1		Supplemental Materials	
2	Table of Conte	ents	1
3	Supplementary	y methods	3
4	Supplementary	y results	10
5	Supplementary	y figures	11
6	Figure S1:	Allograft survival for high vs. low CADI-12	11
7	Figure S2:	Workflow for bioinformatic data analysis	12
8 9	Figure S3a	-c: Identification of differentially expressed genes significantly associated with high month or 12-month CADI using Spearman correlation analysis	h 3- 13
10 11	Figure S4a-	-b: Gene Ontology and immune cell type analysis of genes associated with CADI-m3 CAD-m12	and 16
12 13	Figure S5:	Geneset Enrichment Analysis (GSEA) identified significant GO biological proce associated with high CADI-3 and CADI-12	sses 18
14	Figure S6:	Cross-validation and permutation validation of the 13 geneset	19
15	Figure S7:	ROC curves for high/low CADI-12 prediction at higher CADI-12 cutoffs	20
16 17	Figure S8:	ROC curves of prediction for fibrosis by Banff criteria (Ci+Ct scores), IFTA and patients without ACR using the 13 geneset	l on 21
18	Figure S9:	Prediction of kidney function with the 13 geneset	22
19	Figure S10:	Prediction of progressor and non-progressor with 13 geneset	23
20	Figure S11:	Allograft survival for progressors and non-progressors	24
21	Supplementary	y tables	25
22	Table S1:	Demographic and clinical characteristics for GoCAR qPCR validation cohorts	25
23	Table S2:	The 84 focus geneset	26
24	Table S3:	Multivariate analysis of clinical variable and geneset prediction of CADI-12	29
25	Table S4:	CADI subscore comparisons between progressor /non-progressor	30
26 27	Table S5: parameters and	Multivariate analysis of m12 and m24 progressor/non-progressor prediction with clin geneset	nical .31
28 29	Table S6: A hazard model	Association of 10 principle components of 13 geneset with graft loss in Cox proportion	onal 33
30 31	Table S7:	Association of demographic or clinical variables with graft loss in Cox proportional has	zard 34
32	Table S8: V	alidation of the GoCAR geneset in other kidney transplant cohort	.35
33	References		36
34			

35 Supplementary methods:

36 Clinical Data Collection

37 Donor and recipient data were collected at baseline. Donor information included age, race, gender, 38 HLA genotype, cause of death, and graft status (i.e. SCD, ECD, or DCD). Recipient data included age, 39 gender, race, cause of ESRD, HLA genotype, PRA, presence and type of anti-HLA antibodies, cross 40 match status, cold ischemia time (CIT), delayed graft function (DGF), immunosuppression regimen, 41 CMV status, HCV and HBV status, dialysis vintage, dialysis modality, transfusion history, pregnancy history, and previous transplants We have adhered to the STROBE checklist throughout the manuscript. 42 43 The clinical data from 5 different clinical centers were deposited into a central clinical eRAP database 44 developed at Mount Sinai.

45

46 Histopathology:

47 2 tissue cores were taken from each of the 3-month and 1 year protocol renal biopsies of the 48 Genomics of Chronic Allograft Rejection (GoCAR) cohort. One core was processed for histology and the other core was processed for mRNA. When only one core could be obtained priority was given to mRNA 49 50 at 3-months and to histology at 12-months. Renal biopsies were processed and read centrally. Formalin-51 fixed, paraffin-embedded sections were processed for histologic stains (hematoxylin and eosin, periodic 52 acid Schiff, trichrome and Weigerts elastic stains). Immunohistochemistry for C4d was done on an automated stainer on paraffin sections stained with a rabbit polyclonal antibody (American Research 53 Products, Inc.). All slides were scanned with a whole slide scanner (Aperio CS) and high-resolution 54 55 digital images and archived in an image database.

Biopsies were evaluated and scored separately by 2 renal pathologists, without knowledge of the
clinical data, using the Revised Banff 2007 Classification for Renal Allograft Pathology ¹ (SIS reference).
Where diagnoses were discordant, a meeting was held with a third pathologist for a consensus diagnosis.

Scoring was done on the whole slide images for all cases. Scores were entered into a custom Filemaker Pro database that calculated the Banff categories and Chronic Allograft Damage Index (CADI). The CADI-score is a composite score that includes six histologic components – vascular intimal sclerosis (cv), tubular atrophy (ct), interstitial fibrosis (ci), interstitial inflammation (i), mesangial matrix increase (mm) and glomerusclerosis (g). Each component is scored between 0 & 3, giving a maximum possible score of 18. CADI-scores in protocol biospies has been validated to directly correlate with outcomes by several authors²⁻³.

66 Definition of "protocol biopsy" is that the biopsy is performed for the study or as part of a 67 standard protocol at a given site in which a biopsy is performed based on time post-transplant and not 68 based on an increase in creatinine or change in clinical status.

Treatment of Censored data: For analysis for histological outcomes, patients without 12-month
biopsies were excluded from analysis. For analysis of functional outcomes or eGFR - we imputed a GFR
of 10 ml/min for all death-censored graft losses. For analysis of graft survival via Kaplan-Meier, we
censored patients whose follow up data became unavailable at respective time points, whereas patients
who had "events" (ie graft-loss) were censored at the time of the event.

74 Microarray experiments

The graft biospies from 5 participating centers were sent to Mount Sinai and were stabilized with 75 RNA-later(Qiagen, Inc). Total RNA was extracted from percutaneous graft biopsy samples obtained at 3 76 month after transplantation using All prep kit (QIAGEN-ALLprep kit, Valencia, CA USA) by one 77 78 technician at Mount Sinai. RNA quality was assessed using Bioanalyzer 2100 (Agilent Technologies). 79 Samples with an RNA Integrity Number greater than eight were used in subsequent microarray 80 experiments. Affymetrix humanexon 1.0 ST arrays were used following standard protocol provided by 81 the manufacturer (Affymetrix Inc.). In brief, ENCORE amplification and labeling kit (NuGen, San Carlos, 82 CA) was applied to the first batch of samples starting with approximately 100ng of total RNA to generate

biotin-labeled RNA fragments for hybridization to the chip. For samples with a low RNA concentration,
the Nugen Ovation PICO amplification kit (NuGen, San Carlos, CA) was applied. The chips were
scanned using GeneChip Scanner 7G (Affymetrix Inc.). The Affymetrix genechip experiments were
performed at Mount Sinai Microarray Core.

87 Microarray data processing

The intensity data of microrray experiments at the gene level were extracted and summarized with the RMA algorithm⁴. Data quality was assessed using the Affymetrix Expression Console (Affymetrix Inc). The Affymetrix control probesets and probesets with a low intensity (less than 20% quantile among all the data points) across all samples were excluded from downstream analysis. Batch effects were adjusted using the ComBat R package⁵.

93 **Bioinformatic analyses**

94 The workflow of bioinformatic analysis is depicted in Suppl. Fig 3. and the analysis was
95 performed with statistical R packages. The goal of analyses was to derive a relatively robust set of genes
96 (~10-20) that predicts the development of chronic graft nephropathy.

Identification of the graft transcriptional signature: Spearman correlation analyses were performed on the 97 98 3-month graft gene expression data for 3-month graft CADI score (CADI-3) as well as 12-month CADI 99 score (CADI-12). The correlation coefficient and the p-value for the relationship between the level of 100 expression and CADI score were calculated for each gene. The slope of gene expression against the 101 CADI score was also computed using a linear regression model. Genes with a p value of < 0.05 were 102 selected. Two lists of genes with p<0.05 were generated corresponding to either the 3 month or 12 month 103 CADI scores. Annotated functional and molecular mechanisms of these 2lists of genes were determined by Gene Ontology (GO) enrichment analysis based on Fisher-exact test. To investigate which immune 104 105 cell type genes are associated with CADI-3 or CADI-12, we downloaded the public expression data of 106 various immune cell types (https://www.immgen.org/) and identified highly expressed genes for each 107 immune cell type by the rank of gene expression across cell types. We then checked which immune cell types are correlated with CADI-3 or CADI-12 based on the enrichment of immune cell type genes. 108

Alternatively, the gene expression dataset was analyzed to determine biological functions that are enriched in biopsies with higher CADI scores. To accomplish this, we applied Geneset Enrichment Analysis (GSEA)⁶⁻⁷ to the entire microarray dataset and determined gene functions that are enriched in samples with a high CADI score (CADI≥2) versus those with a low CADI score (CADI<2). Top GO terms associated with both the high and low CADI groups were determined, and compared to the results of GO enrichment analysis derived from the analyses of correlation between gene expression level and CADI score described above.

116 *Prediction analysis:*

To derive a more significant and focused geneset from the large list of genes that have 117 statistically significant association with CADI-3 or CADI-12 scores, we filtered the gene list by applying 118 119 various statistical prediction models. First, the whole cohort of patients was randomly assigned to 2 120 groups in a 1:1 ratio. Spearman correlation analysis was applied to determine the genes with expressions 121 levels that correlated with the severity of CADI score at 3 and 12 months. The 1:1 randomization was repeated 100 times and correlation analysis of gene expression with CADI score at 3 and 12 month was 122 123 performed for each of the 100 iterations. We considered genes that occurred more than twice in the 100 124 iterations of randomization with a correlation at a P<0.05 with CADI in both groups as a focused geneset from which a minimal prediction set was identified for predicting kidney fibrosis. Genes that were 125 126 exclusive to the CADI-12 focus geneset (i.e. genes not shared with the CADI-3 focus geneset) were 127 derived and further filtered by correction for clinical confounders (donor age, living vs deceased donor, 128 donor gender and race, cold ischemia time(CIT, minutes), induction therapy, anti HLA class I, and II antibodies) using multiple linear regression analysis, as well as exclusion of genes with a low median 129 130 log2 intensity of less than 5.

Finally, we performed iterative logistic model fitting (5000 iterations) in order to identify an optimal and minimal geneset for prediction of future kidney fibrosis. We started by randomly selecting 20 genes from the filtered CADI-12 focus geneset. The expression data of the 20-gene group was fitted into Firth-type bias-reduced logistic regression model which panelizes the maximum likelihood ^{8 9} in logistf

R package for prediction of high (CADI-12 >2) and low (CADI<2) CADI-12. We used a CADI-12 cutoff 135 of ≥ 2.0 to derive our prediction geneset. The paper we referenced by Yilmaz² also evaluated protocol 136 biopsies at 1 year and divided their biopsies into 3 groups <2, 2-3.9 and >4. Whilst a CADI score >4 had 137 138 the strongest association with graft loss, those with a CADI score of 2-3.9, were also associated with graft 139 loss where as those with a score <2 did not. We selected a CADI- $12 \ge 2$ based on this prior publication³. The genes with significant association with high/low CADI-12 (p < 0.05) were identified from the 140 141 regression model for each of the 20-gene group. The steps above were repeated 5000 times. Statistically significant genes (P<0.05) were identified from each iterative operation. The occurrence of significant 142 genes from the 5000 iterations was calculated. Finally, the top 40 genes ranked by the number of 143 144 occurrences were applied back to the penalized logistic regression model for high vs. low CADI-12 145 prediction. Statistically significant genes (P<0.05) using this model were considered the final optimal 146 geneset. The AUC score and sensitivity and specificity were calculated from logistic regression model 147 using the final optimal geneset. To investigate the overfitting issues of prediction of training set with the 148 geneset, cross-validated prediction AUC was also calculated using a 3-fold cross-validation method. Briefly, the patients were randomly divided into 3 groups of equal size and equal number of high and low 149 CADI-12 patients and the data for any 2groups were used as the training set with the third as the 150 151 prediction set. The penalized logistic regression model that was built on the training set was applied on 152 the prediction set to predict the outcome and the true and false positive rates. Prediction accuracy was 153 calculated from the prediction data set and then averaged from three possible permutations. We repeated 154 the steps over 100 times. The overall true or false positive rates and prediction accuracy were computed. The distribution of AUCs on the testing set based on the model derived using the training set for 100 155 156 iterations was plotted.

157

To assess if the geneset we identified was an optimal geneset for high/low CADI-12 prediction, 158 we compared the original prediction AUC with prediction AUCs from the genesets that were identified from high/low CADI-12 groups after 2000-time random re-shuffling of CADI-12 scores. Briefly, CADI-159 160 12 scores were randomly re-assigned to the patients, the prediction geneset from re-shuffled high/low

161 CAD-12 groups was identified in the same approach as for original CADI-12 groups and the AUC was
162 therefore calculated. These steps were repeated 2000 times and the original AUC was compared to the
163 1000 AUCs from randomly-assigned CADI-12 groups.

Our geneset identification and prediction approach was further fully cross-validated with leaveone-out cross-validation algorithm. Briefly, we took one patient as validation set and the remaining patients as training set and identified new geneset from training set in the same approach as for original cohort. The logistic model built on training set with new geneset was then applied to the patient that was left out and the prediction probability was calculated. These steps were repeated in all the possible ways of selecting training and testing sets and ROC curve was drawn based on the probabilities of testing sets from all iterations.

171Prediction of high/low CADI-12 at a different threshold (high CADI-12 \geq 3 or high CADI-12 \geq 4)172was also performed to assess the robustness of 13 geneset prediction. To check if the inflammation was173the driver of the 13 geneset, we evaluated the prediction of Banff criteria (Ci+Ct scores), IFTA and high174CADI-12 on the patients without acute rejection. Lastly we investigated if the geneset can predict the175kidney function and we calculated prediction AUC of eGFR at12 month or 24 month with geneset.

To investigate whether prediction by the geneset is superior to prediction by clinical variables, we performed the multivariate logistic regression for prediction of high/low CADI-12 by including the following demographic/clinical variables: donor age, recipient race and gender, deceased donor status, extended-criteria donor kidney, cold ischemia time (CIT, minutes), induction therapy, presence of Anti-HLA antibodies, delayed graft function and HLA mismatch. After step-wise selection, the variables that remained significant were used in final model. The AUC for the ROC curve of the final model was then calculated and compared to CADI-12 prediction with the geneset.

183 We also applied our optimal geneset to predict the progressors and non-progressors using the 184 same approach described above. Patients who had CADI-3 \leq 3 and demonstrated a Δ CADI \geq 2 by 12 month 185 were considered as progressors, and those who had Δ CADI \leq 1 were considered non-progressors. A

7

similar assessments were done for those with CADI score at 24 months and also for the patients with
CADI-3≤2.

188 To test if our geneset could predict early graft loss post-transplant for the original 159 patients, 189 we applied logistic regression prediction model with our geneset among only those patients who either 190 had graft loss within 3yr or had been followed-up for at least three years without graft loss and calculated 191 the AUC. Secondly, survival analysis on all 159 patients was performed to examine if our geneset was 192 associated with graft loss: to assess the association of the whole geneset with clinical outcome, the major 193 principle components of the expression data of the geneset rather than individual genes can be used to fit 194 an association statistic model along with clinical parameters, especially in the case where the geneset contains many genes¹⁰⁻¹¹. In this study, we initially performed Principle Components Analysis (PCA) on 195 196 expression data for the 13 genes and the top 10 principle components (PC) were applied to Cox 197 proportional hazard model of time to graft loss. The principle components (PC) that were significantly 198 associated with graft loss were selected (p < 0.05) and the linear combination of eigenvalues of significant 199 components multiplied by the coefficiencies of corresponding PCs from Cox model was used as the 200 geneset risk score (GR-score). The patients were then stratified into 2populations based on geneset risk 201 score (GR-score) for Kaplan-Meier survival analysis. Finally the time-dependent ROC for graft loss 202 prediction within 2 or 3 yrs post-transplant was plotted and the AUCs calculated. The demographic and 203 clinical variables, including 3-month estimated glomerular filtration rate (m3_eGFR), acute cellular 204 rejection at- or before 3-months (pre_or_m3_ACR), CADI-3, cold ischemia time (CIT, minutes), 205 deceased donor status, the presence of Anti-HLA antibodies, induction therapy, recipient race, donor age, 206 delayed graft function and HLA mismatch were also fitted in Cox proportional hazard model of time to graft loss to investigate if the demographic or clinical variables were associated with graft loss. 207

208

209 Validation of Geneset:

210 We also validated our final optimal geneset on 2independent public datasets. Both public datasets were on the Affymetrix GeneChip platform HU430plus2 (GSE21374¹², GSE25902¹³). The raw data of 211 these public datasets were processed separately in Affymetrix Expression Console using the RMA 212 213 normalization approach. The expression data for each of the genes in our final optimal geneset was extracted and a prediction model with the geneset was built on each individual dataset. Predictions of 214 clinical data (graft loss post biopsy at any time for GSE21374, and progressor/non-progressor based on 215 216 CADI score for GSE25902) was performed using the penalized logistic regression model. AUC scores for 217 each of these 2 datasets were calculated from the ROC curves for prediction specificity over sensitivity. 218 We also performed time to graft loss analysis on dataset1 (GSE21374) using the same approach as that 219 for GOCAR dataset.

220

221 qPCR experiments

Total RNA was extracted from graft biopsy samples of 45 independent GOCAR patients (N=18: 222 223 CADI-12 \geq 2, and N=27:CADI-12 <2) using Allprep kit (QIAGEN-ALLprep kit, Valencia, CA USA). cDNA was synthesized using AffinityScript RT kit with oligo DT primers (Agilent Inc. Santa Clara, CA). 224 225 TaqMan qPCR assays for the 13 geneset, 2 house-keeping genes (ACTB, GAPDH) and 18s were 226 purchased from ABI Life Technology (Grand Island, NY). qPCR experiments were performed on cDNA 227 using TAQMAN universal mix and PCR reaction was monitored and acquired using an ABI7900HT 228 system. Samples were measured in triplicates. Cycle Times (CT)values for the prediction geneset as well 229 as the 3 housing genes were generated. The ΔCT value of each gene was calculated by subtracting the 230 average CT value for the house-keeping genes from the CT value of each gene and penalized logistic 231 regression fitting model was then applied on ΔCT values for prediction of the high and low CADI-12 in 232 45 patients and AUC score was then calculated as described above.

233

234

235 Supplementary results

236 Intragraft molecular phenotype is time dependent.

Gene expression profiles from m3 biopsies were analyzed by correlation analysis and Geneset 237 238 Enrichment Analysis (GSEA) to understand molecular mechanisms of IF/TA (Figure S2) (n=159). We 239 identified 1127 genes significantly correlated with CADI-3 (716 positively and 411 negatively) and 1,143 240 genes with CADI-12 (914 positively and 229 negatively) at a cutoff unadjusted p < 0.05, (Figure S3a, S3b 241 and S3c). Only 230 genes (20.4%) correlated with both CADI-3 and CADI-12 (Figure S3a). Gene 242 Ontology enrichment indicated that the transcripts specifically associated with CADI-3 alone were related 243 to alloimmunity, including T-cell activation; while genes involved in programmed cell death/apoptosis 244 and cell adhesion were associated with CADI-12 alone (Figure S4a). By enrichment analysis of immune 245 cell type genes, we observed that dendritic cell genes were specifically associated with CADI-3; however stromal cell genes (mostly fibroblast cells) were the most significantly associated with CADI-12 in 246 247 addition to macrophage, dentritic and CD4 T cell related genes (Figure S4b). Biological functions were 248 further confirmed by GSEA method in which gene expression data in GO categories were compared 249 between patients with high (≥ 2) and low (<2) CADI at 3- or 12-months (Figure S5).

250

251

252

253

Figure S1

CADI	Spearman Correlation P<0.05	Genes	Top 25 Genes	
2 month CADI	Positive	716 IRF8, ALOX5, GABRP, GAPT, IKZF1, NUF2, PPM1M, TOR1A, CPA3, BTK, CD180, ARL4C, CD200R1, PTPN ABCA12, APBB1IP, ITGB2, IGJ, C17orf87, ARG1, GN GCNT1, AIM2, CLSPN		
5 Month CADI	Negative	411	USP2, FLJ42875, GAD1, B3GNT9, NAPB, LOC100130232, CA12, EGF, SLC4A9, TTC18, ADHFE1, ZNF793, NCOA6, SERPINA5, F11, PER3, ZNF385B, RALGPS1, FREM1, FRAS1, SALL1, ATXN7L1, WNK1, NEDD4L, CYP4Z1	
12 month CADI	Positive	914	MACC1, LAMC2, CHCHD10, CCL2, GABRP, DUSP6, PROM1, CDC42SE2, ARL4C, SLC34A2, ARPC5, GCNT3, DLGAP1, KLHL13, FJX1, LIX1, TES, HS3ST1, SFN, MET, ITGB6, CLU, HPGDS, CYR61, FAM110B	
	Negative	229	NHLH1, GPRC6A, TRPM6, LCE2D, SLC22A23, SORCS1, C11orf53, RXRA, PDK4, C7orf53, KANK1, KRT9, IRGC, C9orf84, NCKAP5, GOLGA2B, PCSK2, MGC13053, KREMEN1, TACC2, OR10A5, CCDC90A, PRM1, MT1B, C5orf45	

Figure s4b

0.5

(S 11) 0.4

<u>й</u> 0.3

Ê 0.2 -

E 0.1

0.0

ñ 0.3

Ë 0.2

0.1

0.0 Gti

tg -0.1

p -0.2

ó

Rank

a)

Figure S6

AUC values

False Positive Rate

20

a)

c)

Figure S9

a)

b)

Figure S10

Figure S11

Characteristics:	Microarray patients	RT-PCR patients	*P-value
	(n=101)	(n=45)	
	Mean \pm SD (%)	Mean \pm SD (%)	
Recipient age	46.90±12.38	46.81±11.52	0.69
Recipient race			0.96
Caucasian	66 (65.35)	33 (73.33)	
African American	15 (14.85)	3 (6.67)	
Other	20 (19.80)	9 (20.0)	
Recipient ESRD diagnosis			0.63
Diabetic nephropathy	33 (32.67)	10 (22.22)	
Hypertension	17 (16.83)	6 (13.33)	
Glomerulonephritis	22 (21.78)	15 (33.33)	
Polycystic Kidney	13 (12.87)	5 (11.11)	
Other	16 (15.84)	9 (20.00)	
Donor age	40.73±16.80	44.87±14.68	0.16
Donor race			0.72
Caucasian	80 (79.21)	42 (93.33)	
Non-Caucasian	21 (20.79)	3 (6.67)	
h/o Delayed graft function	9 (8.91)	5 (11.11)	0.54
Anti-HLA antibodies**	26 (26.8)	19 (42.2)	0.08
Class-I	26 (26.8)	19 (42.2)	
Class-II	10 (9.9)	12 (26.7)	
3-month eGFR-creatinine	59.48±18.11	59.27±18.91	0.94
3-month Acute rejection [#]	22 (21.7)	11 (28.94)	0.50
High/low CADI-12	44/57	18/27	0.72
High CADI-12			0.68
- Mean±SD	4.21 ± 2.09	4.00±2.09	
- Median(IQR)	3 (2.75-5.0)	3 (2.75-5.0)	
Low CADI-12	· · · ·		0.99
- Mean±SD	0.49 ± 0.50	0.48±0.51	
- Median(IQR)	0.0 (0.0-1.0)	0.0 (0.0-1.0)	

Table S1 : Baseline clinical and demographic characteristics for GoCAR patient cohorts.

*P-value by Unpaired T-test (or non-parametric) and, Chi-square/Fisher's exact test. ** 97/101 & 38/45 patients had HLA antibodies measured.

 Table S2:
 The 84 focus geneset

ProbeID	Gene Symbo	Gene Description	Cytoband	mRNA Accessic CAD	Corr	Pvalue
3040518	MACC1	metastasis associated in colon cancer 1	7p21.1	NM_182762	0.411	1.95E-05
3954887	CHCHD10	coiled-coil-helix-coiled-coil-helix domain containing 10	22q11.23	NM_213720	0.404	2.85E-05
3464860	DUSP6	dual specificity phosphatase 6	12q22-q23	NM_001946	0.391	5.20E-05
2761842	PROM1	prominin 1	4p15.32	NM_001145847	0.380	9.03E-05
2721959	SLC34A2	solute carrier family 34 (sodium phosphate), member 2	4p15.3-p15	NM_001177999	0.375	1.11E-04
3596147	GCNT3	glucosaminyl (N-acetyl) transferase 3, mucin type	15q21.3	NM_004751	0.373	1.22E-04
3796620	DLGAP1	discs, large (Drosophila) homolog-associated protein 1	18p11.3	NM_004746	0.369	1.44E-04
4019160	KLHL13	kelch-like 13 (Drosophila)	Xq23-q24	NM_001168302	0.369	1.49E-04
3326826	FJX1	four jointed box 1 (Drosophila)	11p13	NM_014344	0.367	1.60E-04
2868265	LIX1	Lix1 homolog (chicken)	5q15	NM_153234	0.359	2.29E-04
3020192	TES	testis derived transcript (3 LIM domains)	7q31.2	NM_015641	0.357	2.51E-04
3020343	MET	met proto-oncogene (hepatocyte growth factor receptor)	7q31	NM_00112750(0.352	3.01E-04
2583465	ITGB6	integrin, beta 6	2q24.2	NM_000888	0.352	3.09E-04
3129065	CLU	clusterin	8p21-p12	NM_001831	0.349	3.46E-04
2344888	CYR61	cysteine-rich, angiogenic inducer, 61	1p31-p22	NM_001554	0.342	4.60E-04
3167110	ANXA2P2	annexin A2 pseudogene 2	9p13	NR_003573	0.340	5.02E-04
2602770	DNER	delta/notch-like EGF repeat containing	2q36.3	NM_139072	0.340	5.02E-04
2825629	TNFAIP8	tumor necrosis factor, alpha-induced protein 8	5q23.1	NM_014350	0.338	5.45E-04
2974413	MOXD1	monooxygenase, DBH-like 1	6q23.1-q23	NM_015529	0.328	8.11E-04
2864449	SERINC5	serine incorporator 5	5q14.1	NM_001174072	0.318	0.0012
3108489	LAPTM4B	lysosomal protein transmembrane 4 beta	8q22.1	NM_018407	0.318	0.0012
3024025	MEST	mesoderm specific transcript homolog (mouse)	7q32	NM_002402	0.304	0.0020
3662041	OGFOD1	2-oxoglutarate and iron-dependent oxygenase domain containing 1	16q12.2	NM_018233	0.303	0.0021
3605395	ADAMTSL3	ADAMTS-like 3	15q25.2	NM_207517	0.300	0.0023
2876361	PITX1	paired-like homeodomain 1	5q31	NM_002653	0.294	0.0028
3224087	TTLL11	tubulin tyrosine ligase-like family, member 11	9q33.2	NM_001139442	0.287	0.0036
3872335	ZNF416	zinc finger protein 416	19q13.4	NM_017879	0.287	0.0037
3332913	TMEM216	transmembrane protein 216	11q13.1	NM_016499	0.286	0.0037
3888383	SLC9A8	solute carrier family 9 (sodium/hydrogen exchanger), member 8	20q13.13	NM_015266	0.286	0.0037
2669979	CX3CR1	chemokine (C-X3-C motif) receptor 1	3p21 3p21	NM_00117117:	0.284	0.0040
2486927	ARHGAP25	Rho GTPase activating protein 25	2p13.3	NM_014882	0.284	0.0040
2435218	TDRKH	tudor and KH domain containing	1q21	NM_001083965	0.283	0.0041

2933392 SYNJ2	synaptojanin 2	6q25.3	NM_003898	0.281	0.0044
3431892 SH2B3	SH2B adaptor protein 3	12q24	NM_005475	0.281	0.0044
2672140 LTF	lactotransferrin	3p21.31	NM_002343	0.281	0.0045
2567583 RNF149	ring finger protein 149	2q11.2	NM_173647	0.280	0.0046
3734648 SLC16A5	solute carrier family 16, member 5 (monocarboxylic acid transporte	17q25.1	NM_004695	0.277	0.0050
3726154 ITGA3	integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 receptor)	17q21.33	NM_002204	0.272	0.0060
3850445 CDKN2D	cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4)	19p13	NM_001800	0.272	0.0060
2899437 BTN2A1	butyrophilin, subfamily 2, member A1	6p22.1	NM_078476	0.270	0.0062
2879105 SPRY4	sprouty homolog 4 (Drosophila)	5q31.3	NM_030964	0.270	0.0062
3623717 FLJ10038	hypothetical protein FLJ10038	15q21.2	NR_026891	0.267	0.0070
3168938 POLR1E	polymerase (RNA) I polypeptide E, 53kDa	9p13.2	NM_022490	0.266	0.0072
2714132 PDE6B	phosphodiesterase 6B, cGMP-specific, rod, beta	4p16.3	NM_000283	0.263	0.0078
2356142 LIX1L	Lix1 homolog (mouse)-like	1q21.1	NM_153713	0.263	0.0080
3232349 PFKP	phosphofructokinase, platelet	10p15.3-p1	INM_002627	0.261	0.0084
2931391 MTHFD1L	methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-li	6q25.1	NM_015440	0.259	0.0089
3960061 RAC2	ras-related C3 botulinum toxin substrate 2 (rho family, small GTP bi	22q13.1	NM_002872	0.259	0.0089
3261009 KAZALD1	Kazal-type serine peptidase inhibitor domain 1	10q24.31	NM_030929	0.255	0.0099
2315918 ATAD3C	ATPase family, AAA domain containing 3C	1p36.33	NM_00103921:	0.254	0.0103
3820443 ICAM1	intercellular adhesion molecule 1	19p13.3-p1	INM_000201	0.253	0.0108
2374982 RNPEP	arginyl aminopeptidase (aminopeptidase B)	1q32	NM_020216	0.252	0.0109
3405587 GPRC5A	G protein-coupled receptor, family C, group 5, member A	12p13-p12	NM_003979	0.250	0.0115
3270270 PTPRE	protein tyrosine phosphatase, receptor type, E	10q26	NM_006504	0.247	0.0126
2359885 SLC27A3	solute carrier family 27 (fatty acid transporter), member 3	1q21.3	NM_024330	0.247	0.0127
3415320 KRT7	keratin 7	12q12-q13	NM_005556	0.246	0.0130
2414958 TACSTD2	tumor-associated calcium signal transducer 2	1p32-p31	NM_002353	0.246	0.0130
3868998 NKG7	natural killer cell group 7 sequence	19q13.41	NM_005601	0.245	0.0136
2361342 SEMA4A	sema domain, immunoglobulin domain (Ig), transmembrane domai	1q22	NM_022367	0.245	0.0137
3776504 TGIF1	TGFB-induced factor homeobox 1	18p11.3	NM_170695	0.244	0.0140
3028217			AK303101	0.243	0.0143
2881187 CSF1R	colony stimulating factor 1 receptor	5q33-q35	NM_005211	0.242	0.0146
2898441 KAAG1	kidney associated antigen 1	6p22.1	NM_181337	0.240	0.0154
3056264 ABHD11	abhydrolase domain containing 11	7q11.23	NR_026912	0.240	0.0156
2621881 P4HTM	prolyl 4-hydroxylase, transmembrane (endoplasmic reticulum)	3p21.31	NM_177938	0.237	0.0168
3185593 BSPRY	B-box and SPRY domain containing	9q32	NM_017688	0.237	0.0169

2369484 TOR3A	torsin family 3, member A	1q25.2	NM_022371	0.237	0.0171
2787902 GYPE	glycophorin E (MNS blood group)	4q31.1	NM_198682	0.237	0.0172
3738471 RAC3	ras-related C3 botulinum toxin substrate 3 (rho family, small GTP bi	ı 17q25.3	NM_005052	0.234	0.0186
2692319 ADCY5	adenylate cyclase 5	3q13.2-q2	1NM_183357	0.233	0.0192
3361971 ST5	suppression of tumorigenicity 5	11p15	NM_005418	0.232	0.0197
3865998 PNMAL1	PNMA-like 1	19q13.32	NM_018215	0.220	0.0270
2407985 HEYL	hairy/enhancer-of-split related with YRPW motif-like	1p34.3	NM_014571	0.219	0.0275
2323899 UBXN10	UBX domain protein 10	1p36.12	NM_152376	0.216	0.0300
2459352 WNT9A	wingless-type MMTV integration site family, member 9A	1q42	NM_003395	0.212	0.0332
3051655 VOPP1	vesicular, overexpressed in cancer, prosurvival protein 1	7p11.2	NM_030796	0.210	0.0353
3635903 LOC388152	hypothetical LOC388152	15q25.2	BC054509	-0.213	0.0327
3394412 THY1	Thy-1 cell surface antigen	11q22.3-q2	2NM_006288	-0.234	0.0184
3907507 C20orf165	chromosome 20 open reading frame 165	20q13.12	NM_080608	-0.239	0.0160
3021696 ASB15	ankyrin repeat and SOCS box-containing 15	7q31.31	NM_080928	-0.263	0.0079
3645901 NAT15	N-acetyltransferase 15 (GCN5-related, putative)	16p13.3	NM_024845	-0.264	0.0078
2942578 CCDC90A	coiled-coil domain containing 90A	6p24.3-p2	3NM_001031713	-0.272	0.0059
3193339 RXRA	retinoid X receptor, alpha	9q34.3	NM_002957	-0.300	0.0023
3305801 SORCS1	sortilin-related VPS10 domain containing receptor 1	10q23-q25	5 NM_052918	-0.306	0.0019

Terms	OR		lower	upper	pvalue
Donor_Age		1.023	-0.015	0.061	0.2331
Recipient Race					
(Caucasian vs Non-Caucasian)		1.486	-0.742	1.534	0.4901
Recipient Gender		0.601	-1.627	0.583	0.3574
Deceased_donor		1.323	-1.233	1.773	0.7116
ECD_kidney		0.321	-3.548	1.238	0.3397
CIT_min		1.001	-0.001	0.004	0.1794
Induction_Therapy		0.774	-1.432	0.904	0.6631
Anti_HLA_Ab		0.856	-1.387	1.022	0.7973
Delayed_Graft_Function		1.719	-1.473	2.669	0.5912
HLA_Mismatch		1.202	-0.111	0.500	0.2242
m3_eGFR		0.971	-0.065	0.001	0.0552
pre_or_m3_ACR		2.977	-0.085	2.342	0.0690
CADI-3		1.212	-0.171	0.590	0.3058

Table S3a: Multivariate analysis of high CADI-12 prediction with clinical/pathological variables only

*N=83 patients have complete demographic, clinical and pathological data

Table S3b: Multivariate analysis of high CADI-12 prediction with clinical/ pathological variables and the geneset

Terms	OR	lower	upper	pvalue
Donor_Age	0.997	0.931	1.066	0.9341
Recipient Race				
(Caucasian vs Non-Caucasian)	0.464	0.041	3.186	0.4433
Recipient Gender	0.709	0.113	6.838	0.7079
Deceased_donor	1.231	0.099	15.878	0.8621
ECD_kidney	0.319	0.003	14.644	0.5771
CIT_min	1.001	0.998	1.006	0.4830
Induction_Therapy	1.214	0.168	10.472	0.8444
Anti_HLA_Ab	0.215	0.010	1.652	0.1463
Delayed_Graft_Function	0.213	0.001	5.963	0.4057
HLA_Mismatch	1.021	0.575	1.989	0.9400
m3_eGFR	0.960	0.871	1.016	0.1696
pre_or_m3_ACR	2.732	0.345	31.021	0.3319
CADI-3	1.466	0.721	3.608	0.2921
Geneset	621.774	49.955	9.74E+04	1.06E-10

*N=83 patients have complete demographic, clinical and pathological data

		3-month		12-month		
Parameter	Progressors	Non-Progressors	*p-value	Progressors	Non-Progressors	*p-value
	Mean±SD	Mean±SD		Mean±SD	Mean±SD	
CADI	1.36±1.28	1.07±1.06	0.45	5.50±2.56	1.25±1.17	<0.0001
ct-score	0.38±0.50	0.46±0.50	0.75	1.71±0.91	0.56±0.50	<0.0001
cv-score	0.22±0.67	0.22±0.59	0.95	0.91±1.09	0.19±0.55	0.0025
ci-score	0.15±0.38	0.15±0.41	0.99	1.93±1.07	0.21±0.45	<0.0001
i-score	0.07±0.27	0.02±0.14	0.36	0.35±0.74	0.07±0.43	0.0439
mm-score	0.0±0.0	0.02±0.1	0.99	0.14±0.53	0.04±0.28	0.39
g-score	0.45±0.82	0.17±0.61	0.09	0.35±0.74	0.08±0.44	0.0478

Table S4: CADI subscore comparisons between 12-month progressors/non-progressors

*Mann-Whitney test

Terms	OR		lower	upper	pvalue
Donor_Age		1.020	-0.025	0.073	0.3869
Race:Caucasian vs Non-					
Caucasian		2.686	-0.698	2.860	0.2477
Gender		0.421	-2.607	0.708	0.2797
Deceased_donor		4.036	-0.609	3.910	0.1791
ECD_kidney		0.188	-5.168	1.446	0.2938
CIT_min		1.001	-0.001	0.004	0.3131
Induction_Therapy		0.983	-1.658	1.761	0.9833
Anti_HLA_Ab		0.245	-3.581	0.358	0.1227
Delayed_Graft_Function		0.217	-4.557	0.878	0.2236
HLA_Mismatch		0.992	-0.508	0.463	0.9731
m3_eGFR		0.951	-0.116	-0.002	0.0425
pre_or_m3_ACR		5.795	0.118	3.691	0.0353
m3_CADI		0.626	-1.346	0.244	0.2040

 Table S5a: Multivariate analysis of m12 progressor prediction with clinical parameters and geneset

*N=63 patients have complete demographic, clinical and pathological data

Table S5b: Multi	variate analysis of m12 progressor prediction with clinic	cal
parameters and	geneset	

Terms	OR	lower	upper	pvalue
Donor_Age	0.993	0.911	1.068	0.8191
Race:Caucasian vs Non-				
Caucasian	0.529	0.021	6.518	0.6238
Gender	0.449	0.026	8.293	0.5410
Deceased_donor	2.093	0.066	148.439	0.6640
ECD_kidney	0.233	0.003	9.497	0.4440
CIT_min	1.001	0.998	1.005	0.6260
Induction_Therapy	0.992	0.102	18.526	0.9942
Anti_HLA_Ab	0.349	0.028	3.138	0.3361
Delayed_Graft_Function	0.079	0.000	2.887	0.2004
HLA_Mismatch	0.836	0.306	1.558	0.5506
m3_eGFR	0.934	0.809	0.991	0.0200
pre_or_m3_ACR	2.133	0.254	30.003	0.4591
m3_CADI	0.530	0.114	1.432	0.2261
Generisk	5.84E+03	23.237	3.25E+09	0.0002

*N=63 patients have complete demographic, clinical and pathological data

Terms	OR		lower	upper	pvalue
Donor_Age	0	.993	-0.057	0.042	0.7850
Race:Caucasian vs Non-					
Caucasian	0).525	-2.106	0.740	0.3601
Gender	1	315	-1.050	1.642	0.6826
Deceased_donor	0	.606	-3.013	1.872	0.6784
ECD_kidney	0	.649	-4.509	2.914	0.8043
CIT_min	1	.000	-0.002	0.003	0.6818
Induction_Therapy	0	.441	-2.256	0.541	0.2389
Anti_HLA_Ab	1	186	-1.493	1.783	0.8340
Delayed_Graft_Function	2	.057	-1.780	3.125	0.5504
HLA_Mismatch	1	.086	-0.304	0.498	0.6746
m3_eGFR	0	.980	-0.068	0.021	0.3413
pre_or_m3_ACR	2	.062	-0.795	2.260	0.3428
m3_CADI	1	.058	-1.033	1.146	0.9179

 Table S5c: Multivariate analysis of m24 progressor prediction with clinical parameters and geneset

*N=50 patients have complete demographic, clinical and pathological data

Table S5d: Multi	variate analysis	of m24 progressor	• prediction	with clinical
parameters and	geneset			

Terms	OR	lower	upper	pvalue
Donor_Age	0.941	0.785	1.050	0.2601
Race:Caucasian vs Non-				
Caucasian	0.127	0.001	1.534	0.1051
Gender	4.554	0.395	1.38E+04	0.2425
Deceased_donor	0.012	4.26E-07	3.046	0.1184
ECD_kidney	0.034	6.85E-08	99.226	0.4065
CIT_min	1.003	1.000	1.011	0.0889
Induction_Therapy	0.198	0.001	2.772	0.2090
Anti_HLA_Ab	7.356	0.219	740.253	0.2903
Delayed_Graft_Function	3.797	0.001	3.42E+04	0.7457
HLA_Mismatch	1.341	0.533	3.168	0.4341
m3_eGFR	0.974	0.848	1.093	0.6251
pre_or_m3_ACR	2.934	0.080	674.514	0.4715
m3_CADI	3.393	0.311	251.299	0.2903
Generisk	7.51E+03	56.185	3.98E+12	2.22E-06

*N=50 patients have complete demographic, clinical and pathological data

	coef	exp(coef)	se(coef)	z	р	
PC1	-5.592	3.73E-03	29.95	-0.1867	0.8500	
PC2	-7.413	6.03E-04	6.37	-1.1642	0.2400	
PC3	-2.874	5.65E-02	8.23	-0.3494	0.7300	
PC4	-14.75	3.93E-07	5	-2.9512	0.0032	*
PC5	0.783	2.19E+00	4.02	0.1948	0.8500	
PC6	13.701	8.92E+05	5.45	2.5141	0.0120	*
PC7	6.738	8.44E+02	4.11	1.6389	0.1000	
PC8	0.224	1.25E+00	3.72	0.0601	0.9500	
PC9	-0.749	4.73E-01	4.95	-0.1513	0.8800	
PC10	4.418	8.29E+01	4.07	1.0853	0.2800	

Table S6: Association of 10 principle components of 13 geneset with graft loss in Cox proportional hazard model

Likelihood ratio test=20.1 on 10 df, p=0.0287 n= 159, number of events= 11

Variable	Coef	Exp(coef)	SE(coef)	Z	Р
m3_eGFR	-0.016	0.984	0.027	-0.598	0.5500
pre_or_m3_ACR	2.475	11.877	1.186	2.086	0.0370
CADI-3	-0.329	0.720	0.264	-1.245	0.2100
CIT_min	2.6E-04	1.000	0.001	0.263	0.7900
Deceased_donor					
(yes vs no)	1.439	4.218	1.434	1.003	0.3200
Anti_HLA_Ab	-0.719	0.487	1.162	-0.619	0.5400
Induction_Type					
(yes vs no)	0.233	1.263	1.207	0.193	0.8500
Recipient Race					
(Caucasian vs non-					
Caucasian)	-1.150	0.317	1.004	-1.146	0.2500
Donor Age	5.3E-03	1.005	0.024	0.217	0.8300
HLA mismatch	-0.051	0.950	0.470	-0.108	0.9100
Delayed Graft Function	1.028	2.797	0.979	1.051	0.2900

Table S7: Association of demographic or clinical variables with graft loss in Cox proportional hazard mode

Anti_HLA_Ab: Yes (donor specific antigen or non dsa antibody), No : no antibody

Induction type: Yes (Lymphocyte Depletion or Lymphocyte Non-Depletion); No; Induction

Likelihood ratio test=11.5 on 11 df, p=0.4010 n= 120, number of events= 7

Data Set	Genechip /	Sample	Outcome	AUC	Ref.
	Platform	Size			
Dataset 1	Affymetrix	282	Allograft loss	0.83	9
	U133 Plus 2.0				
Dataset 2	Affymetrix	24	CADI	0.972	10
	U133 Plus 2.0				

Table S8: Validation of the GoCAR gene set in other kidney transplant cohorts.

Reference

1. Solez K, Colvin RB, Racusen LC, Haas M, Sis B, Mengel M, et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant. 2008 Apr;8(4):753-60.

2. Yilmaz S, Tomlanovich S, Mathew T, Taskinen E, Paavonen T, Navarro M, et al. Protocol core needle biopsy and histologic Chronic Allograft Damage Index (CADI) as surrogate end point for long-term graft survival in multicenter studies. J Am Soc Nephrol. 2003 Mar;14(3):773-9.

3. Yilmaz S, McLaughlin K, Paavonen T, Taskinen E, Monroy M, Aavik E, et al. Clinical predictors of renal allograft histopathology: a comparative study of single-lesion histology versus a composite, quantitative scoring system. Transplantation. 2007 Mar 27;83(6):671-6.

4. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003 Feb 15;31(4):e15.

5. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007 Jan;8(1):118-27.

6. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpharesponsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003 Jul;34(3):267-73.

7. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50.

8. Firth D. Bias Reduction of Maximum Likelihood Estimates. Biometrika. 1993;80(1):12.

Heinze G, Ploner M. Fixing the nonconvergence bug in logistic regression with SPLUS and SAS.
 Comput Methods Programs Biomed. 2003 Jun;71(2):181-7.

10. Bair E, Tibshirani R. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol. 2004 Apr;2(4):E108.

11. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell. 2013 Apr 25;153(3):707-20.

12. Einecke G, Reeve J, Sis B, Mengel M, Hidalgo L, Famulski KS, et al. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J Clin Invest. 2010 Jun;120(6):1862-72.

 Naesens M, Khatri P, Li L, Sigdel TK, Vitalone MJ, Chen R, et al. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes. Kidney Int. 2011 Dec;80(12):1364-76.