Supplementary Figure 1. (A) Annotated 2.6 Kb endogenous geminivirus nucleotidic sequence of D. alata. (B). Annotated 2.1 Kb endogenous geminivirus nucleotidic sequence of D. alata.

Supplementary Figure 2. Alignment of the putative Rep sequences of EGV1 and EGV2 with the Rep of six representative geminiviruses (Tomato golden mosaic virus (TGMV), Maize streak virus (MSV), Eragrostis curvula streak virus (ECSV), Bean golden mosaic virus (BGMV), Beet curly top virus (BCTV) and Tomato pseudo-curly top virus (TPCTV)). RCR motifs (I, II, III and GRS) and SF3 helicase motifs (Walker A, B and C), which are conserved in geminiviruses, are highlighted in red.

Supplementary Figure 3. Rolling circle amplification. Lanes: 1) Ladder; 2) pUC19; 3) African cassava mosaic virus (ACMV); 4) Dioscorea badnavirus; 5) Water; 6) Dioscorea alata (acc. #313, seedlings); 7) Dioscorea tranversa (acc. #336).

Supplementary Figure 4. Maximum likelihood tree of eighteen 402 bp partial rep sequences obtained using the "ren-ren" and "rep-rep" primer pairs.

Supplementary Figure 5. (A) Western blot on the total protein extracts of several Dioscorea species, using an antibody directed to a Rep peptide of EGV1 and (B) nitrocellulose membrane stained with Ponceau S dye for protein detection during western blotting. Lanes: 1) Proteins extracted from a turnip plant infected by Cauliflower mosaic virus (CaMV); 2) a Tomato plant infected by Tomato yellow leaf curl virus (TYLCV); 3) Ladder; 4) Dioscorea trifida (accession#64); 5) Dioscorea sansibarensis (accession#269); 6) Dioscorea bulbifera (accession#272); 7) Dioscorea dumetorum (accession#47); 8) Dioscorea togoensis (accession#114, seedling); 9) Dioscorea praehensilis (accession#255); 10) Dioscorea rotundata (accession#297, seedling); 11) Dioscorea nummularia (accession#335); 12) Dioscorea alata (accession#402 seedling). No cross-reactivity was detected in the turnip/CaMV, tomato/TYLCV, D. trifida and D. sansibarensis samples.

Supplementary Figure 6. Maximum likelihood trees of replication enhancer protein (Ren) amino acid sequences (JTT substitution model) of EGV1 and representative geminiviruses, from the genera begomovirus topocuvirus and curtovirus. Numbers associated with branches indicate degrees of bootstrap support (100 replicates) for those branches.

Supplementary Figure 7. Duplication and diversification of the yam EGVs following their integration. Two scenarios resulting in contrasting patterns of endogenous sequence diversity are expected and presented. (A) The endogenous sequences were only duplicated (indicated by red arrows) either at or very close to the time when the integration event occurred (indicated by green arrow), or (B) The endogenous sequences are duplicated for prolonged periods post-integration such that duplication and speciation events (indicated by blue arrows) are interspersed. In (A) endogenous sequences sampled from one species will usually be more closely related to endogenous sequences from different species than they are to other genetically distinct endogenous sequences sampled from the same species. In (B) genetically distinct endogenous sequences sampled from the same species should frequently be more closely related to one another than they are to endogenous sequences sampled from different species.

A- EGV1 annotated sequence from D. alata acc. 313

Virion strand origin of replication Inverted repeat sequence

Ren aene stop codon

CAAATGATCCTTTATACGAAAATACAATGGGTTGGATAATTCCCAGTAAAATACACCCCGGTTTGCCTGTTCAACTGTGA 1280
Ren gene start codon
Rep gen

A-T Rich Reaion

ACCTGGCGTAGGTCAGGAAGTAATTCTTAGCATTTAATCTGAACTGCCTCGGTCTGACAGG<mark>CAT</mark>ATTTGCTAAATAATA 2480

Potential iteron sequences (type B) [5]

TA<mark>GAACACT</mark>AAGCTAATGGACCGGCAGTAATGTAAATGAGTCTTACACACTTCTGCAACAGGGAAATTTCAAAAAACCCCT 2560

Potential complementary- and virion-sense gene TATA box

Inverted repeat sequence [2]

Rep gene stop codon

TAGCAATCGGTGTATGTGTGTATGTTATATAGGCGACCCCCAGAAGGCTCAGAAGGCCCACAAGGCCCACAAGGCCCACCA 2640

A- EGV1 annotated sequence from D. nummularia acc. 313

Virion strand origin of replication Inverted repeat sequence

Ren aene stop codon

GCTCCGCGAAGCCAGCAAGTCCAGCAAGGATGTACAGGAGGTTACCGATGCATATACAGTGGTCGATAGAGCCAGTAATA 640 AAAAAAAATGAAACTAGAGGACCTCGGTGAAGTTGGGACCTCTAAGGGTGTTGTGTCCACTGTTTGGTGAAGTACATGTA 720 Ren dene start codon

TGTTAATCCAATCATGAGGATTTACATGAGGATGGTTCTCCACATCTAGATGTGGAGAACCATCCTCACATAAC 1840 TCCCTTGCAACCCGTATGTACTTCTTGTTGCTTGCTGCAAGAGACACCCTCCAGTAATTGCCGTAATGCCTCCTACTTGGTTAA 1920

Potential literon sequences (type B) [5] AGAACACTTGGCATAAGTCAGGAAGTAATTCTTATCATTCAATCTGAACTGTTTAGGTCTGACAGGCATCTCTGCGAAAA 2000 AAATGGAGAAGAATGGCACTTCTGTAAATAATGGCTTACACACTTCTCCCAACAGTATTTTGCAAAAAACCCATATCTATGT 2080

Potential complementary- and virion-sense gene TATA box

Figure S1

	Motif I	Motif II	GRS	Motif III
Species/Abbrv				
1. EGV1_Da1_2.6kbbis_313BEGD2-5	MPVRPRQFRLNAKNYFLTYA (CSLTKE	ALQQLLEVS-LASNKKYIRVARELHEDGS:HLHVLI <mark>Q</mark> LEGRAQVINNRLFDLHSPS:	SIKFHPNIQSA	KSSSIVIEYIEK 3-G
2. EGV2_Dnm_H4-2913_A206-2913-2	MSLPRKRFRLNAKNFFLIYPICSLSKDI	ALTQLLAIP-LPTNKKFIRVARELHEDGS:HVHVPLOLDVRTQITNORIFDLRHLH	SRCFHPNIQSS	KSYSEV (AYVEK)-G
3. ECSV	-MASSSHRFRIQGKAFFLTYS CPREPKI	VGEFLISHSILASHVVYVRVQQEKHQDGNNHLHAIVCISERRDIRDPRIFDFG	E F H P K I E (C	RSVSKSIKYIÇKLAG
4. TGMV	MPSHPKRFQINAKNYFLTYPYCSLSKE	SSLSQLQALN-TPINKKFIKICRELHEDGQFHLHVLI <mark>Q</mark> FEGKYCCQNQRFFDLVSPT	SAHFHPNIQRA	KSSSIVITYIIK)-G
5. MSV	MTSSSSNRQFLHRTANTFLTYPPCPEHPEI	LISORIWDLV-GRWNPLYIICAQEAHEDGNNHLHALI <mark>DTDKOVRTTDSR</mark> FFDIDG	FHPNIQSA	MSPNKVIDYIIKIPL
6. BGMV	MP-PPKRFKINAKNYFLTYPYCSITKES	AIEQLQNLQ-TPVNKKYIRICREIHENGE:HLHALIQFEGKFQCTNCRVFDLKHPT	SSVSHANIQSA	KSSSIVISYIEK)-G
7. BCTV	MP-PIKRFRIQAKNIFLIYP?CSLSKE	ALEQIQGIQ-LSSNKKYIKIARELHEDGQEHLHVLLQLEGKVQITNIRLFDLVSPT	SAHFHPNIQSA	KSSSIVISYVIK)-G
8. TPCTV	MPSNPKRFOIAAKNY <mark>FLTYP</mark> ICSLSKEP	aldolorio – Trinkky i kvarelhenge: Hlhvli <mark>d</mark> Fegk fnoknor ffolvspo	STHEHPNIOJA	KSSSIV SYVIK 1-G

	Walker A	Walker B	Walker C	
Species/Abbrv				
1. EGV1_Dal_2.6kbbis_313BEGD2-5	MPVRPRQFRLAKNYFLTYARCSLTKEEALQQLLEVS-	lasnk yirvafelhedgsphlhvliqlegraqvinnrlfdlhspss	SIK THPNI (SAKSSSDVKEYIEKG-G	
2. EGV2_Dnm_H4-2913_A206-2913-2	MSLPRKRFRLAKNFFLIYPECSLSKDDALTQLLAIP-	L PINK FIRVAFELHEDGSPHVHVPLQLDVRIQIINQRIFDLRHLHS	SRC FHPNI (SSKSYSEVKAYVEKD-G	
3. ECSV	-MASSSHRFRI GKAFFLTYSQCPREPKDVGEFLTSHST	LASHVYYVRVQÇEKHQDGNNHLHAIVCISERRDIRDPRIFDFG	EFHPKIEICRSVSKSLKYIQKEAG	
4. TGMV	MPSHPKRFQI AKNYFLTYPQCSLSKEESLSQLQALN-	TPINK FIKICFELHEDGQPHLHVLIQFEGKYCCQNQRFFDLVSPTR	SAH THPNI CRAKSSSDVKTYIDKD - G	
5. MSV	MISSSSNRQFLH: TANIFLIYPQCPEHPEIISQRIWDLV-	GRWNP, YIICA, EAHEDGNMHLHALIQIDKQVRTIDSRFFDIDG	THPNI, SAMSPNKVRDYILKEPL	
6. BGMV	MP-PPKRFKI AKNYFLTYPQCSITKESAIEQLQNLQ-	TPVNK YIRICFEIHENGEPHLHALIQFEGKFQCTNCRVFDLKHPTI	SSV HANIÇ SAKSSSDVKSYIEKD-G	
7. BCTV	MP-PTKRFRIAKNIFLTYPQCSLSKEEALEQIQGIQ-	LSSNK YIKIAFELHEDGQPHLHVLLQLEGKVQITNIRLFDLVSPTR	SAH THPNI GAKSSSDVKSYVDKD-G	
8. TPCTV	MPSNPKRFOILAKNYFLTYPNCSLSKEEALDOLORLO-	TPINK VIKVALELHENGEPHLHVLIOFEGKENCKNORFFDLVSPIR	STH THPNIC GAKSSSDVNSVVDKD-G	

Figure S2

1 Kb pUC19 H₂O 313 Da 336 Dtra

Dral

Figure S3

Rolling circle amplification using a cocktail of random and specific primers used for detecting EGV1 or EGV2.

- 1. Ladder
- 2. pUC19
- 3. H₂O
- 4. Dioscorea alata (acc. #313, seedlings)
- 5. Dioscorea tranversa (acc. #336)

Maximum likelihood tree of eighteen 402 bp partial *rep* sequences obtained using the *"ren-ren"* and *"rep-rep"* primer pairs.

0.01

Figure S5

A: Western blot on the total protein extracts of several Dioscorea species, using an antibody directed to a Rep peptide of EGV1

B: The nitrocellulose membrane stained with Ponceau S dye for protein detection during western blotting.

Lanes:

- 1) Proteins extracted from a turnip plant infected by CaMV
- 2) Tomato plant infected by TYLCV
- 3) Ladder
- 4) Dioscorea trifida (accession#64)
- 5) Dioscorea sansibarensis (accession#269)
- Dioscorea bulbifera (accession#272)
- 7) Dioscorea dumetorum (accession#47)
- 8) Dioscorea togoensis (accession#114, seedling)
- Dioscorea praehensilis (accession#255)
- 10) Dioscorea rotundata (accession#118, seedling)
- 11) Dioscorea nummularia (accession#335)
- 12) Dioscorea alata (accession#297, seedling)
- 13) Dioscorea alata (accession#313 seedling)
- 14) Dioscorea alata (accession#402 seedling)..

	1313BEGG6B 50	
	REN14475 T7P 12 .ab1	Figure S6
	313BEGG6B 30	ligure ou
	313BEGG6B 18RC	
	313BEGG6B 16RC	
	313BEGG6B 11RC	
	REN313-3213-16RC	
	REN313-3213-15RC	
	REN313-3213-12RC	
	REN313-3213-10RC	
	REN313-3213-3RC	
	REN313-3213-1RC	
	REN15671 T7P 13 .ab1	
	REN15672 T7P 14 .ab1	
	REN15674 T7P 15 .ab1	
	REN21044 T7P 16 .ab1	
	REN21051 T7P 17 .ab1	
	REN22295 T7P 18 .ab1	
	313BEGD2-5RC	
	61 313BEGD2-5RC(2)	
	REN206-571-10 T7P 33 .ab1RC	
	15067BEGO2-1 T7P 14 .ab1RC	
	³³ REN206-571-9 T7P 32 .ab1RC	
	REN206-571-10 T7P 33.ab1RC(2)	
	- 336BEGO11A-1 T7P 69 .ab1	
	43 REN271-571-7 T7P 40 .ab1	
	- REN271-571-8 T7P 41 .ab1	
	- REN271-571-1 T7P 34 .ab1RC	
	REN271-571-6 T7P 39 .ab1RC	
	REN271-571-9 T7P 42 .ab1	
	8 REN271-571-10 T7P 43 .ab1RC	
	REN271-571-2 T7P 35 .ab1	
	REN271-571-3 T7P 36 .ab1	
	REN271-571-4 T7P 37 .ab1	
<u> </u>	⁹ REN271-571-5 T7P 38 .ab1RC	
	REN313-3213-14RC	
	61 REN313-3213-19RC	
	- 313BEGG6B 20RC	
	- REN6481 T7P 10 .ab1	
	- 336BEGO11B-1 T7P 21 .ab1RC	
	REN313-3213-2RC	
	63 REN313-3213-6RC	
	- REN6210 T7P 8 .ab1	
	6181BEGO9-1 T7P 6 .ab1RC	
	313BEGG6B 10RC	
	6 ^{† L} REN265-4 T7P 5 .ab1	
	L REN6215 T7P 9 .ab1	
└──── gi 146411805	ef YP 001210301.1 replication enhance	r protein Clerodendron yellow mosaic virus

0.2

A Sequence duplication only at integration

- Speciation events
- Integration event
- Sequence duplication events

Real endogenous sequence tree

Tree inferred after sampling

B Repeated sequence duplications post-integration

Real endogenous sequence tree

Tree inferred after sampling

Figure S7

Supplementary Table 1. List of primers used in this study

Material and method part	Primer name	Sequence
Full genome amplification of EGV1	YLCV2F	AGATGTGGAGAACCATCCTC
	YLCV1R	GGTTATTCGATCTTCACTCAC
Whole EGV1 and EGV2 rep genes amplification	rep_EGV1_D_alataF	GCCGGAATTTGTTGAAGCTG
Primer Set1	<i>rep_</i> EGV1_D_alataR	GGTCCATTAGCTTAGTGTTCT
Primer Set2	<i>rep_</i> EGV1_D_nummulariaF	TCTTCACCTGTTCTGAAATCC
	<i>rep_</i> EGV1_D_nummulariaR	GTTGGAGAAGTGTGTAAGCC
Primer Set3	rep_EGV2_F	GGAGACGTATACCGAACAAC
	<i>rep_</i> EGV2_R	TGGGTTATGAGTTGTTACTTGT
Characterization of multiple EGV1 repeats from D.alata	ren-ren_D_alataF	GTCATACATCCGGCGTCGT
	ren-ren_D_alataR	CAGCTTCAACAAATTCCGGC
	rep-rep_D_alataF	AATCCAATCATTCATCACAGGA
	<i>rep-rep_</i> D_alataR	GAGGATGGTTCTCCACATCT
Distribution of EGVs within the genomes of Dioscoreacea sp.	EGV1_Detection_1F	GTGAGTGAAGATCGAATAACC
	EGV1_Detection_1R	GAGGATGGTTCTCCACATCT
	EGV1_Detection_2F	CGCGCAGCRTCATTRATCTG
	EGV1_Detection_2F	TGGGGWGAGTTYCAGGTTGA
	EGV2_Detection_1F	AGGAATGGAAGTCAAGTCGTA
	EGV2_Detection_1R	AGGTTCAGATTCCAGCTATTC
	EGV2_Detection_2F	TTCCAGGTGTTCTTCTATCTC
	EGV2_Detection_2R	GTCACTACCAASRAAAYGCTTC

Supplementary Table 2. Prevalence of EGV1 and EGV2 sequences among a collection of 9 *D. alata* plants collected worldwide, including two *D. alata* plants grown from true seeds under virus-free conditions.

			EGV1	EGV2
Species	Accession number	Sampling location	292 bp	1274 bp
D. alata	301	Brazil	+	+
	440	Costa-Rica	+	+
	71	Cuba	+	+
	408	Ghana	+	+
	314	Haiti	+	+
	313, 402	India (grown from true seeds)	+	+
	MDG009	Madagascar	+	+
	167	Vanuatu	+	+

Procedure/plant sample	Virus-like sequence	Best hit obtained from NCBI Blast (BlastN or BlastX)								
Plant vs EST	Name	Length (bp)	Family	Genus	Accession Number	Species	Identity (%)	E-value	Gene	Blast
Virion - D. alata - VU564a	EGV1	209	Geminiviridae	Begomovirus	DQ665866	SiGMBV	71		Rep	N
ESTs - D. alata	HO836974	274	Caulimoviridae	Badnavirus	L14546	CSSV	72	2e-11	Polyprotein	N
(dbEST Id : 71472229)	HO838291 (EGV2)	316	Geminiviridae	Begomovirus	HM585443	SiMBoV2	72	1e-20	Rep	Ν
	Contig3987	2306	Potyviridae	Macluravirus	AB044386	ChYNMV	72	1e-75	СР	Ν
	HO833648	325	Secoviridae	Unassigned	NP733954	SMoV	45	1e-17	RdRP	Х
	Contig1995	2308	Secoviridae	Sadwavirus	NP620567	SDV	21	3e-6	Polyprotein	Х
	Contig2044	2535	Secoviridae	Unassigned	NP733984	SMoV	22	1e-16	CP	Х
	Contig2047	2027	Secoviridae	Sadwavirus	NP620567	SDV	23	5e-16	Polyprotein	Х
	Contig2049	2577	Secoviridae	Sadwavirus	BAD12076	SDV	21	5e-19	CP	Х
	Contig2216	2950	Secoviridae	Unassigned	EU419645	BRNV	84	3e-08	RdRP	Ν

Supplementary Table 3. Viral sequences recovered from partially purified virions and EST screening.

Supplementary Table 4. Selection analyses results (*N. benthamiana*). For each test, each clade was assigned to a foreground partition (FG), or one of two background partitions (BG1 and BG2). We report p-values for significance tests for purifying selection along foreground lineages, and the parameter point-estimates for the foreground partition under the alternative model (which allows purifying selection).

GRD3	GRD5	Connecting branch	p-value for neg. selection	ω_1	<i>p</i> ₁
BG 1	BG 2	FG	7.9×10 ⁻¹²	0.043	1
BG 1	FG	BG 2	0.44	0.75	1
FG	BG 1	BG 2	0.995	0.94	0.65
FG	FG	BG	0.55	0.82	1