -81.23 (0.23)
t2 0.3 (ms) -75.82 (0.05) -75.93 (0.26) -75.69 (0.32) -75.80 (0.23)
t3 0.6 (ms) -67.87 (0.05) -67.99 (0.29) -67.73 (0.35) -67.84 (0.26)
t4 1 (ms) -56.89 (0.09) -57.06 (0.39) -56.71 (0.47) -56.88 (0.36)
t5 1.10 (ms) -53.61 (0.15) -53.82 (0.46) -53.40 (0.55) -53.61 (0.43)
t6 1.25 (ms) -47.03 (0.42) -47.36 (0.76) -46.71 (0.89) -47.13 (0.74)
t7 1.35 (ms) -39.93 (1.00) -40.47 (1.33) -39.46 (1.51) -40.25 (1.36)
t8 1.5 (ms) -19.94 (3.12) -21.02 (3.26) -19.27 (3.19) -21.13 (3.48)
t9 1.75 (ms) 15.43 (3.38) 14.84 (3.27) 15.66 (2.59) 14.00 (3.47)
t10 2 (ms) 31.74 (2.53) 31.43 (2.46) 31.74 (2.01) 30.62 (2.59)
t11 2.75 (ms) 36.04 (1.71) 35.85 (1.66) 36.00 (1.42) 35.27 (1.74)
t12 3.5 (ms) 34.49 (1.51) 34.25 (1.47) 34.50 (1.26) 33.81 (1.56)
t13 4.25 (ms) 32.06 (1.42) 31.75 (1.40) 32.13 (1.21) 31.43 (1.49)
t14 5 (ms) 29.64 (1.34) 29.24 (1.37) 29.76 (1.20) 29.03 (1.46)
t15 10 (ms) 18.81 (0.95) 18.04 (1.61) 19.21 (1.62) 18.31 (1.45)
t16 15 (ms) 14.55 (0.67) 13.57 (1.96) 15.11 (2.07) 14.06 (1.58)
t17 20 (ms) 13.46 (0.48) 12.35 (2.22) 14.10 (2.38) 12.93 (1.74)
t18 25 (ms) 13.69 (0.35) 12.50 (2.38) 14.38 (2.56) 13.13 (1.87)
t19 35 (ms) 14.96 (0.18) 13.73 (2.49) 15.67 (2.69) 14.38 (2.01)
t20 50 (ms) 15.59 (0.05) 14.39 (2.43) 16.25 (2.63) 15.04 (2.00)
t21 75 (ms) 13.33 (0.01) 12.20 (2.33) 13.94 (2.53) 12.88 (1.92)
t22 100 (ms) 9.37 (0.03) 8.20 (2.36) 9.94 (2.58) 8.95 (2.00)
t23 125 (ms) 4.64 (0.03) 3.36 (2.55) 5.20 (2.77) 4.21 (2.22)
t24 150 (ms) -0.82 (0.03) -2.32 (2.92) -0.26 (3.17) -1.30 (2.63)
t25 200 (ms) -15.87 (0.05) -18.67 (5.02) -15.25 (5.34) -16.73 (4.71)
t26 250 (ms) -43.97 (0.13) -51.72 (12.22) -43.62 (12.35) -46.24 (11.08)
t27 300 (ms) -81.26 (0.02) -81.08 (2.56) -78.44 (4.91) -80.72 (1.81)
t28 350 (ms) -82.56 (0.00) -82.73 (0.41) -82.39 (0.46) -82.62 (0.32)

biomarker1 AP Peak 36.06 (1.73) 35.87 (1.68) 36.02 (1.43) 35.28 (1.76)
biomarker2 Dome Peak 15.62 (0.07) 14.41 (2.45) 16.29 (2.65) 15.07 (2.01)
biomarker3 Max dv/dt 176.23 (10.71) 176.28 (10.36) 175.16 (8.78) 171.45 (10.51)

biomarker4 APD90 278.37 (0.39) 271.57 (14.54) 281.85 (16.34) 277.38 (12.20)
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Table 3: Minimums and maximums for each of the summary statistics.
parameter set 1 parameter set 2 parameter set 3 parameter set 4

Summary Statistic min / max min / max min / max min / max

t1 0.1 (ms) -81.32 / -81.19 -81.60 / -80.91 -81.56 / -80.80 -81.50 / -80.81
t2 0.3 (ms) -75.88 / -75.76 -76.19 / -75.47 -76.15 / -75.35 -76.07 / -75.36
t3 0.6 (ms) -67.93 / -67.81 -68.28 / -67.48 -68.24 / -67.36 -68.16 / -67.37
t4 1 (ms) -57.03 / -56.79 -57.51 / -56.35 -57.39 / -56.15 -57.35 / -56.27
t5 1.10 (ms) -53.85 / -53.45 -54.41 / -52.94 -54.21 / -52.66 -54.20 / -52.83
t6 1.25 (ms) -47.72 / -46.58 -48.55 / -45.82 -47.97 / -45.25 -48.15 / -45.60
t7 1.35 (ms) -41.52 / -38.91 -42.77 / -37.79 -41.41 / -36.64 -42.04 / -37.40
t8 1.5 (ms) -24.79 / -16.72 -27.18 / -15.30 -22.78 / -12.95 -25.36 / -14.53
t9 1.75 (ms) 10.12 / 18.75 8.60 / 18.78 11.94 / 20.31 9.95 / 19.25
t10 2 (ms) 27.72 / 34.12 27.02 / 33.97 28.45 / 35.00 27.77 / 34.20
t11 2.75 (ms) 33.31 / 37.55 32.98 / 37.47 33.58 / 38.17 33.48 / 37.61
t12 3.5 (ms) 32.08 / 35.83 31.58 / 35.91 32.49 / 36.56 32.14 / 36.09
t13 4.25 (ms) 29.80 / 33.32 29.08 / 33.59 30.45 / 34.27 29.74 / 33.80
t14 5 (ms) 27.49 / 30.83 26.55 / 31.29 28.37 / 31.99 27.29 / 31.52
t15 10 (ms) 17.30 / 19.65 15.24 / 21.05 16.72 / 21.84 16.10 / 21.05
t16 15 (ms) 13.48 / 15.15 10.75 / 17.09 11.80 / 17.88 11.33 / 16.59
t17 20 (ms) 12.68 / 13.88 9.54 / 16.14 10.29 / 16.91 9.75 / 15.13
t18 25 (ms) 13.13 / 14.00 9.74 / 16.43 10.27 / 17.16 9.62 / 15.47
t19 35 (ms) 14.68 / 15.12 11.12 / 17.66 11.36 / 18.33 10.59 / 16.90
t20 50 (ms) 15.50 / 15.63 12.06 / 18.13 12.03 / 19.06 11.31 / 17.45
t21 75 (ms) 13.32 / 13.35 10.01 / 15.84 9.84 / 16.80 9.31 / 15.15
t22 100 (ms) 9.34 / 9.41 5.96 / 11.92 5.72 / 12.95 5.26 / 11.38
t23 125 (ms) 4.61 / 4.68 0.93 / 7.35 0.57 / 8.49 0.13 / 6.94
t24 150 (ms) -0.85 / -0.77 -5.13 / 2.22 -5.66 / 3.61 -6.10 / 1.93
t25 200 (ms) -15.92 / -15.79 -23.63 / -11.05 -24.85 / -8.65 -25.35 / -11.16
t26 250 (ms) -44.09 / -43.72 -64.21 / -33.89 -67.10 / -29.11 -67.00 / -33.89
t27 300 (ms) -81.28 / -81.23 -82.82 / -76.16 -82.80 / -69.38 -82.78 / -76.60
t28 350 (ms) -82.56 / -82.55 -83.10 / -82.09 -83.06 / -81.91 -83.04 / -81.99

biomarker1 AP Peak 33.32 / 37.60 32.99 / 37.50 33.59 / 38.21 33.48 / 37.63
biomarker2 Dome Peak 15.52 / 15.68 12.06 / 18.18 12.04 / 19.09 11.32 / 17.51
biomarker3 Max dv/dt 159.89 / 186.73 160.76 / 186.71 158.88 / 185.55 159.01 / 186.76

biomarker4 APD90 278.02 / 279.02 257.81 / 294.92 255.44 / 303.69 255.95 / 294.24
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Appendix E Case Study: Courtemanche-Ramirez-Nattel Model

A natural question is how the POM approaches perform when applied to a more complicated
problem involving a higher-dimensional parameter space and a larger number of summary
statistics output by the model. RND, LHS and SMC methods are applied to a more sophisti-
cated ODE model for action potentials in cardiac cells (atrial in this case), the Courtemanche-
Ramirez-Nattel model (Courtemanche et al., 1998). This model uses 21 coupled ODEs to
model a larger number of currents which all contribute to the overall membrane potential and
how it behaves in response to an external stimulus, though the general pattern of response
does still match the action potential presented in Fig. 1 of the main paper, albeit potentially
without the subsequent dome peak after initial depolarisation.

In this case a larger number of biomarkers are generated from each output action potential,
seven in total to roughly match published biomarker data from atrial cells (Sánchez et al.,
2014). Artificial data with between subject variability is generated by varying twelve input
parameters, still corresponding to the conductances (or maximum rates) of the different cur-
rent flows in and out of the cell which control its membrane potential. The range of possible
values for these parameters is chosen such that means and variances of the biomarker values
are reasonable with respect to the published data (in this case atrial cells from patients with
chronic atrial fibrillation). Further details on the model and its simulation are given below.

E.1 Model and Data

The Courtemanche-Ramirez-Nattel model (hereafter Courtemanche model for brevity) simu-
lates membrane potentials in atrial cells by tracking current flow created by the transfer of
Na+, K+ and Ca2+ ions through a number of channels. The strengths of these currents are the
varied parameters, θ = (gIna, gIbna, gIk1, gIto, gIkr, gIks, gIkur, gIca,L, gIbca, Inaca−max, Inak−max, gIcap−max).
Respectively these are the conductances of the fast Na+ current, the background Na+ current,
the inward rectifier K+ current, the transit outward K+ current, the rapid and slow delayed
rectifier K+ currents, the ultrarapid rectifier K+ current, the L-type Ca2+ current, the back-
ground Ca2+ current and the maximal values of the Na+/Ca2+ pump current, the Na+/K+

pump current, and the sarcolemmal Ca2+ pump current.

Output action potentials are generated by stimulating the cell ten times at a pacing rate
of 1 Hz, with a stimulus amplitude of 2000 pA applied for 2 ms. From these output ac-
tion potentials, seven biomarkers are recorded. These include three of the four used for
the Beeler-Reuter case study (action potential peak, the APD90 and the maximum upstroke
velocity) along with the APD50 and APD20, the resting membrane potential, and the mem-
brane potential at a time 20% of APD90 (v20). The biomarkers regarding the height and
location of the dome peak are not used, because the Courtemanche model is intended for
atrial cells, which do not necessarily exhibit dome peaks in their action potentials. In the
case of time series data, the times for which the transmembrane potential is recorded are
t = (0.5, 1, 2.5, 5, 7.5, 10, 15, 25, 40, 50, 75, 100, 125, 150, 200, 250, 300) ms.

Artificial data is generated again by selecting ten values of θ, using a base value and a
window of variability which provided a reasonable match with published data for atrial cells,
θT = (0.4, 0.1, 0.07, 0.33, 0.15, 1600, 4, 0.003, 0.0013, 1.5, 0.55, 7.5) and θ = θT ± 30%. Using
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this spread of theta values to represent between-subject variability corresponds to published
means and standard deviations of biomarker values for atrial cells from patients with chronic
atrial fibrillation Sánchez et al. (2014) reasonably well, making the Courtemanche model case
study both an example of a more difficult problem and also a more clinically realistic one.
The action potentials for the dataset, along with a subset of the population of models found
using SMC, is shown in Fig. 2.
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Figure 2: Solution trajectories corresponding to the artificial data for the Courtemanche
model (red). A subset of 50 POMs found using the SMC algorithm is also visualised (black).

The methods as stated in the main paper are applied to the Courtemanche model. Here
we use the minimum and maximum values from the artificial data to form the constraints
on the biomarker and time series data. LHS is performed using 5,000 divisions in each
dimension, with one sample taken to provide 5,000 potential models tested for satisfaction of
the constraints on the summary statistics. Preliminary simulations suggest that RND and
LHS perform similarly. SMC is applied in a similar way as described in Appendix B. For the
perturbation step we use the resampled particles to fit a mixture of two beta distributions
to each margin (after transforming the parameters to the unit interval (0,1)) and apply a
Gaussian copula in an attempt to account for the correlation between parameters. We use
R = 7 MCMC steps after each resampling operation for the perturbation step.

E.2 Summary statistic data

Shown are the sample mean and standard deviation (Table 2), and the sample minimum and
maximum (Table 3) of all the summary statistics considered for the Courtemanche model.
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Table 4: Means, standard deviations and minimum and maximum values for each of the
summary statistics in the Courtemanche model.

Summary Statistic mean (sd) min/max

t1 0.5 (ms) -68.26 (2.40) -71.65 / -63.00
t2 1 (ms) -58.40 (2.54) -61.97 / -52.83
t3 2.5 (ms) 22.99 (5.12) 15.80 / 30.11
t4 5 (ms) 8.52 (2.97) 3.71 / 14.06
t5 7.5 (ms) 3.41 (3.15) -1.86 / 9.38
t6 10 (ms) -0.47 (3.03) -5.74 / 5.25
t7 15 (ms) -6.56 (2.95) -11.90 / -1.10
t8 25 (ms) -12.70 (3.43) -18.85 / -6.48
t9 40 (ms) -16.65 (4.31) -23.71 / -8.84
t10 50 (ms) -18.39 (4.74) -25.64 / -9.83
t11 75 (ms) -22.56 (5.43) -29.35 / -13.23
t12 100 (ms) -27.81 (5.90) -36.14 / -19.43
t13 125 (ms) -35.06 (6.80) -47.47 / -25.07
t14 150 (ms) -44.37 (8.90) -60.24 / -30.86
t15 200 (ms) -62.36 (10.75) -75.14 / -42.92
t16 250 (ms) -71.68 (6.83) -78.48 / -55.09
t17 300 (ms) -74.90 (4.36) -79.24 / -63.88

biomarker1 vpeak − vrest 101.40 (6.60) 88.79 / 109.30
biomarker2 vrest -78.14 (2.37) -81.49 / -72.95

biomarker3 Max dv/dt 198.04 (36.99) 138.06 / 246.78
biomarker4 APD90 217.95 (38.16) 168.08 / 299.45
biomarker5 APD50 95.42 (29.58) 52.86 / 130.00
biomarker6 APD20 6.28 (2.64) 2.95 / 9.60

biomarker7 v20 -17.45 (4.76) -25.66 / -9.03
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Table 5: Comparison of LHS and SMC efficiency for the Courtmanche model, with efficiency
calculated as the mean number of unique models found divided by the mean number of
simulations required. Means and standard deviations use a sample size of ten full simulations
of each method.

biomarkers biomarkers/times
Method mean sims (sd) mean models (sd) eff (%) mean sims (sd) mean models (sd) eff (%)

LHS 5000 36 (5) 0.7 5000 0.7 (0.7) 0.01
SMC 8962 (160) 394 (15) 4.4 10561 (340) 393 (20) 3.7

E.3 Results

Performance results of the different approaches are listed in Table 5. All approaches are suc-
cessfully able to find sets of input parameters with which to build a population of models
that fall within the range of between-subject variability of the biomarkers. However, as ex-
pected for a type of rejection sampling, due to the curse of dimensionality the LHS approach
requires a larger number of trial models to form even small populations of models. Indeed,
when constraints derived from time series data are also incorporated, the LHS method quite
often fails to find even a single viable model using 5000 trial points. SMC shows no such
issue, retaining similar numbers of unique models from the same number of starting particles
even for the more difficult problem with the additional constraints. However, the Courte-
manche model has highlighted the increased difficulty of maintaining a fully diversified POM
in the SMC approach, as seen by the reduction in the number of unique models found by the
method in comparison to the results for the Beeler-Reuter model. We will consider alternative
perturbation kernels to improve this diversity in further research.

13



Appendix F Results for one parameter

Histograms from the SMC POM for when only one parameter is varied is shown in Fig. 3.
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Figure 3: Histograms from the SMC POM for when only one parameter is varied. In all cases
the biomarker/time statistics are used. The yellow squares denote the limits of the space that
the parameter values used to generate the data are sampled from and the orange stars denote
the minimum and maximum value of the parameter used to generate the data. The range of
the x-axis gives the range of the parameter space explored.
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Appendix G Before and After Drug Block Analysis - The 95%
confidence interval case

Solution trajectories before and after drug block for the original data set and the POMs
calibrated with the 95% confidence interval constraints are shown in Fig. 4.
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Figure 4: Solution trajectories corresponding to the original data set and the three calibrated
populations of 200 models obtained with LHS, SMC and RND methods. The left hand
column represents the trajectories corresponding to the set of parameters θ (without drug
block), while the right hand column represents the trajectories corresponding to the set of
parameters θmod (with drug block).
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Histograms of the APD90 distribution before and after drug block, and scatter plots of θmod

for the POMs calibrated with the 95% confidence interval constraints are shown in Fig. 5.
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Figure 5: APD90 distribution and scatter plot of parameter values for the three POMs con-
sidered in the study. (A) APD90 distribution for the three POMs considered, before (blue)
and after (red) drug block. In each plot we superimpose a kernel density estimate to the
normalised histograms of the APD90 obtained from the solutions trajectories corresponding
to the set of parameters θ and the set of modified parameters θmod. (B) Scatter plots and cor-
responding kernel density estimates for the location of the four components (gINa, gIk, gIx, gIs)
of the 200 parameters θmod obtained with the three POM strategies.
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