## **Table S1.** Growth and nodulation phenotype of WT plants and wildtype homozygous sibblings (M5 seeds) from mutant plants

Plant length is expressed in centimeters and the number of ITs per centimeter of root. Values are means  $\pm$  SE (n= 60 for plant length and nodule number; n=10-20 for ITs). Means denoted by the same letter do not significantly differ (P=0.05) based on the Duncan's multiple range test.

| WT               | A102V w/w                                                                                                                                    | E127K w/w                                                                                                                                                                         |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $14.3 \pm 0.5$ a | $12.8 \pm 0.8$ a                                                                                                                             | $13.5 \pm 0.4$ a                                                                                                                                                                  |
| $6.8 \pm 0.2$ a  | $6.6 \pm 0.2$ a                                                                                                                              | $6.3 \pm 0.3$ a                                                                                                                                                                   |
| $2.9 \pm 0.1$ a  | $2.5 \pm 0.2$ a                                                                                                                              | $2.5 \pm 0.2$ a                                                                                                                                                                   |
| 32.0 ± 1.4 a     | $28.4 \pm 1.0$ a                                                                                                                             | 28.8 ± 1.3 a                                                                                                                                                                      |
| 35.0 ± 1.4 a     | $30.9 \pm 1.1$ a                                                                                                                             | 31.3 ± 1.4 a                                                                                                                                                                      |
|                  | WT<br>$14.3 \pm 0.5 \text{ a}$<br>$6.8 \pm 0.2 \text{ a}$<br>$2.9 \pm 0.1 \text{ a}$<br>$32.0 \pm 1.4 \text{ a}$<br>$35.0 \pm 1.4 \text{ a}$ | WTA102V w/w $14.3 \pm 0.5$ a $12.8 \pm 0.8$ a $6.8 \pm 0.2$ a $6.6 \pm 0.2$ a $2.9 \pm 0.1$ a $2.5 \pm 0.2$ a $32.0 \pm 1.4$ a $28.4 \pm 1.0$ a $35.0 \pm 1.4$ a $30.9 \pm 1.1$ a |

**Table S2.** Growth parameters of non-nodulated LjGlb1-1 mutant plants, and derived wild-type homozygous siblings, supplied with combined nitrogen

Plants were grown on Fåhraeus medium supplemented with 1.5 mM  $NH_4NO_3$  for three weeks. Lengths are expressed in centimeters and weights in grams. Means (± SE, *n*= 9-12) denoted by the same letter do not significantly differ (*P*=0.05) based on the Duncan's multiple range test.

|              | WT                 | A102V                     | E127K                     | 96642                     | A102V (w/w)        | E127K (w/w)        |
|--------------|--------------------|---------------------------|---------------------------|---------------------------|--------------------|--------------------|
| Shoot length | $4.68 \pm 0.09$ a  | $4.33 \pm 0.20$ ab        | $3.29\pm0.24$ c           | $3.86\pm0.15$ b           | $4.69 \pm 0.17$ a  | $4.56 \pm 0.12$ a  |
| Shoot weight | $29.83 \pm 1.19$ a | $27.00 \pm 1.65$ a        | $20.67\pm1.73~\mathrm{b}$ | $26.31\pm0.87~\text{a}$   | 30.11± 1.67 a      | $29.89 \pm 1.11$ a |
| Root length  | $5.37\pm0.21$ a    | $4.13\pm0.23~\text{b}$    | $2.00\pm0.33~\mathrm{c}$  | $3.73\pm0.22~\mathrm{b}$  | $5.40\pm0.18$ a    | $5.09\pm0.14$ a    |
| Root weight  | $29.25 \pm 1.04$ a | $23.89\pm2.21~\mathrm{b}$ | $12.67 \pm 0.87$ c        | $24.54\pm1.53~\mathrm{b}$ | $29.78 \pm 1.19$ a | $27.56 \pm 1.31$ a |
| Leaf number  | $4.92\pm0.15$ a    | $4.11 \pm 0.31$ b         | $2.56\pm0.45~\text{c}$    | $3.92\pm0.14~\text{b}$    | $4.89\pm0.11$ a    | $4.78 \pm 0.15$ a  |

## **Table S3.** Effect of SNP application to roots onnodulation of WT plants

Seedlings were inoculated with *M. loti* MAFF303099 DsRed and grown on nitrogen-free Fåhraeus medium for four weeks. The numbers of ITs are expressed per centimeter of root. Means ( $\pm$  SE, *n*= 9-11) denoted by different letters significantly differ (*P*=0.05) based on the Student's *t*-test.

|               | Control          | SNP                   |
|---------------|------------------|-----------------------|
| Incipient ITs | $3.6 \pm 0.4$ a  | $10.5\pm0.7~\text{b}$ |
| Long ITs      | $25.5 \pm 2.1$ a | $6.6\pm0.7\;b$        |
| Total ITs     | 29.1 ± 2.1 a     | $17.2 \pm 1.2$ b      |

| Ljap | 1   | MSTLGSTCHTEEQEALVVKSWSVMKKNSAELGLKLELKIFEIAPSAQKLFSFLRD                    | 55    |
|------|-----|----------------------------------------------------------------------------|-------|
| Msat | 1   | MGTLDTKGETEEQEALVVKSWNAMKKNSAELGLKLELKIFEIAPSAQKLESFLKD                    | 55    |
| Gmax | 1   | MTTTLERGESEEQEALVVKSWNVMKKNSGELGLKFELKIFEIAPSAQKLFSFLRD                    | 55    |
| Afir | 1   | MNTLEGRGETEEQEAVVVKSWNAMKPNAGELGLKFELKIFEIAPSAQKLFSFLRD                    | 55    |
| Pand | 1   | MSSSEVNKVFTEEQEALVVKAWAVMKKNSAELGLQFFLKIFEIAPSAKNLFSYLKD                   | 56    |
| Tori | 1   | MSSSEVDKVFTEEQEALVVKSWAVMKKNSAELGLKFFLKIFEIAPSANNLFSYLKD                   | 56    |
| Atha | 1   | MESEGKIVETEEQEALVVKSWSVMKKNSAELGLKLFIKIFEIAPTTKKMFSFLRD                    | 55    |
| Osat | 1   | MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFELKIFEVAPSASQMESFLRN               | 60    |
| Taes | 1   | MSAAER-AVVESEEKDALVLKSWAIMKKDSANLGLRFELKIFEIAPSARQMFPFLRD                  | 56    |
| Hvul | 1   | MSAAEG-AVVESEEKEALVLKSWAIMKKDSANLGLRFELKIFEIAPSARQMFPFLRD                  | 56    |
| Zmay | 1   | MALAEADDG-AVVEGEEQEALVLKSWAVMKKDAANLGLRFELKVFEIAPSAEQMESFLRD               | 59    |
|      |     | *                                                                          |       |
| Ljap | 56  | SKVPLEENPKLKPHAMSVFVMTCESAAQLRKAGKVTVRESTLKKL(APHYKYGVVNEHFE               | 115   |
| Msat | 56  | SKVPLEQNTKLKPHAMSVFLMTCESAVQLRKSGKVTVRESSLKKLCA NHFKYGVVDEHFE              | 115   |
| Gmax | 56  | STVPLEQNPKLKPHAVSVFVMTCDSAVQLRKAGKVTVRESNLKKLCATHFRTGVANEHFE               | 115   |
| Afir | 56  | SNVSLERNPKLKSHAMSVFLMTCESAVQLRKAGKVTVRESSLKKLCA/HFKHGVVDEHYE               | 115   |
| Pand | 57  | SPVPLEQNPKLKPHATTVFVMTCESAVQLRKAGKVTVKESDLKRICAIHFKTGVVNEHFE               | 116   |
| Tori | 57  | SPIPLEQNPKLKPHAMTVFVMTCESAVQFRKAGKVTVRESNLKRICAIHFKNGVVHEHFE               | 116   |
| Atha | 56  | SPIPAEQNPKLKPHAMSVFVMCCESAVQLRKTGKVTVRETTLKRLCASHSKYGVVDEHFE               | 115   |
| Osat | 61  | SDVPLEKNPKLKTHAMSVFVMTCEAAAQLRKAGKVTVRDTTLKRLCA THLKYGVGDAHFE              | 120   |
| Taes | 57  | SDVPLETNPKLKTHAVSVFVMTCEAAAQLRKAGKITVRETTLKRLCGTHLKYGVADGHFE               | 116   |
| Hvul | 57  | SDVPLETNPKLKTHAVSVFVMTCEAAAQLRKAGKITVRETTLKRLCGTHLKYGVADGHFE               | 116   |
| Zmay | 60  | SDVP15KNPKLKTHAMSVFVMTCEAAAQLRKAGKVTVRETT15KRLCATHLRYGVADGHFE              | 119   |
|      | 110 |                                                                            | 1 ( 1 |
| Ljap | 116 | VTKFALLDTIKE AVP-EMWSPEMKNAWTQAYDQLVGAIKSEMKPSSS                           | 161   |
| Msat | 110 | VTKFALLETIKEAVP-EMWSPAMKNAWGEAYDQLVNAIKSEMKPSS-                            | 160   |
| Gmax | 110 | VTKFALLETIKEAVP-EMWSPAMKNAWGEAYDQLVDAIKSEMKPPSS                            | 161   |
| Afir | 117 | VTKFALLETIKEAVP-EMWSPEMKIAWGEAYDQLVAAIKSAMKPSS-                            | 160   |
| Pand | 117 |                                                                            | 162   |
| Tori | 116 |                                                                            | 162   |
| Atha | 121 | VARIADDITISTY E AMA TAMA SAMA SAMA SAMA SAMA SAMA SAMA                     | 166   |
| Usat | 117 | VYN DENTER TER TER TER TER TER TER DANNA WCER AND DE TAN AN TROEMER A DE T | 162   |
| Taes | 117 |                                                                            | 162   |
| HVUL | 120 | VTACENTIETER TO DA DIMINE EN KAMA EN YSATAN DA TKREMKODA -                 | 165   |
| zmay | ΤζΟ |                                                                            | TOJ   |

**Figure S1: Alignment of some class 1 Hbs showing conservation of A102 and E127.** Both residues are within red boxes and histidine residues that are important for heme assembly are marked with red asterisks. *Abbreviations* (accession numbers in parentheses): Afir, *Alnus firma* (BAE75956); Atha, *Arabidopsis thaliana* (AEC06463); Gmax, *Glycine max* (AAA97887); Hvul, *Hordeum vulgare* (AAB70097); Ljap, *Lotus japonicus* (BAE46739); Msat, *Medicago sativa* (AAG29748); Osat, *Oryza sativa* (AAM19125); Pand, *Parasponia andersonii* (AAB86653); Taes, *Triticum aestivum* (AAN85432); Tori, *Trema orientalis* (AAC28426); Zmay, *Zea mays* (AAG01375).



**Figure S2. Inhibition of NO-associated fluorescence by cPTIO in roots of WT and mutant plants.** The figure shows representative epifluorescence and bright-field images of roots after 1-h incubation with 20 μM DAF-FM DA combined or not with 3 mM cPTIO. Bars, 200 μm.



**Figure S3: Purification of wild-type recombinant LjGlb1-1.** SDS-gels (12.5%) stained with Coomassie blue. Lanes (5 µg protein): 1, preinduced culture; 2, induced with 0.25 mM IPTG; 3, after ammonium sulfate (30-75%) fractionation; 4, after Ni-affinity chromatography. Molecular mass markers (kDa) are shown on the left. Similar results were obtained for the mutated versions A102V and E127K.



