
Supporting information for:
Inferring R0 in emerging epidemics –

the effect of common population structure is small

Pieter Trapman,1∗ Frank Ball,2 Jean-Stéphane Dhersin,3
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In this supplementary material we discuss the mathematics behind some of the claims
in the main article, how simulations are performed and how estimates are obtained from
the simulations. The parameters used for the Markov SEIR epidemic model are summa-
rized in Table 1.

1 Mathematical methods

1.1 Introduction

The stochastic and mathematical analysis of the spread of infectious diseases in large
populations often relies on the theory of branching processes [1]. Branching processes are
introduced as a model to describe family trees, where the simplifying assumption is that
all women (in the branching process literature often the female lines are chosen) have the
same probability, pk, of having k daughters, where k can be any non-negative integer.
Furthermore, the numbers of daughters of different women are independent.

It is clear that this model ignores important properties of real populations, such as
changing circumstances which make the distribution of the number of children change
over time and the fact that populations in general cannot grow indefinitely because of
competition for resources. However, simple as it is, the model has proved useful in many
situations.

Branching processes are also useful to describe the spread of SEIR (susceptible →
exposed→ infectious→ recovered/removed) epidemics, where an infection can be seen as
a birth, with the infector being the mother and the infectee the daughter. In this model
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general parameters and notation
λ infection rate
1/γ average duration of infectious period
1/δ average duration of latent period
α exponential growth rate of number of infected individuals
n population size
R0 basic reproduction number, transmission potential,

mean number of new infections caused by typical infected individual
vc required control effort, critical vaccination coverage
I(t) number of infectious individuals at time t

parameters specific for network model
µ average number of acquaintances of individuals
σ2 variance of the number of acquaintances
κ the mean number of acquaintances of newly infected individual,

excluding the infector, κ = σ2

µ
+ µ− 1

parameters specific for multi-type model
ι number of different types
πj fraction of population with type j
λij infection rate from type i to type j individual
M ι× ι next generation matrix, with elements mij = λijπj/γ
J ι× ι identity matrix
ρA largest eigenvalue of matrix A

Table 1: Parameters and notation used for SEIR epidemic model in homogeneously mixing
populations, on networks and in multi-type populations
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competition for resources is apparent, since once a susceptible individual is infected it
cannot be infected again. However, if the population size n is large and the number of no-
longer-susceptible individuals is of smaller order than

√
n, then in homogeneous mixing

populations, in configuration model network populations, in household models and in
multi-type population models, suitable branching process approximations are very good
(see e.g. [2]) and we use them without further justification. In the following paragraphs
and sections, we discuss branching processes using terminology borrowed from epidemics.

Branching processes can be analysed in real time and in generations. In real time,
the Malthusian parameter or the epidemic growth rate, α is arguably the most important
parameter. A key theorem in branching processes [1, Thm.6.8.1] states that if the number
of infected individuals in the population grows large, then it roughly grows at a rate
proportional to eαt, where t is the time since the infectious disease was introduced. From
a generation perspective the essential parameter is R0, the basic reproduction number,
i.e. the average number of infections per typical infectious individual in an otherwise fully
susceptible population. An outbreak can become large only if R0 > 1, which happens if
and only if α > 0. Note that if R0 > 1, then it is still possible that the epidemic will go
extinct quickly. The probability for this to happen can be computed [3, Eq. 3.10] and is
less than 1.

In the remainder of this supplementary material, we first discuss some useful results
from the theory of branching processes. Then we apply them to epidemics in respec-
tively homogeneously mixing populations, network populations, multi-type populations
and household populations. Throughout we focus on R0. It is however worth remarking
that in homogeneously mixing populations, in (configuration model) network populations
and in multi-type populations, we can deduce straightforwardly the required control ef-
fort or critical vaccination coverage, vc from R0 (see main text). For more extensive
discussions on control effort and vaccination in the household model see [4]. We note
that the critical vaccination coverage is based on vaccination uniformly at random, i.e.
all people have the same probability of receiving the vaccine. As stated in the article,
this vaccination strategy is not optimal if the population structure is known exactly, but
since this relevant population structure is generally hard to obtain for emerging diseases,
vaccination uniformly at random might be the best feasible method.

Throughout we often use the superscripts “(hom)”, “(net)”, “(mult)”, and “(house)”,
to refer to parameters and quantities associated with epidemics in respectively homo-
geneous mixing populations, network models, multi-type populations and populations
consisting of households.

As a leading example we use the Markov SEIR epidemic model. In this model pairs
of individuals make (close) contacts independently at a rate which might depend on
the pair (depending on the population structure). If an infectious individual contacts
a susceptible one, the susceptible one becomes latently infected (exposed) and stays so
for an exponentially distributed time with mean 1/δ, after which the individual becomes
infectious. An individual stays infectious for an exponentially distributed time with mean
1/γ, after which he or she is removed, which might mean that the individual dies, he or
she recovers with permanent immunity or is isolated in a 100% effective way. We also
discuss the Markov SIR epidemic, in which there is no latent period (or δ = ∞), but is
the same as the Markov SEIR epidemic in all other respects. We assume that there are
only a few initially infective individuals in the population and all others are susceptible.
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1.2 Branching process results

In this section we need some notation: for t > 0, ξ(t) is the random number of individuals
infected by an infectious individual in the first t time units of his or her infectious period.
Thus, ξ(t) is a non-decreasing random process. Furthermore, define µ(t) = E(ξ(t)) as the
expectation of ξ(t). It is clear that µ(t) is also non-decreasing. For ease of exposition we
assume that the derivative of µ(t) exists and is given by β(t). Thus µ(t) =

∫ t
0
β(s)ds. This

assumption is not necessary and the results below can be generalized in a straightforward
way to the case where µ(t) is not differentiable. From the theory of branching processes
[1], we know that R0 = µ(∞) =

∫∞
0
β(s)ds. In general there is no explicit expression for

the Malthusian parameter α, only the implicit equation specifying α

1 =

∫ ∞
0

e−αtβ(t)dt. (1)

If R0 > 1 (the situation we are interested in), this equation has exactly one real positive
solution [1, p. 10], and serves as a definition of α.

If the length of the infectious period of an individual is distributed as the random
variable I, and during his or her entire infectious period he or she infects other individuals
at rate λ (that is, the infections form a homogeneous Poisson process with intensity λ),
then β(t) = λP(I > t). This gives that

R0 =

∫ ∞
0

β(t)dt =

∫ ∞
0

λP(I > t)dt = λE(I). (2)

Here we have used the standard equality
∫∞
0

P(X > t)dt = E(X) for any non-negative
random variable X (e.g. [5, Sec. 4.3]). From now on, for reasons of clarity, we assume
that I has a density which is denoted by fI(t). We may relax these assumptions without
further consequences. We deduce that

1 =

∫ ∞
0

e−αtβ(t)dt =

∫ ∞
0

e−αtλP(I > t)dt = λ

∫ ∞
t=0

∫ ∞
s=t

e−αtfI(s)dsdt

= λ

∫ ∞
s=0

∫ s

t=0

e−αtfI(s)dtds =
λ

α

∫ ∞
0

(1− e−αs)fI(s)ds

=
λ

α
E(1− e−αI) =

λ

α
(1− φI(α)), (3)

where φI(α) =
∫∞
0
e−αtfI(t)dt = E(e−αI) is the Laplace transform of I or, which is the

same, the moment-generating function of −I. Equation (3) gives an implicit equation for
α.

If an infected individual only starts being infectious after a random latent period which
is distributed as L and has density fL(t), and after this period he or she is infectious for
another, independent, period which is distributed as I, during which he or she infects
others at rate λ, then

β(t) = λ

∫ t

0

fL(u)P(I > t− u)du,

which is the convolution of fL(t) and β0(t), where β0(t) is the derivative of E(ξ(t)) when
the latent period is 0. This leads to
R0 =

∫ ∞
t=0

λ

∫ t

u=0

fL(u)P(I > t− u)dudt

= λ

∫ ∞
u=0

∫ ∞
t=u

fL(u)P(I > t− u)dtdu = λE(I), (4)
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where we have used the same computations as in (2). We note that R0 is independent of
the latent period. Similarly we deduce that

1 =

∫ ∞
t=0

e−αtλ

∫ t

u=0

fL(u)P(I > t− u)dudt

= λ

∫ ∞
u=0

∫ ∞
t=u

e−αtfL(u)P(I > t− u)dtdu

= λ

∫ ∞
u=0

e−αufL(u)

∫ ∞
t=0

e−αtP(I > t)dtdu =
λ

α
(1− φI(α))φL(α), (5)

where φL is the Laplace transform of the random variable L. If L does not have a density
the results above still hold. Note that if L = 0 with probability 1, then φL(α) = 1 and
we obtain (3) again.

1.3 Homogeneously mixing populations

1.3.1 Constant infectivity

For SEIR epidemics in a (homogeneously) randomly mixing population, every time an
individual makes a close contact, it is with a random other individual from the population,
which is chosen uniformly at random, independently of other close contacts. During the
emerging phase of an epidemic it is unlikely that an individual is chosen, who is no longer
susceptible. Thus, we assume that all close contacts of infectious individuals are with
susceptible ones. To make the above mathematically fully rigorous, we should consider
a sequence of epidemics in populations of increasing size and derive limit results for this
sequence of epidemics [2], but we leave out this level of technicality here.

If individuals each make close contacts independently at rate λ(hom), then we deduce
from (4) and (5), that

R
(hom)
0 = λ(hom)E(I) and 1 =

λ(hom)

α
(1− φI(α))φL(α).

In particular,
1

R
(hom)
0

=
(1− φI(α))φL(α)

αE(I)
. (6)

If I is exponentially distributed with mean 1/γ and there is no latent period, then φI(α) =
γ

γ+α
and φL(α) = 1, which leads to R

(hom)
0 = 1 + α/γ as was deduced in the main text. If

the latent period is exponentially distributed with mean 1/δ, then φL(α) = δ
δ+α

. Thus in
the Markov SEIR model, (6) reads

1

R
(hom)
0

=
γ

γ + α

δ

δ + α
,

whence

R
(hom)
0 =

(
1 +

α

γ

)(
1 +

α

δ

)
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1.3.2 Deterministic infectivity profile after latent period

We proceed by considering the (non-Markov) SEIR model in which, during the infectious
period I being of random length, the close contact rate equals h(τ), where τ is the time
since the infectious period starts. Note that we assume that h(τ) is non-random, i.e.
identical for all infected individuals, but that the infectious period I may end after a
random time hence being different for different individuals. We also allow for a random
latency period L prior to the infectious period. In this case,
R

(hom)
0 =

∫ ∞
t=0

∫ t

u=0

fL(u)h(t− u)P(I > t− u)dudt

=

∫ ∞
u=0

∫ ∞
t=u

fL(u)h(t− u)P(I > t− u)dtdu

=

∫ ∞
u=0

fL(u)

∫ ∞
t=0

h(t)P(I > t)dtdu =

∫ ∞
0

h(t)P(I > t)dt.

Similarly, we obtain
1 =

∫ ∞
t=0

e−αt
∫ t

u=0

fL(u)h(t− u)P(I > t− u)dudt

=

∫ ∞
u=0

∫ ∞
t=u

e−αtfL(u)h(t− u)P(I > t− u)dtdu

=

∫ ∞
u=0

e−αufL(u)h(t)

∫ ∞
t=0

e−αtP(I > t)dtdu

= φL(α)

∫ ∞
0

e−αth(t)P(I > t)dt,

whence,
1

R
(hom)
0

=
φL(α)

∫∞
0
e−αth(t)P(I > t)dt∫∞

0
h(t)P(I > t)dt

. (7)

If h(τ) = λ is a constant then this equality can be rewritten as (6).

1.4 Configuration model network populations

1.4.1 The network

In this subsection we consider the configuration model network. In this network a fraction
dk of the n vertices (=individuals) has degree k, that is, a fraction dk of the population
has k other people it can have close contacts with, its acquaintances. The acquaintancies
are represented by so-called bonds or edges. Out of all possible networks created in this
way with given n and dk’s, we choose one uniformly at random. See [6, Ch.3], for more
information on the construction of such networks.

We choose the (few) initial infective individuals all with equal probability (uniformly
at random) from the population. If the population size n is large, then the probability that
an initially infective individual has k acquaintances is dk. However, by the construction
of the network, the probability that an acquaintance of such an initially chosen infective
has k acquaintances is not dk; for k = 1, 2, · · · the probability is given by

d̃k =
kdk∑∞
j=0 jdj

=
kdk
µ
, where µ =

∞∑
j=0

jdj,
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since an initial infective is k times as likely to be an acquaintance of an individual with
degree k, than to be one of an individual with degree 1. Now, if an individual is infected
during the early stage of an epidemic, then at least one of its acquaintances is no longer
susceptible (i.e. its infector). However, if n is large, by the construction of the network
the probability that its other acquaintances are still susceptible is close to 1. Hence, the
expected number of susceptible acquaintances at the moment of infection of an individual
infected during the early stages of the epidemic is

∞∑
k=1

(k − 1)d̃k =
∞∑
k=1

(k − 1)
kdk
µ

=

∑∞
k=0(k − µ)2dk

µ
+ µ− 1, (8)

which is equal to κ as used in the main article.

1.4.2 The epidemic with constant infectivity

Consider an SEIR epidemic on the configuration network described above. Assume again
that fL(t) is the density of the duration of the latent period and fI(t) the density of the
duration of the infectious period. Assume that between every pair of acquaintances the
rate of close contacts is λ(net) (i.e. close contacts occur according to independent Poisson
processes with rate λ(net) per pair). The rate at which infection of a given acquaintance
occurs at that time is λ(net) multiplied by the probability that the infector is infectious
and has not previously infected this acquaintance, i.e.

λ(net)
∫ t

0

fL(s)e−λ
(net)(t−s)P(I > t− s)ds.

If the number of acquaintances of this infector is k, then the expected infectivity at time
t is

(k − 1)λ(net)
∫ t

0

fL(s)e−λ
(net)(t−s)P(I > t− s)ds.

Taking the mean over the number of acquaintances of an individual infected during the
early stages of an epidemic, we obtain

β(t) = κλ(net)
∫ t

0

fL(s)e−λ
(net)(t−s)P(I > t− s)ds.

This leads, after manipulations as performed in (2) and (3), to
R

(net)
0 =

∫ ∞
0

β(t)dt =

∫ ∞
t=0

κλ(net)
∫ t

u=0

fL(u)e−λ
(net)(t−u)P(I > t− u)dudt

= κλ(net)
∫ ∞
u=0

fL(u)

∫ ∞
t=0

e−λ
(net)tP(I > t)dtdu

= κλ(net)
∫ ∞
0

e−λ
(net)tP(I > t)dt = κ(1− φI(λ(net))) (9)

and
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1 =

∫ ∞
0

e−αtβ(t)dt

=

∫ ∞
t=0

e−αtκλ(net)
∫ t

u=0

fL(u)e−λ
(net)(t−u)P(I > t− u)dudt

= κλ(net)
∫ ∞
u=0

∫ ∞
t=0

e−α(t+u)fL(u)e−λ
(net)tP(I > t)dtdu

= κλ(net)φL(α)

∫ ∞
0

e−(α+λ
(net))tP(I > t)dt

= κφL(α)
λ(net)

α + λ(net)
(1− φI(α + λ(net))). (10)

Combining these observations gives

1

R
(net)
0

= φL(α)
λ(net)

α + λ(net)
1− φI(α + λ(net))

1− φI(λ(net))
. (11)

If, as before, we consider the Markov SIR model in which L = 0 and I has an expo-
nential distribution with mean 1/γ, then (9) yields

R
(net)
0 = κ((1− φI(λ(net))) = κ

λ(net)

λ(net) + γ
(12)

and (10) yields

1 = κ
λ(net)

α + λ(net)
(1− φI(λ(net) + α)) = κ

λ(net)

λ(net) + α + γ
.

The latter equality implies λ(net) = γ+α
κ−1 , which inserted in the former gives

R
(net)
0 =

γ + α

γ + α/κ

as claimed in the main text.
If we consider the Markov SEIR epidemic in which the latent period has mean 1/δ and

the infectious period has mean 1/γ, then R
(net)
0 = κ λ(net)

λ(net)+γ
still holds, while (10) yields

1 =
δ

δ + α

κλ(net)

λ(net) + α + γ
, (13)

which in turn implies

λ(net) =
(γ + α)(δ + α)

(κ− 1)δ − α
.

Combining these observations gives that for the Markov SEIR epidemic

R
(net)
0 =

γ + α

γδ/(δ + α) + α/κ
.
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1.4.3 Deterministic infectivity profile after latent period

As in the homogeneous mixing case we now assume that the infectivity, conditional upon
still being infectious, is a function of the time τ since the infectious period starts, say
ĥ(τ) (later we assume that ĥ is proportional to h as used in the homogeneous mixing
population). Note that we assume that ĥ(τ) is not random, but that L and I are random
and independent. In this case,
R

(net)
0 = κ

∫ ∞
t=0

∫ t

u=0

fL(u)ĥ(t− u)e−
∫ t−u
s=0 ĥ(s)dsP(I > t− u)dudt

= κ

∫ ∞
u=0

fL(u)

∫ ∞
t=0

ĥ(t)e−
∫ t
s=0 ĥ(s)dsP(I > t)dtdu

= κ

∫ ∞
t=0

ĥ(t)e−
∫ t
0 ĥ(s)dsP(I > t)dt.

Similarly, we obtain
1 = κ

∫ ∞
t=0

e−αt
∫ t

u=0

fL(u)ĥ(t− u)e−
∫ t−u
s=0 ĥ(s)dsP(I > t− u)dudt

= κ

∫ ∞
u=0

e−αufL(u)

∫ ∞
t=0

e−αtĥ(t)e−
∫ t
s=0 ĥ(s)dsP(I > t)dtdu

= κφL(α)

∫ ∞
t=0

ĥ(t)e−αte−
∫ t
s=0 ĥ(s)dsP(I > t)dt,

so,

1

R
(net)
0

= φL(α)

∫∞
t=0

ĥ(t)e−(αt+
∫ t
s=0 ĥ(s)ds)P(I > t)dt∫∞

t=0
ĥ(t)e−

∫ t
s=0 ĥ(s)dsP(I > t)dt

.

1.4.4 Comparison of R
(hom)
0 and R

(net)
0

If we combine (6) and (11), and assume that α and the (constant) infection profiles (and
thus φI and φL) are known and the same for both models, then
R

(hom)
0

R
(net)
0

=

1
(α+λ(net))E(I)(1− φI(α + λ(net)))

1
αE(I)(1− φI(α)) 1

λ(net)E(I)(1− φI(λ(net)))

=
E(I)

∫∞
0
e−(α+λ

(net))tP(I > t)dt(∫∞
0
e−αtP(I > t)dt

) (∫∞
0
e−λ(net)tP(I > t)dt

) .
To analyse this fraction, we introduce a random variable Y by its distribution function

P(Y ≤ y) =

∫ y
0
P(I > t)dt∫∞

0
P(I > t)dt

, for 0 ≤ y <∞.

Using this and recalling that E(I) =
∫∞
0

P(I > t)dt, we can write

R
(hom)
0

R
(net)
0

=
E(e−αY e−λ

(net)Y )

E(e−αY )E(e−λ(net)Y )
.

Since λ(net), α > 0, we have that e−αx and e−λ
(net)x are both non-increasing in x. Thus,

by Chebyshev’s integral inequality (or FKG inequality [5, p.86]), we have that e−αY and

e−λ
(net)Y are positively correlated, whence R

(hom)
0 ≥ R

(net)
0 .
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The difference between R
(hom)
0 and R

(net)
0 is small if κ is relatively large compared to

R
(hom)
0 and the standard deviation of the infectious period is not large compared to the

mean. (See Figure 2 of the main article). It can easily be seen that the opposite makes the
approximation worse. Infections taking place a long time after the start of an infector’s
infectious period contribute relatively little to α; on the other hand all infections make
the same contribution to R0. Also note, that if in the network model a given individual
infects all of his/her acquaintances with large probability (say 99%) if he/she is infectious
for a middle-long time (say T ), then increasing the infectious period to 2T has little
effect on the epidemic both on its size (which relates to R0) and its speed (which relates
to α). However, in a homogeneously mixing model, the offspring (which contributes to
R0) would double in expectation in this situation, while the speed of the epidemic would
hardly change. Thus, if the standard deviation of the infectious period is large, we cannot
ignore the large infectious periods which cause the discrepancy between R

(hom)
0 and R

(net)
0 .

Now consider the second special case discussed above: the infectivity profile, condi-
tional upon still being infectious, ĥ(τ) is not constant, but is proportional to h(τ) for the
homogeneous mixing model, where τ is the time since an individual starts to be infectious.
Let λ := ĥ(τ)/h(τ). Then,

R
(hom)
0

R
(net)
0

=

∫∞
0
h(t)P(I > t)dt∫∞

0
e−αth(t)P(I > t)dt

∫∞
t=0

λh(t)e−(αt+λ
∫ t
τ=0 h(τ)dτ)P(I > t)dt∫∞

t=0
λh(t)e−λ

∫ t
τ=0 h(τ)dτP(I > t)dt

.

As for the SEIR model with constant rates, we introduce a random variable Y ′ by its
distribution function

P(Y ′ ≤ y) =

∫ y
0
h(t)P(I > t)dt∫∞

0
h(t)P(I > t)dt

, for 0 ≤ y <∞.

Using this we can write

R
(hom)
0

R
(net)
0

=
E(e−αY

′
e−λ

∫ Y ′
0 h(τ)dτ )

E(e−αY ′)E(e−λ
∫ Y ′
0 h(τ)dτ )

. (14)

Since λ and α are positive and h(τ) is a non-negative function, we have that e−αx and
e−λ

∫ x
τ=0 h(τ)dτ are both non-increasing in x. Thus, copying the argument above, we have

that R
(hom)
0 ≥ R

(net)
0 . We note that although (14) does not explicitly depend on κ, the

relationship between α and λ and h(τ) does and therefore the exact value of the right
hand side does as well.

1.4.5 Example of a model where R
(hom)
0 < R

(net)
0

The result R
(hom)
0 ≥ R

(net)
0 does not hold in general if h(τ) is a random function instead of a

deterministic function, i.e. h(τ) is different for different people, following some distribution
over stochastic processes. This is shown in the following extreme example.

We assume that every infective individual is infectious for exactly one point in time, at
which he/she infects a random number of other individuals. In the homogeneous mixing
case, with probability 1/3 an infectious individual infects on average 2 other individuals
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at time 0 (relative to his/her time of infection), while with probability 2/3 he/she infects
on average 1 other individual at time 1. This corresponds to

µ(t) = 2
1

3
+

2

3
11(t ≥ 1),

leading to R
(hom)
0 = 4/3 and 1 = 2/3 + (2/3)e−α, which implies e−α = 1/2 (or α = log[2]).

In the corresponding network case we assume every individual has 3 acquaintances, so
κ = 2. With probability 1/3 an infectious individual infects each of his/her susceptible
acquaintances with probability 1 − e−2λ independently at time 0, while with probability
2/3 he/she infects each of his/her susceptible acquaintances with probability 1 − e−λ

independently at time 1. Here λ is chosen such that e−α = 1/2.
For this model µ(t) = 2

[
(1
3
(1− e−2λ) + 2

3
(1− e−λ)11(t > 1)

]
, leading to the equations

R
(net)
0 =

2

3
(1− e−2λ) +

4

3
(1− e−λ) and 1 =

2

3
((1− e−2λ) + (1− e−λ)).

Some algebra gives that e−λ =
√
3−1
2

, which implies

R
(net)
0 = 2−

√
3

3
>

4

3
= R

(hom)
0 .

1.5 Multi-type epidemics

For the SEIR epidemic in a multi-type population, we assume that there are ι types of
individuals, labelled 1, 2, · · · , ι and again that the population is large. Additionally we
assume that the number of individuals of each type is large, and in what follows we assume
that there is no relevant depletion of susceptibles of any type during the initial stages of
the epidemic. We assume that a fraction πi of the community is of type i. Furthermore,
we assume that not all close contacts lead to infection. However, we do assume that the
probability that a close contact between a susceptible and an infectious individual leads to
infection depends only on the time since infection of the infectious one, τ . This probability
is random (i.e. different for different individuals) and is denoted by Λ(τ). Note that we
assume that the distribution of Λ(τ) does not depend on the types of the individuals. The
random function Λ incorporates the latent and recovered period, in the sense that before
the end of the latent period and after recovery Λ(τ) = 0. We use g(τ) = E(Λ(τ)) for the
expected probability of infection at age τ of a randomly selected individual. In an SIR
epidemic the infectivity is often a function of τ conditioned on the individual still being
infectious at time τ . In that case g(τ) can be written as h(τ)P(I > τ). Close contacts are
not necessarily symmetric. That is, if individual x makes a close contact with individual
y, then it is not necessarily the case that y makes a close contact with x. The rate of close
contacts from a given type i individual to a given type j individual is λij/n. Therefore
the expected number of j-individuals that an infected i-individual infects up to its “age”
(time since infection) t during the early stages of an outbreak when all individuals are
susceptible is given by

mij(t) =

∫ t

0

aij(τ)dτ, where aij(τ) = λijπjg(τ). (15)

The matrices M(t) and A(t) are defined by respectively M(t) = (mij(t)) and A(τ) =
(aij(τ)). Furthermore, we define M = M(∞) = (mij(∞)) as the next generation matrix.
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It is well-known that the basic reproduction number R
(mult)
0 is given by the dominant (i.e.

“largest”) eigenvalue of M , also denoted by ρM [3, 7].
To determine the epidemic growth rate, α, we use Equation (6.4) and the subsequent

paragraphs from [7]. This translates into that the dominant eigenvalue of
∫∞
0
e−ατA(τ)dτ

should equal 1, where the integral is taken elementwise. Now we use that∫ ∞
0

e−ατaij(τ)dτ =

∫ ∞
0

e−ατλijπjg(τ)dτ = λijπj

∫ ∞
0

e−ατg(τ)dτ

=

∫∞
0
e−ατg(τ)dτ∫∞
0
g(τ)dτ

mij(∞).

Hence, ρA, the largest eigenvalue of the matrix
∫∞
0
e−ατA(τ)dτ is given by ρM multiplied

by
∫∞
0
e−ατg(τ)dτ/(

∫∞
0
g(τ)dτ), where ρM is the largest eigenvalue of M . In particular

this gives that
1

R
(mult)
0

=

∫∞
0
e−ατg(τ)dτ∫∞
0
g(τ)dτ

.

Notice that in the homogeneous case, i.e. the case with ι = 1 and

µ(dt) = g(t)λ11dt,

we get the same relationship between α and R
(hom)
0 (as given in equation (7), with

h(τ)P(I > τ) = g(τ)λ11) as between α and R
(mult)
0 , which implies that ignoring the

population structure does not affect the estimates for R0.

1.6 Household epidemics

Household epidemics are harder to study in this context (compared to homogeneous,
network and multi-type epidemics) and already several papers are dedicated to these
epidemics, e.g. [8]. In particular, there is no easy way to compute R0 or α (instead other
threshold parameters are often derived). Furthermore, if vc is the critical vaccination
coverage when vaccination is applied uniformly at random (i.e. the required control effort),
then the relationship

v(house)c = 1− 1/R
(house)
0

does not hold in general. Also, if the household structure is observed, then there are
better vaccination strategies than vaccination uniformly at random [4]. (The same is
true if the degrees of individuals are observed in the network model and if the types of
individuals and their relative infectivities and susceptibilities are known in the multi-type
model). However, in the article we consider the case where the population structure is
hard to obtain. In that case vaccination uniformly at random seems to be the most
natural vaccination strategy. Reproduction numbers for household epidemics and the
relationships with vaccination uniformly at random and the epidemic growth rate are
studied in great detail in [9] and some of the results will be repeated here.

For the household model we assume that the population is partitioned in n/m house-
holds (or groups or cliques) of equal size m. So, we assume that n is an integer multiple
of the positive integer m. For a population where the households are not of equal size we
refer to [10]. We consider only SEIR models in which individuals have constant infectivity
during their infectious period. Individuals contact each other with global contacts at per-
pair rate λG/n, while members of the same household make additionally local contacts
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at per-pair rate λH . Note that, unlike in Section 1.5, we assume that close contact of an
infective with a susceptible necessarily results in the infection of the latter.

We use the basic reproduction number R
(house)
0 as defined in [10, 9], since this is the

parameter having interpretation closest to the common R0 definition. This R
(house)
0 can be

computed by considering one isolated household of size m, which has one initial infectious
individual and m − 1 susceptibles. Let µ0 = 1 and let µ1 be the expected number of
individuals in this household with whom the initial infective makes close contact during its
infectious period (the first generation). Similarly µi is the expected number of individuals
in the i-th generation, that is, the expected number of initially susceptible individuals
which were not in the first i−1 generations, but have a close contact with a generation
(i−1) individual during its infectious period. Note that µi = 0 for i ≥ n. In [10] it is

shown that R
(house)
0 is the unique positive x which solves

1 = λGE(I)
m−1∑
i=0

µi
xi+1

.

If the households are not all of the same size then the µi are replaced by household-size-
biased averages, see Section 3.3. of [10].

In Section 2.6 of [9] it is shown that for SEIR epidemics R0 estimates based on α
and the homogeneous mixing assumption are conservative. We note that α is in general
implicitly defined as the solution of an equation involving the infectivity profile of a
household. Further arguments provided in [9] also show that in general

v(house)c ≥1−1/R
(house)
0 .

If we estimate vc based on α and the homogeneous mixing assumption, then in most nu-
merically analysed cases enough people are vaccinated. However, some counter examples
are provided in [9].

In Figure 3 of the main text the dependence of R0 and vc on the relative contribution
of the within household spread is illustrated for a household size distributions taken from
Nigerian and Swedish datasets [11, 12].

2 Simulations

The simulations used in the article are performed in R and in MATLAB. In all simulations
we use a Markov SEIR epidemic with the expected latent period twice the expected
infectious period. This resembles the estimates for Ebola in West Africa [13], where
the average time between infection and symptom onset and the start of the infectious
period is estimated to be approximately 9.4 days (standard deviation 7.4 days) and the
average time between symptom onset and hospitalization or death is approximately 5
days (standard deviation 4.7 days). Because the differences between the means of the
infectious and latent periods and their corresponding standard deviations are relatively
small, we use a Markov SEIR epidemic model in which both periods are exponentially
distributed.

We simulated a Markov SEIR epidemic in a multi-type population 250 times in MAT-
LAB. As a population we took the Dutch population in 1987 (approximately 14.6 million
people) as used in [14], for which extensive data on contact structure are available. The
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population is subdivided into six age groups (0-5, 6-12, 13-19, 20-39,40-59, 60+) and
contact intensities are based on questionnaire data. For the simulations we use that the
average infectious period 1/γ is 5 days, and the average latent period 1/δ is 10 days.
The infection rates λij are chosen randomly for each simulation as follows. The data in
Table 1 of [14] give estimates of mij (i, j = 1, 2, . . . , 6), where mij is the mean number of
conversational partners per week in age class i of a typical individual in age class j. Using
such conversations as a proxy for disease transmission, we assume that λij = cmji/πj,
where πj is the fraction of the Dutch population that are in age class j, estimated from

Appendix Table 1 in [14], and c is a multiplicative constant chosen so that R
(mult)
0 has a

specified value, which is sampled independently and uniformly from the interval between
1.5 and 3 for each simulation.

All simulated epidemics start with 1 infectious individual in each of the six age groups.
We use two estimates of R0. The first of these estimates is based on the average number
of offspring from the people who were infected as 100th up to 1000th. We ignore the
first 100 infecteds to ignore the effect of the initial stages of the epidemic, when the
proportions of infecteds are still far from equilibrium. This procedure leads to a very
good estimate of R0 if the spread of the disease is observed completely. The second
estimate is based on α̂, an estimate of the epidemic growth rate α, and neglects the
multitype setting by assuming homogeneous mixing. We assume that we know γ and
δ exactly and the estimate for R0 is given by (1 + α̂/δ)(1 + α̂/µ). The estimate α̂ is
obtained from the development of the number of infectious people over time between the
time the 100th individual becomes infectious and the time the 1000th individual becomes
infectious, by using least square estimation of the natural logarithm of the number of
infecteds against time. More specifically, if t100, t101, . . . , t1000 denote the times that these
individuals become infected then α̂ is obtained by fitting a straight line to the points
(log(i), ti), i = 100, 101, . . . , 1000 using linear regression, so

α̂ =
901

∑1000
i=100 log(i)ti −

∑1000
i=100 log(i)

∑1000
j=100 tj

901
∑1000

i=100 t
2
i −

(∑1000
i=100 ti

)2 .

In Figure 4(a) of the article we provide a scatter plot depicting the two estimates of
R0 for the 250 simulations. The ratio of the two estimates in the 250 simulations are
summarized in Figure 4(b). In Figure S1 of this ESM the estimate or R0 based on α̂ and
the homogeneous mixing assumption is compared with the theoretical R0, based on the
full model. We see that the estimates are generally very good, as predicted by the theory.

To simulate epidemics on networks we use several networks from the Stanford Large
Network Dataset collection [15]. In the main article we use a collaboration network in
Condense Matter physics, because (i) this graph is undirected (if individual a can contact
individual b, then b can contact a, (ii) this graph is large (23133 individuals) and (iii) the
mean excess degree, κ is not extremely high. Individuals are acquaintances if they were
co-authors of a manuscript posted on the e-print service arXiv in the condense matter
physics section between January 1993 and April 2004. A manuscript with more than 2
authors leads to cliques (small groups in which everybody is acquainted to everyone else
in the group). Since arguably many networks relevant for the spread of infectious diseases
contain such cliques (households, workplaces and groups of friends), the presence of many
cliques in collaboration networks is a desirable property.

Our simulations of Markov SEIR epidemics on all the networks considered are per-
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formed in R, using the igraph package [16]. An epidemic starts with 10 uniformly chosen
individuals which are at the start of their infectious period at time 0. We estimate the epi-
demic growth rate α based on the time between the total number of individuals which are
infectious or recovered/deceased (the individuals that have shown symptoms) increases
from 200 to 400. We exclude all simulations in which the total number of affected indi-
viduals stays below 400. The estimate of R0 based on the real infection tree is obtained
by looking at the epidemic from a generation perspective: All individuals infected by the
initially infectious individuals are in generation 1, individuals infected by generation 1
infectives are in generation 2 etc. [10]. We consider as a reference generation the first gen-
eration in which there are 75 individuals (say generation k) and we divide the number of
individuals in generation 2 up to k+ 1 by the number of individuals in generation 1 up to
k. We exclude the initial individuals from the estimation of R0, because those individuals
are chosen uniformly at random and therefore independently of the population structure.

By trial and error investigation we tune the infection parameter λ such that the esti-
mate of R0 using the infection process is close to 2. Using this λ we run 1000 simulations.
A typical graph of how the number of observed individuals (i.e. infectious + removed)
is given in Figure S2(a). In part (b) we show the same graph but now we subtract 0.05
times the time to show that the growth of the number of individuals is indeed close to
exponential over a large time.

Because of the mechanical way of estimating α, it is possible to have atypical epidemic
trajectories, in which the estimation procedure is not good. Examples are (i) epidemics
in which for example the exponential growth has not started yet at the time the 200th
individual starts its infectious period or (ii) epidemics where just around the time the
200th or 400th of individual starts its infectious period a new part of the network is
affected, where this new part contains many acquaintances within itself but is not well
connected to the rest of the network. Such an event causes a sudden strong increase in
the observed cases. These atypical trajectories are possible to identify if one observes
the number of infectious individuals for a single epidemic and better estimates can be
obtained in this way. We deal with this problem by not considering the simulations which
give the 5% lowest and 5% highest estimates for α.

In Figure S3 we provide a scatter plot of the two estimates of R0 for the simulations
used, we see that in the vast majority of the simulations, the estimate of R0 based on the
estimated α and the homogeneously mixing assumption is conservative. We note that the
two estimates are hardly correlated.

We further summarize our data in Figure 5 of the article, and in Figure S4. In which
the ratio and difference of theR0 estimate based on the epidemic growth rate and assuming
homogeneous mixing, and the R0 estimate based on the observed infection process, are
given.

We also analyse the spread of SEIR epidemics on 2 other networks described in the
Stanford Large Network Dataset collection [15]. The first is the collaboration network
in Astro Physics, which is obtained in a similar way as the collaboration network in
Condense Matter Physics. This network is slightly smaller than the Condense Matter
Physics network and has a higher κ (approximately 64 instead of 21). The analysis is
performed similarly to the analysis of the Condense Matter Physics collaboration network.
Boxplots of the estimates of R0 using the real infection process, the estimates of R0 using
the epidemic growth rate and assuming homogeneous mixing, as well as a boxplot of the
ratio of those estimates, are given in Figure S5.
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We see that the two estimates are close, but that the simpler estimate assuming
homogeneous mixing is slightly conservative for all three empirical networks, which is
consistent with the theoretical result for the configuration model.

The second alternative network is a part of the facebook social network from [15].
This part is relatively small and we restrict ourselves to the largest connected component
(containing 1034 individuals). This network has a high mean degree (51.7) and mean
excess degree (93.5). Because of its relatively small size, and the observation that some
substantial parts of the network are connected to the other parts of the network through
only a few connections, the estimate of R0 through the epidemic growth rate is less good.
We also have to adapt the bounds for estimating R0 from the infection tree (as a reference
generation the first generation in which there are 40 individuals), and we estimate the
epidemic growth rate based on the time between the total number of individuals which
are infectious or recovered/deceased increases from 150 to 350. Furthermore, in order to
obtain quicker convergence the 7 initial infectious individuals are chosen proportional to
their number of acquaintances, which gives individuals with many acquaintances a higher
probability of being initially infectious. Boxplots of the estimates of R0 using the real
infection process, the estimates assuming homogeneous mixing and using the epidemic
growth rate, as well as a boxplot of the ratio of those estimates, are given in Figure S5.
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Figure S1: The estimated basic reproduction number, R0, for a Markov SEIR model in a
multi-type population as described in [14], based on the homogeneous mixing assumption
and the estimated epidemic growth rate, α, against the computed R0 based on the full
model. The infectivity is chosen at random, such that the theoretical R0 is uniform
between 1.5 and 3. The estimate of α is based on the times when individuals become
infectious.
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Figure S2: (a) A typical graph of the log of the number of observed (infectious + removed)
individuals as a function time. (b) The same function minus 0.05 times the time.
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Figure S3: Scatter plot of estimates of R0 assuming homogeneous mixing and using
the estimated epidemic growth rate, and estimates based on the real infection process
(who infected whom) in the collaboration network in Condense Matter Physics. 1000
simulations are used and the simulations with the 50 lowest and 50 highest estimated
epidemic growth rates are not represented in the scatter plot. The line shows where the
two estimates are equal.
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Figure S4: Histograms of the ratio (a) of and difference (b) between the estimates of
R0 assuming homogeneous mixing and using the estimated epidemic growth rate, and
estimates based on the real infection process in the collaboration network in Condense
Matter Physics. 1000 simulations are used and the simulations with the 50 lowest and 50
highest estimated epidemic growth rates are not represented in the histograms.
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Figure S5: Boxplots of estimates of R0 for three networks from [15]: The condensed matter
physics and astrophysics collaboration network and a facebook social network graph. In
(a) the estimates assuming homogeneous mixing and using the epidemic growth rate are
plotted in red, while the estimates based on the real infection process are plotted in blue.
In (b) the ratios of the two estimates of R0 for each simulation are summarized.
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